
A MOUNTAIN-CLIMBING PROBLEM 
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1. Introduction. Suppose that two men stand at the same elevation on 
opposite sides of a mountain range and begin to climb in such a way that their 
elevations remain equal at all times. Will they ever meet along the way? It is 
this question, restated in mathematical terms, that we shall consider. We 
replace the mountain range by the graph of a continuous, real-valued function 
f(x) defined for x Ç [0, 1], where /(0) = / ( l ) = 0, and we ask whether there 
exist continuous mappings <£(/), *K0 from [0, 1] into [0, 1] such that 

(1) 0(0) = 0, 0(1) = 1, *(0) = 1, tf(l) = 0, 

(2) /(*(*)) = / ( * ( / ) ) , te [0,1]. 

Thus 0(01 *K0 represent the x-coordinates of the two men at time t. From (1) 
and the continuity of 0 and \f/, it follows that their graphs must cross at some 
point to G [0, 1]. Then 0(£o) = $(to) is the x-coordinate of the point where 
the two men meet. We shall show that if / does not change sign and consists 
of a finite number of monotone non-increasing or non-decreasing pieces, then 
0 and $ can always be found. When / is allowed to change sign, the problem 
may have no solution, as the example fix) — sin 2wx shows, but we are able 
to give a necessary and sufficient condition for the existence of 0 and ^ in 
this case. 

2. The strictly monotone case. It will be convenient to restate (1) and 
(2) in terms of the graph of/-1/ which is the set of 

(x,y) e [0,1] X [0,1] 

such tha t / (# ) = f(y). Now (2) implies that the point (0(/), t/>(0) lies on / " 1 / 
for each t G [0, 1], and the mapping t —» (<t>(t), \p(t)) defines a path joining 
(0, 1) with (1,0). Thus our problem can be restated: are the points (0, 1) 
and (1, 0) path wise connected in the graph of/"1/? We first consider the case 
where / is made up of a finite number of monotone, strictly increasing or 
decreasing pieces. Such pieces we shall call strictly monotone. 

THEOREM 1. Suppose f is a continuous function defined on [0, 1] that does not 
change sign, / (0) = / ( l ) = 0, and f consists of a finite number of strictly mono-
tone pieces. Then the points (0, 1) and (1, 0) are pathwise connected in the graph 
oft1/-
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Proof. Let A = {a0, ai, . . . , ak) be the set of extreme points of / , where 
ao = 0,ak = 1, and / i s monotone in each interval [a*_i, a*]. Then 5 = / - 1 ( /C4)) 
is also a finite set, 5 I ) i , and B divides [0, 1] into a set of disjoint, open 
intervals G, . . . , Cn. For each i, j = 1, . . . , w, we have either f(Ct) = f(Cj) 
or f(Ci) r\f(Cj) = 0. To see this, we note that f{B) H / ( C O = 0, so that 
f(B) divides the range of / into a set of disjoint open intervals of the form 
f(Ci). If we set ft = f\Cu the restriction of / to Cit then the graph of f~lf 
contains all sets fi~lfj, together with a certain subset D of B X B. Since ft 

and / ; are strictly monotone, so is/j_1/ ;-, and its end points belong to D. Thus 
/ j _ 1 / ; is either empty or homeomorphic to an open interval, and we may regard 
the graph of f~lf as a one-dimensional geometric complex with vertices in D 
and the fclfj a s its edges. The number of edges which meet at a vertex 
(bif bj) £ Dis 

(i) zero, in case / has a maximum at bt and a minimum at 6̂ , or vice versa, 
(ii) two, in case/ has at most one extremum at bt and bj where bu bj ^ 0, 1, 

(iii) four, in case / has a maximum at bt and bj or a minimum at bt and 6̂  
where 6*, bj ^ 0, 1. 

