
ESAIM: COCV 18 (2012) 318–342 ESAIM: Control, Optimisation and Calculus of Variations

DOI: 10.1051/cocv/2011004 www.esaim-cocv.org

R
apide N

ot H
ig

hl
ig

ht

THE BACK AND FORTH NUDGING ALGORITHM FOR DATA ASSIMILATION
PROBLEMS: THEORETICAL RESULTS ON TRANSPORT EQUATIONS

Didier Auroux1, 2 and Maëlle Nodet2, 3

Abstract. In this paper, we consider the back and forth nudging algorithm that has been introduced
for data assimilation purposes. It consists of iteratively and alternately solving forward and back-
ward in time the model equation, with a feedback term to the observations. We consider the case of
1-dimensional transport equations, either viscous or inviscid, linear or not (Burgers’ equation). Our
aim is to prove some theoretical results on the convergence, and convergence properties, of this algo-
rithm. We show that for non viscous equations (both linear transport and Burgers), the convergence of
the algorithm holds under observability conditions. Convergence can also be proven for viscous linear
transport equations under some strong hypothesis, but not for viscous Burgers’ equation. Moreover,
the convergence rate is always exponential in time. We also notice that the forward and backward
system of equations is well posed when no nudging term is considered.
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1. Introduction

Data assimilation is the set of techniques aiming to combine in an optimal way the mathematical information
provided by the model equations and the physical information given by observations, in order to retrieve the
state of a system. Several types of methods have been widely studied in the past decades. We can cite here
interpolation, variational and stochastic methods. The first ones interpolate the measurements from the points
of observation towards the grid points, the interpolation being weighted by the statistics of the observations [12].
Variational methods are based on the optimal control theory, and data assimilation is set as being a problem
of constrained optimization. The goal is to minimize a cost function measuring the difference between the
observations and the corresponding quantities provided by a model integration. The initial condition of the
system can then be seen as a control vector [14]. Finally, the basic idea of stochastic methods is to consider
the fields as the realization of a stochastic process and carry out Kalman filtering methods [7,11]. We can
also mention one of the very first data assimilation schemes: the nudging method. Also known as Newtonian
relaxation or dynamic initialization, it consists of adding a feedback term to the observations directly in the
model equations [10].
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All these methods require extensive work, either from the implementation or the computation point of view.
For instance, variational methods require the linearization of all operators and also the implementation of the
adjoint model. They also need efficient optimization schemes, as the minimization is performed on spaces of
huge dimension. On the other side, stochastic methods are somewhat easier to implement, but they require
knowledge, storage and manipulations of huge matrices.

The Back and Forth Nudging (BFN) algorithm has recently been introduced as a simple and efficient method
for solving data assimilation problems [1]. In most geophysical applications, data assimilation consists of
estimating a trajectory, solution of a partial differential equation (PDE), from the knowledge of observations.
These observations are usually sparse in time and space, and incorrect in the sense that they are not the
restriction of a solution of the PDE model. One step of the BFN algorithm consists of solving first the model
equation, in which a feedback to the observation solution is added, and then the same equation but backwards
in time, with also a feedback term to the observations. Such forward and backward integrations provide a new
value of the solution at the initial time t = 0 and the aim of the BFN is to improve the quality of the initial
condition.

The idea of the back and forth nudging is to use the difference between the observations and the model
trajectory as a feedback control of the equations, both in the forward and backward integrations. This makes
the numerical scheme extremely easy to implement, in comparison with both variational and stochastic methods,
as we usually only consider diagonal (or even scalar) gain matrices. The back and forth nudging scheme can
also be seen as an intermediate scheme between variational and stochastic methods, as the standard nudging
technique has both variational (minimization of a compromise between the observations and the energy of the
system) and stochastic (sub-optimal Kalman filter) interpretations [2].

In a linear case, the forward nudging method is nothing else than the Luenberger observer, also called
asymptotic observer. In more general situations, past efforts in the theory of observers for systems described
by PDEs include infinite dimensional observers for wave type equations and reversible systems [8,9], parabolic
equations [19], viscous Burgers and shallow water equations [3,13]. Filter and observer design inspired by robust
control feedback has been recently developed and studied in a standard (forward) way for medical imaging [16].
The BFN has also been extended to fit into the observers framework and has been applied to reversible systems
in [17]. The aim of our paper is to provide a general study of the Back and Forth Nudging algorithm for
geophysical type PDEs within the data assimilation framework. The goal is to recover the full state of the
system given some observations distributed over space and time.

As a first approximation, we consider in this paper that the observations are correct (i.e. no observation
error), and hence the observations satisfy the model equation. We consider various observation domains: first
we assume that the observations uobs(t, x) are available for any point x and time t, second we assume that they
are available for t ∈ [t1, t2] and for all x, and third we consider that they are available for all t over a given
space domain. This is done through the time and space dependency of the feedback (or nudging) gain matrix
K(t, x) that is equal to 0 when the observations are not available.

Many numerical experiments in almost realistic situations suggest that this algorithm works well, and that
the identified solution gets closer to the observations [2]. The goal of this paper is to prove some theoretical
results and convergence properties in the particular case of transport equations, either viscous or inviscid, either
linear or non-linear (Burgers’ equation).