Since the edges in the graph of/ -1/ all lie in disjoint rectangles, the number 
of edges that meet at a vertex on the boundary of [0, 1] X [0, 1] is clearly 
zero, one, or two. The main diagonal E of [0, 1] X [0, 1] always belongs to 
/_ 1 / , so that one edge leaves (0, 0) and (1, 1). Since/ does not change sign in 
[0, 1], it has the same type of extremum, maximum or minimum, at 0, 1, and 
any other point where / is 0. Thus one edge leaves (0, 1) and (1,0), while 
two edges meet at any other vertex on the boundary of [0, 1] X [0, 1]. We now 
construct a new complex G from f~lf by introducing an overpass for one of the 
two monotone paths that cross at a vertex of type (iii), and thus obtain a 
one-dimensional complex that does not cross itself. The connected components 
of G are points, arcs, or simple closed curves. The component that contains 
(0, 1) must be an arc with one end point at (0, 1) and the other at (0, 0), 
(1, 0), or (1, 1). Since E belongs to G, (0, 1) and (1, 0) must be the end points 
of an arc in G, and this arc also lies in the graph of /_ 1 / , although it may now 
cross itself. 

We next consider a slightly more general question than our original one. 
If two men stand at the foot of two different mountain ranges and climb so 
that their elevations always remain equal, can they ever cross their respective 
mountain ranges? 

THEOREM 2. Suppose f and g are continuous functions defined on [a, b] and 
[c, d]y respectively, which do not change sign and have the same sign, 

fifl) = / ( i ) =g(c) =g{d) = 0 , 

and f and g consist of a finite number of strictly monotone pieces. Then the points 
(a, d) and (b, c) are pathwise connected in the graph of g~lf if and only if 

(3) sup{|/(x)| : x e [a, b]} = sup{|g(^)| : y € [c,d]}. 
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Proof. Let the left- and right-hand members of (3) be denoted by m(J) and 
m(g), respectively, and suppose that m(f) > m(g). If (a, d) and (b, c) were 
pathwise connected in g~lf, then we could find continuous mappings 0 and \p 
from [0, 1] into [a, b] and [c, d], respectively, such that/(#(£)) = g(\^(t)) for 
each t G [0, 1]. This equation holds, in particular, for the point to such that 
|/(0(^o))| = #*(/), which is clearly impossible. Similarly, the assumption 
m(J) < m(g) leads to a contradiction. Hence, the pathwise connectedness 
of (a, d) and (b, c) in g~lf implies (3). 

Suppose, conversely, that (3) holds, and let x0 G [a, b] and yo G [c, d] be 
chosen so that 

| /Oo)| = m(f) = m(g) = \g(y0)\. 

Let K and L denote constants such that x0 < y0 -{- K and x0 + L > 3/0. We 
now define two new functions F and G: 

!

f(x) forx G [a, x0], 

/ (x 0)( l + (x - x0)(yo + K - x)) forx G [x0, yo + if], 
g(x - if) îorx G [yo + K,d + if], 

(giy) f°r3> 6 [c,yo], 
(5) G(y) = <g(yo)(l + (y - y0) (*o + L - y)) for y G bo, x0 + L], 

(f(y-L) for y G [x0 + L, A + L]. 
Since i7 and G do not change sign, we can apply Theorem 1 to each of them and 
obtain continuous mappings 0i, \pi from [0, 1] into [a, d + if] and 02, ^2 from 
[0, 1] into [c, b + L] with the properties 

Ui(0) = a, 0x(l) = d + if, Vi(0) = d + if, ^ ( 1 ) = a, 
(6) <02(O) = c, 02(1) = 6 + L, MO) = b + L, *2(1) = c, 

(F(0i(/)) = F ( ^ ( 0 ) , G(*2(0) = G(Mt))> t G [o, 1]. 

If Xo < x < y0 + K, then the only other point y G [a, d + if ] such that 
F(x) = -F(y) must also satisfy x0 < y < yo + K. Hence the only points 
(x, y) in the graph of F~XF which satisfy 

xo < x < yo + K or x0 < y < y0 + K 

are those on the two diagonals in [xo, yo + K] X [xo, 3>o + K]. Thus the path 
t —> (0i(/), ypi(t)) must cross from the region [a, x0] X bo + if, ^ + if] to 
the region bo + if, d + if ] X [a, Xo] along the line joining the points 
(#0, yo + if) and (y0 + if, x0). In other words, there is a point ti G [0, 1] 
with the properties 

<t>i(h) = xo, $i(ti) = y0 + K, 
( 7 ) \0i([O, /1]) C [a, xo], ^ ( [ 0 , fc]) C bo + if, d + if]. 

A similar argument applied to G yields a point h G [0, 1] satisfying 

02(^2) = xo + X, ^2(^2) = yo, 

*2([*2,1]) C [*0 + i , i + L], Mlh, 1]) C [c, yol 
(8) { 
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,*i(0 
Xo 

Mt -- M) 

> i ( 0 • - K 
yo 
'Mt -- M) 

We now construct a path t —> (<t>(t), ^(t)) which lies in the graph of g~lf and 
joins the points (a, d) and (6, c). Choose the constant M so that h < /2 + M, 
and let 

for/ G [0, hi 
4>(t) = {xo for/ G [/i,/2 + ilf], 

L for/ Ç [/2 + M, 1 + M], 

for/ G [0, hi 
TKO = ^ o for/ G [/1,/2 + itf], 

for / G [*2 + M, 1 + M]. 

Evidently <£ and ^ are continuous, and 

0(0) = a, 0(1 + M) = Ô, ^(0) = d, ^(1 + M) = c. 

If / G [0, hi then (4), (6), and (7) imply 

/(*(*)) = / ( 0 i ( O ) = ^(0i(O 

If / G [h + M, 1 + Ml then (5), (6), and (8) imply 

/ (*( ' ) ) = ffaif ~ M) -L) = Gfait - M)) 
= G(tf2(* - M)) = g(^2(/ - M)) = g (*(*)). 

If / G [h, h + Ml then clearly/(*(/)) = gOKO). Therefore,/(*(*)) = g(\K0) 
for all / G [0, 1 + M], and the path / -> (</>(/), i/>(/)) lies in the graph of g"1/. 

3. The weakly monotone case. We are now in a position to analyse the 
case where / is made up of a finite number of monotone non-decreasing or 
non-increasing pieces. We shall call such pieces weakly monotone. We first 
restate Theorem 1 for this case. 

THEOREM 3. The conclusion of Theorem 1 remains valid if, in the hypothesis, 
"strictly monotone" is replaced by "weakly monotone." 

Proof. We first subdivide [0, 1] by means of points 0 = a0, &i, . . . , ak = 1 
so t h a t / is weakly monotone in each interval A t = [a^-i, a J, and set/* = f\A t 

for 1 < i < k. We then partition A t into equivalence classes of the form 
/ï_1( r)> a s r ranges over the real numbers, and form the resulting quotient 
space Qi endowed with the quotient topology, where 001 is the canonical map
ping from A i onto Qt. We define the function Ft from Qt into the real numbers 
by the equation JF* co* = ft and note that Ft is one-to-one. Since the domains 
of ft and œt are compact, ft and oof map closed sets into closed sets, whence 
Ft and Ft~

l do the same, and Ft is a homeomorphism. From œf1 = fi~lFi we 
infer that co*-1 maps connected sets into connected sets, so that co* is monotone. 
Thus Qi is homeomorphic to fi{Ai) which is a closed interval, and we choose 
the ordering for Qt so as to make œt non-decreasing. Evidently Ft is strictly 
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monotone. We now join the Qt together by identifying the r ight-hand end 
point of Qi with the left-hand end point of Qt+i. The resulting space Q is again 
an interval. We combine the cot and the Ft in the obvious way to obtain a 
non-decreasing mapping co from [0, 1] onto Q and a continuous mapping 
F from Q into the real numbers t ha t satisfy Fco = f. Since F is made up of a 
finite number of strictly monotone pieces, the graph of F~1F is a one-dimen
sional complex, as was shown in the proof of Theorem 1. T h u s F~*F contains 
a pa th consisting of vertices (ph qi), . . . , pn, qn) in Q X Q and the edges 
joining consecutive pairs of them where (pi, qi) is the upper left corner of 
Q X Q, and (pn, qn) is the lower right corner. We choose points 