In Section 2, we consider one step of the BFN algorithm applied to a linear viscous transport equation.
In Section 3, we consider one step of the BFN algorithm applied to the viscous Burgers’ equation.
Section 4 considers the extension of Theorem 2.4 to the inviscid case, for both linear transport and Burgers’

equations. We first consider the linear case. An explicit counter-example for this case is detailed in Appendix 6.
We finally consider non viscous Burgers’ equation, with periodic boundary conditions, and for a time T such

that there is no shock in the interval [0, T ].
Finally, some conclusions are given in Section 5.
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2. Linear transport equation with a viscous term

2.1. Back and Forth Nudging algorithm

From [1,2] we recall the purpose and design of the Back and Forth Nudging algorithm, applied to the following
partial differential equation: {

∂tu− ν∂xxu+ a(x)∂xu = 0,
u|x=0 = u|x=1 = 0, (2.1)

where

• the time period considered is t ∈ [0, T ];
• the space domain Ω is either the interval [0, 1] or the torus R/Z;
• a(x) ∈ W 1,∞(Ω);
• ν > 0 is a constant.

The aim of the BFN algorithm is to recover the state u, solution of equation (2.1), given some observations uobs

on some subset ω of [0, T ]× Ω:

u(t, x) = uobs(t, x), (t, x) ∈ ω ⊂ [0, T ] × Ω,

where uobs is obtained from an exact (but unknown) solution utrue of equation (2.1), associated to an unknown
initial condition utrue|t=0 ∈ L2(Ω):

uobs(t, x) = utrue(t, x), (t, x) ∈ ω; uobs(t, x) = 0, (t, x) /∈ ω. (2.2)

The BFN algorithm consists in performing several iterations of the forward and backward nudging algorithms,
as follows:

(F )

⎧⎪⎪⎨⎪⎪⎩
∂tu

k − ν∂xxu
k + a(x)∂xu

k = −K(uk − uobs),

uk|x=0 = uk|x=1 = 0,

uk|t=0 = ũk−1|t=0,

(B)

⎧⎪⎪⎨⎪⎪⎩
∂tũ

k − ν∂xxũ
k + a(x)∂xũ

k = K ′(ũk − uobs),

ũk|x=0 = ũk|x=1 = 0,

ũk|t=T = uk|t=T ,

for k ≥ 0, where

• ũ−1|t=0 is given;
• K ∈ L∞([0;T ] × Ω) and K ′ ∈ L∞([0;T ] × Ω) are positive and their support in (t, x) is exactly ω, so

that K = K ′ = 0 when and where observations are not available.

The aim of the BFN is to obtain the convergence of uk to utrue for all t and x, when k tends to infinity.
In the sequel, the observation domain (in space and time) will be given by the support of K:

ω = Support (K) ⊂ [0, T ]× Ω. (2.3)
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2.2. Main result and comments

We consider here one step of the BFN algorithm applied to a linear viscous transport equation:

(F )

⎧⎨⎩
∂tu− ν∂xxu+ a(x)∂xu = −K(u− uobs),

u|x=0 = u|x=1 = 0,
u|t=0 = u0,

(B)

⎧⎨⎩
∂tũ− ν∂xxũ+ a(x)∂xũ = K ′(ũ− uobs),

ũ|x=0 = ũ|x=1 = 0,
ũ|t=T = u(T ),

(2.4)

where uobs is obtained from utrue according to (2.2,2.3), where utrue satisfies:⎧⎨⎩
∂tutrue − ν∂xxutrue + a(x)∂xutrue = 0,

utrue|x=0 = utrue|x=1 = 0,
utrue|t=0 = u0

true.
(2.5)

The following notations and hypotheses hold for all further cases:

Notations 2.1.
• The time period considered is t ∈ [0, T ];
• the space domain Ω is either the interval [0, 1] or the torus R/Z;
• the first equation (F ) is called the forward equation, the second one (B) is called the backward one.

Hypotheses 2.2.
• K ∈ L∞([0;T ]× Ω) and K ′ ∈ L∞([0;T ]× Ω) are positive and may depend on t and x, but for the sake

of simplicity, we will always assume that there exists a constant κ ∈ R
∗
+ such that K ′(t, x) = κK(t, x),

and that Support (K) = Support (K ′) = ω ⊂ [0, T ]× Ω;
• observations uobs are available only on ω;
• a(x) ∈ W 1,∞(Ω);
• ν > 0 is a constant;
• u0

true ∈ L2(Ω) and u0 ∈ L2(Ω).

Using the previous notations, we recall the following straightforward result:

Proposition 2.3. Under Hypotheses 2.2, equation (2.5) has a unique solution utrue ∈ C0(0, T ;L2(Ω)) ∩
L2(0, T ;H1(Ω)).

Then the following result holds true:

Theorem 2.4. Under Hypotheses 2.2, let utrue be the solution of (2.5) given by Proposition 2.3, and uobs given
by (2.2, 2.3). Then equation (2.4-F ) has a unique solution u ∈ C0(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)). Moreover:

(1) If K(t, x) = K ∈ R, then equation (2.4-B) has a unique solution ũ ∈ C0(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω))
and thus one step of the BFN algorithm (2.4) is well posed. Moreover, if we denote

w(t) = u(t) − utrue(t),
w̃(t) = ũ(t) − utrue(t),

(2.6)

then for all t ∈ [0, T ]:
w̃(t) = e(−K−K′)(T−t)w(t).

(2) If K(t, x) = K�[t1,t2](t) with K ∈ R and 0 ≤ t1 < t2 ≤ T , then equation (2.4) also has a unique solution
(u, ũ) ∈ C0(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) and

w̃(0) = e(−K−K′)(t2−t1)w(0). (2.7)
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(3) If K(t, x) = K(x), with Support (K) ⊂ [a, b] where a < b and a �= 0 or b �= 1, then equation (2.4-B) is
ill-posed: there does not exist in general a solution ũ, even in the distribution sense.

Theorem 2.4 shows that the BFN algorithm converges and makes the error decrease exponentially if the
system is fully observed in space, at least for a subinterval of the time period.

In the following subsection, we prove Theorem 2.4.

2.3. Proof of Theorem 2.4

We refer the reader to [4] for the existence and uniqueness of u ∈ C0(0, T ;L2(Ω))∩L2(0, T ;H1(Ω)), solution
of equation (2.4-F ).

2.3.1. Case 1: K constant

The difference w satisfies ⎧⎨⎩
∂tw − ν∂xxw + a(x)∂xw +Kw = 0,

w|x=0 = w|x=1 = 0,
w|t=0 = w0,

(2.8)

its existence is ensured by the existence of u.
Let us now define w̃ as in equation (2.7), w is solution of⎧⎨⎩

∂tw̃ − ν∂xxw̃ + a(x)∂xw̃ −K ′w̃ = 0,
w̃|x=0 = w̃|x=1 = 0,

w̃|t=T = w(T ).
(2.9)

And setting ũ = w̃ + utrue proves the existence of ũ, solution of (2.4-B).
Finally, equation ⎧⎨⎩

∂tφ− ν∂xxφ+ a(x)∂xφ−K ′φ = 0,
φ|x=0 = φ|x=1 = 0,

φ|t=T = 0,

admits φ ≡ 0 as unique solution, and uniqueness for ũ follows.

2.3.2. Case 2: K(t)

We assume that K(t, x) = K(t) = K�[t1,t2](t) with 0 ≤ t1 < t2 ≤ T . Similarly, let us define w̃ by:

w̃(t) =

⎧⎪⎨⎪⎩
w(t)e(−K−K′)(t2−t1) if t ≤ t1,

w(t)e(−K−K′)(t2−t) if t1 < t < t2,

w(t) if t ≥ t2.

We can check that w̃ is a solution of (2.9), and ũ = w̃+utrue is a solution of (2.4-B), and as before a uniqueness
argument gives the desired result.

2.3.3. Case 3: K(x)

We now assume that Support (K) ⊂ [a, b] where a < b and a �= 0 or b �= 1, i.e. the support of K is not [0, 1].
In that case, there is no solution w̃ to the backward equation (2.9). In appendix, we give a detailed and technical
proof of this in the special case

a(x) = a, K(x) = K.�[0,1/2](x).

In the sequel, we give an indication of why this result is true.
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As before, the differences w and w̃ satisfy equations (2.8) and (2.9). We denote by S+ and S− the dissipative
continuous semi-groups of operators in L2(Ω) associated to equations (2.8) and (2.9), seen as forward equations
on [t0, t] with initial conditions given in t0:

S+(t0, t)(w(t0)) = w(t), S−(t0, t)(w̃(t0)) = w̃(t).

The BFN algorithm has a solution if and only if we have

w(T ) ∈ Ran (S−(0, T )).

We re-write equation (2.8) associated to w:⎧⎨⎩
∂tw − ν∂xxw + a(x)∂xw −K ′w = (−K −K ′)w,

w|x=0 = w|x=1 = 0,
w|t=0 = w0,

so that we have, thanks to Duhamel’s formula:

w(t) = S−(0, t)(w0) +
∫ t

0

S−(s, t)((−K −K ′)w(s)) ds. (2.10)

By contradiction, let us assume that the expected result is true for all T , i.e. w(t) ∈ Ran (S−(0, t)) for all t:

∀t, ∃ϕ(t), w(t) = S−(0, t)ϕ(t). (2.11)

In that case, we replace (2.11) in (2.10) and we get:

w(t) = S−(0, t)(w0) +
∫ t

0

S−(s, t)((−K(x) −K ′(x))S−(0, s)ϕ(s)) ds.

Let us assume, by contradiction, that −K(x) −K ′(x) commutes with S−. Then we get:

S−(0, t)(ϕ(t) − w0) = (−K(x) −K ′(x))S−(0, t)
∫ t

0

ϕ(s) ds. (2.12)

But we know that S− has the unique continuation property, that is:

Proposition 2.5. If S−(0, t)(X) = 0 on a non-empty subset of [0, 1], then S−(0, t)(X) = 0 on [0, 1].

This result and (2.12) give:

w(t) = S−(0, t)(ϕ(t)) = S−(0, t)(w0) = S+(0, t)(w0).

As this stands for every w0, we have S− = S+ and finally K = K ′ = 0, which is a contradiction. Therefore,
K +K ′ does not commute with S−. Thus, in general, we cannot find any function ψ such that:

∫ t

0

S−(s, t) [(−K(x) −K ′(x))S−(0, s)ϕ(s)] ds = S−(0, t)ψ.
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3. Burgers’ equation with a viscous term

In this section, we consider one step of the BFN algorithm applied to the viscous Burgers’ equation:

(F )

⎧⎨⎩
∂tu− ν∂xxu+ u∂xu = −K(u− uobs),

u|x=0 = u|x=1 = 0,
u|t=0 = u0,

(B)

⎧⎨⎩
∂tũ− ν∂xxũ+ ũ∂xũ = K ′(ũ− uobs),

ũ|x=0 = ũ|x=1 = 0,
ũ|t=T = u(T ),

(3.1)

with the same notations as before.
The observations uobs are obtained from (2.2)-(2.3), where utrue satisfies the forward Burgers’ equation:⎧⎨⎩

∂tutrue − ν∂xxutrue + utrue∂xutrue = 0,
utrue|x=0 = utrue|x=1 = 0,

utrue|t=0 = u0
true.