(bt1ct) G [0,1] X [0,1] 

so t h a t o)(bi) = pi and co(c*) = qt for 1 < i < n, where (bi, C\) = (0, 1) and 
(bn>

 cn) = (1» 0) . Let Hi be t ha t par t of the pa th in F~lF which lies between 
(pi-i, Qi-i) and (pu qt) and includes its end points. Then Ht is a homeomor-
phism whose domain and range are intervals in Q. F r o m Ht C F~lF we infer 
t h a t 

c o - ^ i co C œ^F-'Fœ = f~lf, 

and also t h a t (bt-i, ct-i), (bit ct) G f~lf. Now continuity implies t ha t co, Hu 

and co-1 are closed subsets of [0, 1] X Q, Q X Q, and Q X [0, 1], respectively. 
T o see t h a t oo~1Hi co is closed, let {(xm, ym)} be a sequence in oo~1Hi co which 
converges to (x, y) G [0, 1] X [0, 1]. Then we can find um, vm G Q satisfying 
(xm, um) G co, (um, vm) G Hu and (vm, ym) G co-1. Since Q is compact , there 
are points u, v G Q and subsequences {uS(m)}, {vS(m)} of {um\, {vm} t h a t converge 
to u, v, respectively. Thus {(xsim), us(m))}, {(us(m), vs(m))}> and {(vs(m), yS(m))} 
converge to (x, u) G co, (u, v) G Hiy and (v, y) G w_1, respectively, so t h a t 
(x, y) G u>~lHt co, and the lat ter is a closed and compact subset of [0, 1] X [0, 1]. 
To see t ha t œ~1Hi co is locally connected, let U and V be open intervals of real 
numbers . T h e domain of the relation 

G = (UX V) H c o - ^ c o 
is evidently 

w= ur\ (CO-^CO^HF) = irnu-iHrViO. 
Since co is monotone, orlH{~lw( V) is an interval, and W is connected. More
over, if x G W, then œ~1Hiœ(x) is an interval, and G(x) = V C\ œ~1Hico(x) 
is connected. T h u s any separation of G could be projected vertically downward 
to yield a separation of W, which is impossible. Hence, G is connected. If we 
choose U and F so as to contain [0, 1], it follows t h a t u>~lHi co is also connected, 
so t h a t co~1Hi co is a compact, connected, locally connected metric space. By 
the Arcwise Connectedness Theorem (1 , p . 36), (c\-_i, Ci-i) and (biy ct) can 
be joined by a simple arc d lying in u>~lHi œ C / - 1 / . If we join the arcs Ct 

(1 < i < n) together in the obvious way, we obtain a pa th t h a t joins (0, 1) 
with (1, 0) and lies entirely i n / - 1 / . 
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THEOREM 4. The conclusion of Theorem 2 remains valid if, in the hypothesis, 
ustrictly monotone" is replaced by "weakly monotone." 

Proof. The proof of Theorem 2 can be taken over unchanged, except for the 
reference to Theorem 1 which should be replaced by Theorem 3. 

Suppose that / is continuous on [0, 1], / (0) = / ( l ) = 0, / consists of a 
finite number of weakly monotone pieces, b u t / is allowed to change sign. The 
sets A = {x:f(x) > 0} and B = {x:f(x) < 0} have a finite number of 
connected components A\, . . . , Am and B\, . . . , Bn, respectively, where we 
allow m = 0 and n — 0. We select points 

0 = co,ci, ...,cp = 1 G [0,1] - (A \JB) 

with the property that when the collection {A\, . . . , Amy Bh . . . , Bn] is 
arranged according to increasing order, precisely one d occurs between con
secutive terms Ajy Bk or Bk, Aj. If / does not change sign, then p = 1. The 
d are unique unless there is an open interval between Aj and Bk} but in this 
case ct can be any point between Aj and Bk. Roughly speaking, the intervals 
into which the ct divide [0, 1] are the largest in which/ has constant sign. For 
1 < i < p, we set Ct = [c*_i, ct] and define 

= (sup {/(*):* G Ct] if/(CO > 0 , 
1Vi \inf {f(x):x G C,} iif(Ct) < 0. 

It is clear that if any one of the Mt is zero, then p = 1 and / is identically 
0 in [0, 1]. In all other cases the Mt alternate in sign. We define {r(i)} to be 
the sequence of integers in which r ( l ) = 1, r(2) = 2, and r(i) is the least 
integer j such that Mj > Mrii-2) if Mrii-2) > 0, or Mj < Mr(i-2) if M r ( i_2) < 0 
for i > 2. The sequence is defined on a subset of {i: 1 < i < p}, and since the 
M2i-i have constant sign, as well as the M2u it follows that r(2i — 1) is odd 
and r(2i) is even. Evidently both r(2i — 1) and r(2i) increase monotonically 
with i. If we arrange R = {r(i): 1 < i < p) in the natural order which it 
inherits as a subset of the integers, then R can be decomposed into its ''con
nected" components {Rj\ 1 Kj Kq}, where Rj is a maximal string of 
consecutive elements of R with the same parity (even or odd). We can order 
the Rj in the obvious way so that i?i < R2 < . . . < RqjR± = {1}, 2 Ç i?2, 
and we denote the largest member of Rj by u(j). We shall also need the 
analogues of the above definitions in which we start from the right-hand end 
of the interval instead of the left. Let s(l) = p, s(2) = p — 1, and s(i) be 
the greatest integer/ such that Mj > Ms{i-.2) if Msa-2) > 0, or M5 < Ms{i__2) 

if MS(i-2) < 0 for i > 2. Then s(2i — 1) has the same parity as p, s{2i) has 
the same parity as p — 1, each decreases monotonically with i, and 5 = {s(i): 
1 < i < p) can be decomposed into its "connected" components 

{Sj:\<j<q'\, 
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where Si > S2 > . . . > Sq>, Si = {p), p — 1 € S2y and we denote the least 
member of Sj by v(j). Evidently Mui2j-i), Mu{2j), Mv(2j_ih and Mv{2j) are 
monotone functions of j . 

THEOREM 5. Suppose f is a continuous function on [0, 1], /(0) = / ( l ) = 0, 
and f consists of a finite number of weakly monotone pieces. Then the points 
(0, 1) and (1, 0) are pathwise connected in f~lf if and only if a = qf and 

(9) Mu(j) = MvUh l<j<q. 

Proof. Suppose that (0, 1) and (1,0) are pathwise connected in f~lf, and 
t —* (0(0, ̂ (t)) is the connecting path. Now u(l) = 1, z/(l) = p, and we shall 
show that Mi = Mv. If Mi and Mv have opposite signs, then/(0(/)) = / 6 K 0 ) 
cannot possibly hold for t near 0. Suppose Mi > Mv > 0 or Mi < Mp < 0, 
and let/* = inf {*:/(«(*)) = M"i}.Then/* > 0 and Afi = /(0(**)) = /(*(/*)) , 
so that ^(J*) < Cp_i and/(^(2)) must change sign for £ Ç [0, /*]. But 

while/(0(O) € [0, Afi] does not change sign for / £ [0, £*], which is impossible. 
Similarly, the assumption 0 < Mi < Mv or 0 > Mi > Mp leads to a con
tradiction. Hence, Mi = Mp, and p is odd. From 2 £ R2 and p — 1 G S2 we 
infer that w(2) and u(2) are defined. 