(3.2)

3.1. Main result and remarks

Using the previous hypotheses, we recall the following result:

Proposition 3.1. Under Hypotheses 2.2, equation (3.2) has a unique solution utrue ∈ C0(0, T ;L2(Ω)) ∩
L2(0, T ;H1(Ω)).

We have the following result if K �= 0:

Theorem 3.2. Under Hypotheses 2.2, let utrue be the solution of (3.2) given by Proposition 3.1, and uobs given
by (2.2,2.3). Then equation (3.1-F ) has a unique solution u ∈ C0(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)). But the Back
and Forth problem (3.1-FB) is ill-posed. More specifically, the mapping u0 �→ ũ(t = 0) is not C2, even when
K(t, x) is a constant (except for K(t, x) ≡ 0).

This result, although it is not exactly a non-existence result, is strongly negative, especially in the perspective
of numerical applications.

The next subsections are devoted to the proofs of these results.

3.2. Proof of Theorem 3.2

For computational simplicity, we assume throughout this section that the observations are identically zero:
uobs(t, x) = utrue(t, x) = 0 for all (t, x), without loss of generality. Let us first introduce some notations.

Let us denote by w (resp. w̃) the differences between u (resp. ũ) and the true state, as in (2.6), they satisfy
the following equations:

(F )

⎧⎨⎩
∂tw − ν∂xxw + w∂xw +Kw = 0,

w|x=0 = w|x=1 = 0,
w|t=0 = w0,

(B)

⎧⎨⎩
∂tw̃ − ν∂xxw̃ + w̃∂xw̃ −K ′w̃ = 0,

w̃|x=0 = w̃|x=1 = 0,
w̃|t=T = w(T ).

(3.3)

Let us denote also by S+ and S− the non-linear operators on L2(Ω) associated to the forward equations with
K or K ′:

S+(t0, t)(w(t0)) = w(t), S−(t0, t)(w̃(t0)) = w̃(t), ∀t ≥ t0.
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We will also use the dissipative continuous semi-groups of operators in L2(Ω), U+ and U−, associated to the
following linear equations:{

∂tφ− ν∂xxφ+Kφ = 0
φ|x=0 = φ|x=1 = 0, φ|t=0 = φ0

⇐⇒ U+(0, t)(φ0) = φ(t),

{
∂tφ− ν∂xxφ−K ′φ = 0

φ|x=0 = φ|x=1 = 0, φ|t=0 = φ0
⇐⇒ U−(0, t)(φ0) = φ(t).

To prove Theorem 3.2 we will prove that w is not in the image of S−, in general. To do so we will use
perturbations theory. We can easily show that S+ is infinitely continuous with respect to the data w0. So if we
suppose that w0 is small:

w0 = εϕ0,

with ϕ0 ∈ L2(Ω), then we have that w(t), solution of the forward equation (3.3-F ) is also small and can be
developed in series of ε

w = ε
∑
n≥0

εnwn.

Similarly, if we assume that w̃ is well defined, then we can write as well:

w̃ = ε
∑
n≥0

εnw̃n.

As previously, w satisfies: ⎧⎨⎩
∂tw − ν∂xxw +Kw = −w∂xw,

w|x=0 = w|x=1 = 0,
w|t=0 = w0,

so that if we develop in series of ε we get, for w0:⎧⎨⎩
∂tw

0 − ν∂xxw
0 +Kw0 = 0,

w0|x=0 = w0|x=1 = 0,
w0|t=0 = ϕ0.

For w1 we have: ⎧⎨⎩
∂tw

1 − ν∂xxw
1 +Kw1 = −w0∂xw

0,
w1|x=0 = w1|x=1 = 0,

w1|t=0 = 0.

Similarly we have for w̃0 and w̃1: ⎧⎨⎩
∂tw̃

0 − ν∂xxw̃
0 −K ′w̃0 = 0,

w̃0|x=0 = w̃0|x=1 = 0,
w̃0|t=T = w0(T ),⎧⎨⎩

∂tw̃
1 − ν∂xxw̃

1 −K ′w̃1 = −w̃0∂xw̃
0,

w̃1|x=0 = w̃1|x=1 = 0,
w̃1|t=T = w1(T ).

(3.4)

We can compute w0 and w1 thanks to U+:

w0(t) = U+(0, t)(ϕ0),

w1(t) = −
∫ t

0

U+(s, t)[w0(s)∂xw
0(s)] ds.

(3.5)
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If we assume that w̃0 is well defined, with

w̃0(t) = U−(0, t)(ψ0), (3.6)

then the condition w̃(T ) = w(T ) leads to

U−(0, T )(ψ0) = U+(0, T )(ϕ0)
⇒ ψ0 = e−(K+K′)Tϕ0.

(3.7)

Then we have for w̃0:
w̃0(t) = U−(0, t)(ψ0)

= U−(0, t)e−(K+K′)Tϕ0.

For w̃1 the final condition w̃1(T ) = w1(T ) gives, thanks to (3.5):

w̃1(T ) = w1(T )

= −
∫ T

0

U+(s, t)[w0(s)∂xw
0(s)] ds.

(3.8)

On the other hand, if we assume that w̃1 is well defined, with w̃1(0) = ψT , then equation (3.4) and the Duhamel
formula give

w̃1(T ) = U−(0, T )[ψT ] −
∫ T

0

U−(s, T )[w̃0(s)∂xw̃
0(s)] ds. (3.9)

Then, equating (3.9) and (3.8) we should have

U−(0, T )[ψT ] −
∫ T

0

U−(s, T )[w̃0(s)∂xw̃
0(s)] ds = −

∫ T

0

U+(s, T )[w0(s)∂xw
0(s)] ds.

Therefore

2U−(0, T )[ψT ] =
∫ T

0

U−(s, T )[∂x(w̃0(s)2)] ds −
∫ T

0

U+(s, T )[∂x(w0(s)2)] ds.

If we assume that ψT =
1
2
∂xgT , then we obtain

U−(0, T )[gT ] + c =
∫ T

0

U−(s, T )[w̃0(s)2] ds−
∫ T

0

U+(s, T )[w0(s)2] ds,

where c is a constant. We now use (3.5)–(3.7):

U−(0, T )[gT + ce−K′T ] =
∫ T

0

U−(s, T )
[
U−(0, s)(e−(K+K′)Tϕ0)

]2
ds

−
∫ T

0

U+(s, T )[U−(0, s)(ϕ0)]2 ds

= (e−2(K+K′)T − 1)
∫ T

0

U+(s, T )[U−(0, s)(ϕ0)]2 ds.

(3.10)

And if K > 0 and K ′ > 0 this last equation can not be solved in general: such gT does not, in general, exist.
Indeed, let us do an explicit computation thanks to Fourier series:

ϕ0 =
∑
n≥1

aneinx, gT + ce−K′T =
∑
n≥1

bneinx.
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We recall that we have

U+(s, t)

⎡⎣∑
n≥1

cneinx

⎤⎦ =
∑
n≥1

cneinxe(−K−νn2)(t−s),

U−(s, t)

⎡⎣∑
n≥1

cneinx

⎤⎦ =
∑
n≥1

cneinxe(K′−νn2)(t−s).

Then we can compute the right hand side of equation (3.10):

(
e−2(K+K′)T − 1

)∫ T

0

U+(s, T )[(U−(0, s)(ϕ0)]2 ds

=
(
e−2(K+K′)T − 1

)∫ T

0

U+(s, T )

[∑
n

aneK′seinxe−sνn2

]2

ds

=
(
e−2(K+K′)T − 1

)∫ T

0

U+(s, T )

[∑
n

e2sK′
einx

∑
p+q=n

apaqe−sν(p2+q2)

]
ds

=
(
e−2(K+K′)T − 1

)∫ T

0

[∑
n

e−K(T−s)e2sK′
e−ν(T−s)n2

einx
∑

p+q=n

apaqe−sν(p2+q2)

]
ds

=
(
e−2(K+K′)T − 1

)∫ T

0

[∑
n

∑
p+q=n

apaqe−KT−νTn2+inxe2sK′+sK+νsn2−sν(p2+q2)

]
ds

=
(
e−2(K+K′)T − 1

)[∑
n

∑
p+q=n

apaqe−KT−νTn2+inx e2TK′+TK+2νpqT − 1
2K ′ +K + 2νpq

]
·

For the left hand side of (3.10) we have:

U−(0, T )
[
gT + ce−K′T

]
=

∑
n

bneinxeK′T−νn2T .

So that we get, for all n:

bn = e(−K′+K)T
(
e−2(K+K′)T − 1

)[ ∑
p+q=n

apaq
e2TK′+TK+2νpqT − 1

2K ′ +K + 2νpq

]
·

This defines a distribution if and only if bn has polynomial growth, if and only if bn has polynomial growth,
where

bn =
(
e−2(K+K′)T − 1

)[ ∑
p+q=n

apaq
e2TK′+TK+2νpqT

2K ′ +K + 2νpq

]
,

which is clearly not the case for every sequence (an) with polynomial growth, unless K = K ′ = 0.
Therefore, the mapping w(t=0) �→ w̃(t = 0) is not C2.

4. Non viscous transport equations

We consider here the extension of Theorem 2.4 to the inviscid case, for both linear transport and Burgers’
equations.
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4.1. Inviscid linear transport

We first consider the linear case. The BFN equations are:

(F )

⎧⎨⎩
∂tu+ a(x)∂xu = −K(u− uobs),

u|x=0 = u|x=1,
u|t=0 = u0,

(B)

⎧⎨⎩
∂tũ+ a(x)∂xũ = K ′(ũ− uobs),

ũ|x=0 = ũ|x=1,
ũ|t=T = u(T ),

(4.1)

and uobs given by (2.2,2.3), with ⎧⎨⎩
∂tutrue + a(x)∂xutrue = 0,

utrue|x=0 = utrue|x=1,
utrue|t=0 = u0

true,
(4.2)

with the following hypotheses:

Hypotheses 4.1.
• K and K ′ ∈ C1([0;T ] × Ω) are positive and may depend on t and x, but for the sake of simplicity, we

will always assume that there exists a constant κ ∈ R
∗
+ such that K ′(t, x) = κK(t, x);

• a(x) ∈ C1(Ω);
• u0

true ∈ C1(Ω) and u0 ∈ C1(Ω), both periodic in space.

Proposition 4.2. Under Hypotheses 4.1, equation (4.2) has a unique classical solution utrue ∈ C1([0;T ]× Ω).

We denote by
(s, ψ(s, x))

the characteristic curve of equation (4.1-F ) with K = 0, with foot x at time s = 0, i.e. such that

(s, ψ(s, x))|s=0 = (0, x).