Suppose now that u(i) and u(i) are defined for all i less than a certain j , 
and that Mu^) = M ^ ) . Since u(l) and v(l) have the same parity, so also u(i) 
and v(i) have the same parity, and Muçt) and Mv(t) have like signs. If j > 2, then 
w(j) is defined if and only if Mk > Mu^^2) > 0 or Mk < MuU-2) < 0 for some 
integer k. For if such a k exists, then the definition of r(i) implies that 
k > u(j — 1). Similarly, v(j) is defined if and only if Mfc > Mv(j-.2) > 0 or 
Mk < MV(j-2) < 0 for some k. Thus^ (j) is defined if and only if v(j) is defined. 
If neither is defined, then q = q! = j — 1. Assuming that u(j) and v(j) are 
defined, and MuU) > MvU) > 0 or MuU) < MvU) < 0, let 

t' = inf {*:/(*(*)) = ^ o ) } . 
Then *' > 0 and 

so that i>(j + 2) is defined, and yp(t') < cv(J+2). Moreover, v(j -\- 1) must be 
defined, and we can find /" <= [0, t'] such that f(t(t")) = MvU+1). But 
<t>([0,t'}) C [0, CUM] and 

whereas either 

ilf,0+i) < MVU-D = Mtt(y_i) < 0 or M j ( i+i) > MvU-v> = AfM(,_D > 0, 

which is impossible. Similarly, the assumption 0 < Afw(;) < ¥ 8 ( j ) or 
0 > MU(j) > MV(j) leads to a contradiction. Thus Mu{j) = Mv{}), and the 
induction step is completed. Therefore, q = q' and (9) is verified. 
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Suppose, conversely, that (9) holds. When 1 < j < q, we set 

aj = inf {x: f(x) = MuU)], 

h = : n f L. / (*) > MuU) ^ MuU) > 0, ) 
r * /(*) < MMO) if Mtt(J) < 0 / ' 

^ s u p \ x 7 ( x ) < M ^ i f M f ( i ) < o r 

ej = sup {*:/(*) = MvU)], 

a0 = 0, 60 = c\, bq-i — bq = 1, 

do = £p-i, ^ç-i = dq = 0, ô = 1. 

In order to reduce the number of special cases in our discussion, we shall set 
MU(o) = MV(0) = 0. For 0 < j < q — 1, we see that / — Mu^) has constant 
sign in [a,, bj],f — Mv^) has the same sign in [dj, ej], and each function vanishes 
at the ends of its interval, except for / — Mu{q-i) at ôff_i and / — itf„(ff_i) at 
dq-i. Clearly a,, bj, dj, e3- are monotone functions of j , dj < aj+i < bj, and 
dj < ej+i < ej. If we apply the notation of Theorem 2 to the functions 
/ — Mu(j) with domain [ajy bj] and / — Mv(j) with domain [dj, ej], then (9) 
implies 

m(f - MuU)) = \MUU+D - MuU)\ 

= \MvU+l) - MvU)\ = w ( / - M,(,))f 0 < j < q - 1. 

When 0 < j < g — 2, we can apply Theorem 4 to these two functions and 
obtain continuous mappings 0,, \pj from [0, 1] into [aj} bj], [dj, ej], respectively, 
with the properties 

0,(0) = ajt 0,(1) = i „ i^(0) = ej, ij{\) = dj, 

/(0,(O) " ^ o o = / Û M 0 ) ~ Mv(j), t e [0, 1]. 

In view of (9), we have/(0,( /)) = f{ij(t)). If we set 

tj = inf {t: 0,(0 = aJ+1], 

then it follows that tj = inf {t: $j(i) = e,+i}, for (9) implies that 

ffaj+i) = / ( ^ + i ) . 

We have already seen that 

m(f - M ^ - D ) = m(f - M^-D), 

(f- M"M(,_i))(a,_i) = ( / - A f , ^ ! ) ) ^ ! ) = 0, 

(f - M-M(?_i))(^_i) = -Muiq-v> = -Mite-» = (f- Mr((r_i))(dff_i) ^ 0. 