We recall that the characteristics are well defined and do not intersect over [0, T ].

Proof. Let (s, x) ∈ [0, T ]× Ω. Following the method of characteristics, we notice that, if ψ(s, x) = y, then

y = ψ(s, x) = x+ sa(y).

We now compute

d
dt
u(t, x+ ta(y)) = ∂tu(t, x+ ta(y)) + a(y)∂xu(t, x+ ta(y)) = −K(u− uobs)(t, x+ ta(y)).

Thus
d
dt
u(t, x+ ta(y)) +K(t, x+ ta(y))u(t, x+ ta(y)) = K(t, x+ ta(y))uobs(t, x + ta(y)).

Therefore

u(t, x+ ta(y)) = u(0, x) exp
(
−
∫ t

0

K(s, x+ sa(y)) ds
)

+
∫ t

0

exp
(
−
∫ t

s

K(σ, x + σa(y)) dσ
)
K(s, x+ sa(y))uobs(s, x+ sa(y)) ds.

�
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Theorem 4.3. Under Hypotheses 4.1, let utrue be the classical solution of (4.2) given by Proposition 4.2, and uobs

given by (2.2)-(2.3). Then equations (4.1-F ) and (4.1-B) have unique classical solutions u and ũ ∈ C1([0;T ]×Ω).
We denote

w(t) = u(t) − utrue(t),
w̃(t) = ũ(t) − utrue(t).

Then we have:
(1) If K(t, x) = K, then for all t ∈ [0, T ]:

w̃(t) = w(t)e(−K−K′)(T−t). (4.3)

(2) If K(t, x) = K�[t1,t2](t) with 0 ≤ t1 < t2 ≤ T , then

w̃(0) = w(0)e(−K−K′)(t2−t1). (4.4)

(3) If K(t, x) = K(x), then for all t ∈ [0, T ]:

w̃(t, ψ(t, x)) = w(t, ψ(t, x)) exp

(
−
∫ T

t

K(ψ(s, x)) +K ′(ψ(s, x)) ds

)
. (4.5)

4.2. Non viscous Burgers’ equation

We finally consider non viscous Burgers’ equation, once again with periodic boundary conditions, and for
a time T such that there is no shock in the interval [0, T ]:

(F )

⎧⎨⎩
∂tu+ u∂xu = −K(u− uobs),

u|x=0 = u|x=1,
u|t=0 = u0,

(B)

⎧⎨⎩
∂tũ+ ũ∂xũ = K ′(ũ− uobs),

ũ|x=0 = ũ|x=1,
ũ|t=T = u(T ),

(4.6)

where uobs is given by (2.2)-(2.3), with⎧⎨⎩
∂tutrue + utrue∂xutrue = 0,

utrue|x=0 = utrue|x=1,
utrue|t=0 = u0

true,
(4.7)

with the following hypotheses:

Hypotheses 4.4.
• K and K ′ ∈ C1([0;T ] × Ω) are positive and may depend on t and x, but for the sake of simplicity, we

will always assume that there exists a constant κ ∈ R
∗
+ such that K ′(t, x) = κK(t, x);

• u0
true ∈ C1(Ω) and u0 ∈ C1(Ω), both periodic in space;

• If ∃x ∈ Ω such that u′0(x) < 0, then we assume that T < T ∗ = [maxx∈Ω(−u′0(x))]−1, otherwise
T ∈ ]0,+∞[.

Proposition 4.5. Under Hypotheses 4.4, equation (4.7) has a unique classical solution utrue ∈ C1([0;T ]× Ω).

Theorem 4.6. Under Hypotheses 4.4, let utrue be the classical solution of (4.7) given by Proposition 4.5, and uobs

given by (2.2, 2.3). Then equations (4.6-F ) and (4.6-B) have unique classical solutions u and ũ ∈ C1([0;T ]×Ω).
We denote

w(t) = u(t) − utrue(t),
w̃(t) = ũ(t) − utrue(t).
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Let
M = sup

(t,x)∈[0,T ]×Ω

|∂xutrue(t, x)| < +∞. (4.8)

Then we have:
(1) If K(t, x) = K, then for all t ∈ [0, T ]:

‖w̃(t)‖L2(Ω) ≤ e(−K−K′+M)(T−t)‖w(t)‖L2(Ω). (4.9)

(2) If K(t, x) = K�[t1,t2](t) with 0 ≤ t1 < t2 ≤ T , then

‖w̃(0)‖L2(Ω) ≤ e(−K−K′)(t2−t1)+MT ‖w(0)‖L2(Ω). (4.10)

We also have the following result:

Proposition 4.7. We consider one forward (resp. backward) BFN step of the non viscous Burgers equa-
tion (4.6-F ) (resp. (4.6-B)). With the notations of Theorem 4.6, if K(t, x) = K(x), then we have

w(T, ψ(T, x)) = w(0, x) exp

(
−
∫ T

0

K(ψ(σ, x))dσ −
∫ T

0

∂xutrue(σ, ψ(σ, x))dσ

)
. (4.11)

4.3. Remarks

Remark 4.8. For the special case K(t, x) = K(x) = K�[a,b](x) where K is a constant and [a, b] is a non-empty
sub-interval of [0, 1], we have

w(T, ψ(T, x)) = w(0, x) exp

(
−Kχ(x) −

∫ T

0

∂xutrue(σ, ψ(σ, x))dσ

)
, (4.12)

where

χ(x) =
∫ T

0

�[a,b](ψ(σ, x))dσ (4.13)

is the time during which the characteristic curve ψ(σ, x) with foot x of equation (4.6-F ) with K = 0 lies in the
the support of K. The system is then observable if and only if the function χ has a non-zero lower bound, i.e.
m := min

x
χ(x) > 0, the observability being defined by (see [18]):

∃C, ∀u solution of (4.6-F ) with K = 0, ‖u(T, .)‖2 ≤ C

∫ T

0

‖K(.)u(s, .)‖2 ds.

In this case, Proposition 4.7 proves the global exponential decrease of the error, provided K is larger than
MT

m
,

where M is defined by equation (4.8).

From Remark 4.8, we can easily deduce that if for each iteration, both in the forward and backward integra-
tions, the observability condition is satisfied, then the algorithm converges. Note that this is not a necessary
condition, as even if χ(x) = 0, the last exponential of equation (4.12) is bounded.

Note also that in real geophysical applications (either meteorology or oceanography), there is usually no
viscosity. In this case, assuming the observability condition, the BFN algorithm is well posed, and Theorem 4.6
and Proposition 4.7 say that the solution tends to the observation trajectory everywhere, and not only on the
support of K. From a numerical point of view, we can observe that even with discrete and sparse observations
in space, the numerical solution is corrected everywhere [2]. We also observed that with a not too large viscosity
coefficient, the behavior of the algorithm remains unchanged.
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Figure 1. Rate of decay of the error after one iteration of BFN (see equation (4.14)) as a
function of x, for various times T ; top: linear transport equation; bottom: inviscid Burgers’
equation.

Figure 1 illustrates the results given in Theorem 4.3 in the case 3 (top) and Proposition 4.7 and Remark 4.8
(bottom). These numerical results correspond to a simple case: utrue ≡ 0, u0(x) = α sin(2πx), K = K ′ =
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�[0;0.5](x). Various final times T are considered, from 0.05 to 1, and both figures show the following expression

− log
(
w̃(0, x)
w(0, x)

)
(4.14)

as a function of x ∈ [0; 1]. Figure 1-top illustrates equation (4.5). The best possible rate of decay is then
max(K + K ′) × T = 2T . In the linear case, the transport is a(x) ≡ 1. As half of the domain is observed,
the observability condition is satisfied if and only if T > 0.5, and this is confirmed by the figure. Concerning
Burgers’ equation, Figure 1-bottom illustrates equation (4.11). After one iteration of BFN, the best possible
rate of decay is also 2T . We can see that in this case, due to the nonlinearities of the model, the solution is
less corrected on [0; 0.1] but more on [0.5; 0.6]. From this figure, we can see that the observability condition is
satisfied for T larger than approximately 1.

The next subsections are devoted to the proofs of these results.

4.4. Linear case: Proof of Theorem 4.3

The first two points of the theorem are easily proven as in Theorem 2.4 with a vanishing viscosity.
Thus we only prove the third point. To do so, we recall that the curves (s, ψ(s, x)) are the characteristics of

the direct equation (4.1-F ) with K = 0, such that (s, ψ(s, x))|s=0 = (0, x) (see [5,6] for characteristics theory).
For the forward equation (4.1-F ), this change of variable gives

∂sw(s, ψ(s, x)) = −K(ψ(s, x))w(s, ψ(s, x)).

So that

w(s, ψ(s, x)) = w(0, x) exp
(
−
∫ s

0

K(ψ(σ, x)) dσ
)
. (4.15)

And in particular for w(T ) we have

w(T, ψ(T, x)) = w(0, x) exp

(
−
∫ T

0

K(ψ(σ, x)) dσ

)
. (4.16)

For w̃ we have similarly
∂sw̃(s, ψ(s, x)) = K ′(ψ(s, x))w̃(s, ψ(s, x)).

So that we have:

w̃(s, ψ(s, x)) = w̃(T, ψ(T, x)) exp

(
−
∫ T

s

K ′(ψ(σ, x)) dσ

)

= w(T, ψ(T, x)) exp

(
−
∫ T

s

K ′(ψ(σ, x)) dσ

)
.

Using (4.16) and (4.15) we get

w̃(s, ψ(s, x))

= w(0, x) exp

(
−
∫ T

0

K(ψ(σ, x)) dσ

)
exp

(
−
∫ T

s

K ′(ψ(σ, x)) dσ

)

= w(s, ψ(s, x)) exp
(∫ s

0

K(ψ(σ, x)) dσ
)

exp

(
−
∫ T

0

K(ψ(σ, x)) dσ

)
exp

(
−
∫ T

s

K ′(ψ(σ, x)) dσ

)

= w(s, ψ(s, x)) exp

(
−
∫ T

s

K(ψ(σ, x)) +K ′(ψ(σ, x)) dσ

)
.
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4.5. Non linear case: Proofs of Theorem 4.6 and Proposition 4.7

From equation (4.6), we deduce that the forward error w satisfies the following equation:

∂tw + w∂xw + utrue∂xw + w∂xutrue = −Kw.

By multiplying by w and integrating over Ω, we obtain

1
2
∂t

(∫
Ω

w2

)
+
∫

Ω

w2∂xw +
∫

Ω

(utruew∂xw + w2∂xutrue) = −
∫

Ω

Kw2.

Some integrations by part give the following:

∂t(‖w(t)‖2) =
∫

Ω

(−2K − ∂xutrue)w2.

We set M = ‖∂xutrue‖∞, and as K does not depend on x,

∂t(‖w(t)‖2) ≤ (−2K +M)‖w(t)‖2.