However, we can enlarge the domains of these two functions to 

[aff_i, bq-i + e], [— e + dq-i, eq-i], 
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where e > 0 is arbitrary, and extend each of their graphs by a straight-line 
segment so that it will be zero at the new end point. Then Theorem 4 applied 
to the extended functions yields continuous mappings 0ff_j, \pq-i from [0, 1] 
into [aq-i, 1 + e], [— e, eff_i], respectively, with the properties 

0ff_i(O) = a?_i, 05-1 (1) = l + e, i^-i(0) = eq-i, ^fl-i(l) = — €, 

/(**-!(/)) =/«v-i(0), *e [o,i]. 
If weset/g_i = inf {£: 4>q-i{t) = l},then it follows that/ç_i = inf {/: T/^_I(0 = 0}, 
for/(0) = / ( l ) . Finally, we define 0(/) = 0O(O for / Ç [0, to], and, in general, 

<l>(t) = <j)j(t — to — . . . — tj-i) 
for 

*€[*<> + . . . + *,-i, /o + . . . + /;-i + / , ] , 0 < j < g - 1. 

Similarly, we define 
f(t) =tj(t-to- . . . - / , _ i ) 

for 
* G [/o + . . . + */-i, /o + . . . + ^ - i + * J, 0 < j < g - 1. 

Evidently 0 and ^ are continuous mappings from [0, t] into [0, 1], where 
t = to + . . . + /«z-i, with the properties 

0(0) = 0o (0) = 0, <p(t) = 0,_i (^_i) = 1, 

*(0) = ^o(0) = 1, *(*) = ^_i (^_i ) = 0, 

/(*(*) = /(*(*)), /G [0JI 
Hence, the points (0, 1) and (1, 0) are pathwise connected in / - 1 / . 

COROLLARY. With the same hypotheses as in Theorem 5, if Mj = Mp^j+ifor 
1 < j < py then (0,1) and (1,0) are pathwise connected inf~lf. 

Proof. From the symmetrical definitions of u (j) and v (j), we infer immediately 
that v(j) = p — u(j) + 1, and the result follows from (9). 

4. Examples and questions. So far, we have limited ourselves to the case 
where/consists of only a finite number of monotone pieces. When / i s made up 
of an infinite number of monotone pieces, the points (0, 1) and (1,0) need 
not be pathwise connected in /_ 1 / , as the following example shows. Let 

/(*) 7 
- 4 ( X + 3/2TT) fo rx G [ - 2 / T T , - 3 / 2 T T ] , 

0 fo rx G [ - 3 / 2 T T , - 1 / T T ] , 

- 4 ( X + 1/TT) fo rx G [ - 1 / T T , - 1 / 2 T T ] , 
!4x fo rx G [ - 1 / 2 T T , 0], 

x sin (1/x) for x G [0, 2/TT]. 

Then / is continuous on [ — 2/TT, 2/TT] and consists of a countable number of 
monotone pieces, f( — 2/ir) = f(2/w) = 2/ir, and f(x) < 2/7r for x G [ — 2/7r, 
2/7r]. If two men were to climb this mountain range, the man on the left 

https://doi.org/10.4153/CJM-1966-087-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-087-x


882 JAMES V, WHITTAKER 

would have to cross the plateau twice every time the man on the right crossed 
from one peak to the next, and a discontinuity would occur when the man on 
the right reached x = 0. Although the points ( — 2/T, 2/T) and (2/w, — 2/V) 
are not pathwise connected in f~lf, an inspection of the graph of f~lf shows 
that they lie in the same connected component of f~lf. If / is continuous on 
[0, 1], has constant sign, and / (0) = / ( l ) = 0, do the points (0, 1) and (1, 0) 
always lie in the same connected component of f~lfl 

The question of whether (0, 1) and (1, 0) are pathwise connected in f~lf 
depends also on the size of the domain of/. We have already seen that (0, 1) 
and (1, 0) are not pathwise connected when f(x) = sin 2TTX for x Ç [0,1]. 
But if the domain of / i s [0, 5/4], then (0, 1) and (1, 0) are pathwise connected 
in / - 1 / . We can thus pose a more general problem: Given a continuous function 
/defined on [0, 1] and two points x0, yo G [0, 1] such that / (x 0 ) = f(yo)y under 
what conditions can we find continuous mappings <j> and \j/ from [0, 1] into 
[0, 1] such that 

0(0) = xo, «(l) = yo, iKO) = yo, tf(i) = *o, 
/(*(*)) =/(*(*)), te [o,i]? 
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