We have a similar result for the backward error:

∂t(‖w̃(t)‖2) ≤ (−2K ′ +M)‖w̃(t)‖2.

We first consider the first point of Theorem 4.6, i.e. K(t, x) = K. Grönwall’s lemma between times t and T
gives

‖w(T )‖2 ≤ e(−2K+M)(T−t)‖w(t)‖2,

‖w̃(t)‖2 ≤ e(−2K′+M)(T−t)‖w̃(T )‖2,

from which equation (4.9) is easily deduced.
In the second case, i.e. K(t, x) = K�[t1,t2](t) and by successively applying Grönwall’s lemma between times

0 and t1, t1 and t2, and t2 and T , one obtains equation (4.10).
Finally, in the case K(t, x) = K(x), by considering a similar approach as in Section 4.1, i.e. using the

characteristics of the direct equation (4.6-F ) (resp. B), it is straightforward to prove that

w(s, ψ(s, x)) = w(0, x)e
−
∫ s

0

K(ψ(σ, x))dσ
e
−
∫ s

0

∂xutrue(σ, ψ(σ, x))dσ
,

and then,

w(T, ψ(T, x)) = w(0, x)e
−
∫ T

0

K(ψ(σ, x))dσ
e
−
∫ T

0

∂xutrue(σ, ψ(σ, x))dσ
,

from which equation (4.11) is easily deduced.

5. Conclusion

Several conclusions can be drawn from all these results. First of all, in many situations, the coupled forward-
backward problem is well posed, and the nudging terms allow the solution to be corrected (towards the ob-
servation trajectory) everywhere and with an exponential convergence. From a numerical point of view, these
results have been observed in several geophysical situations, and many numerical experiments have confirmed
the global convergence of the BFN algorithm [2].
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The second remark is that the worst situation, i.e. for which there is no solution to the BFN problem, is the
viscous Burgers’ equation. But in real geophysical applications, there is most of the time no theoretical viscosity
in the equation, and one should consider the inviscid equation instead, for which some convergence results are
given. From the numerical point of view, these phenomena are easily confirmed, as well as the exponential
decrease of the error w. But we also noticed that if the observations are not too sparse, the algorithm works
well even with a quite large viscosity.

Finally, these results extend the theory of linear observers in automatics [15]: instead of considering an
infinite time interval (only one forward equation but for T → +∞), one can consider an infinite number of BFN
iterations on a finite time interval. This is of great interest in almost all real applications, for which it is not
possible to consider a very large time period.

6. Appendix: Spectral computations

Here we give details for the proof of Theorem 2.4 (case 3: K(x)) for the example case

a(x) = a, K(x) = K.�[0,1/2](x).

We will study the following equation:⎧⎨⎩
∂tw − ν∂xxw + a∂xw +K.�[0,1/2](x)w = 0,

w|x=0 = w|x=1 = 0,
w|t=0 = w0.

(6.1)

To do so, we are going to compute the spectrum of the following operator:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

AK(u) = −ν∂xxu+ a∂xu+K.�[0,1/2](x)u,

u|x=0 = u|x=1 = 0,

lim
x→ 1

2 ,x< 1
2

u(x) = lim
x→ 1

2 ,x> 1
2

u(x),

lim
x→ 1

2 ,x< 1
2

∂xu(x) = lim
x→ 1

2 ,x> 1
2

∂xu(x).

(6.2)

6.1. First examples

We will first consider two simple cases, to explain how we will proceed. First, let us consider the well-known
case a = K = 0, corresponding to the Laplacian operator with Dirichlet conditions on [0, 1]:{

A(u) = −ν∂xxu,

u|x=0 = u|x=1 = 0.

If we look for eigenfunctions of the type u(x) = eikx with λ as associated eigenvalue, we obtain u(x) =

c+eikx + c−e−ikx, with k =

√
λ

ν
and k = −

√
λ

ν
. Then the Dirichlet conditions give

{
c+ + c− = 0,
c+eik + c−e−ik = 0,

and this has a non trivial solution if and only if the following determinant is zero:∣∣∣∣ 1 1
eik e−ik

∣∣∣∣ = 0,
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which gives
e−ik − eik = 0 = −2i sin(k),

therefore
k = mπ, m ∈ Z, λ = νπ2m2, m ∈ Z.

Now let us do exactly the same with K = 0 and a �= 0. The operator reads{
A(u) = −ν∂xxu+ a∂xu,

u|x=0 = u|x=1 = 0.

Similarly, eigenfunctions of the type u(x) = eikx lead to u = c+eik+x + c−eik−x, with k± =
−ia±√

4νλ− a2

2ν
.

Dirichlet conditions lead to: {
c+ + c− = 0,
c+eik+ + c−eik− = 0,

so that

0 = eik+ − eik− = ei
k++k−

2

(
ei

k+−k−
2 − e−i

k+−k−
2

)
= 2i e

a
2ν sin

(√
4νλ− a2

2ν

)
·

Therefore √
4νλ− a2

2ν
= πm, m ∈ Z,

which leads to

λ = νπ2m2 +
a2

4ν
, m ∈ Z, k± = − ia

2ν
± πm, m ∈ Z.

6.2. General case

Let us now move to the general case a �= 0, K �= 0. We proceed similarly. Let us recall that

AK = −ν∂xx + a∂x +K.�[0,1/2](x).

Looking for eigenfunctions of the type u(x) = eikx leads to different equations for k, depending on x ∈ [0, 1/2]
or x ∈ [1/2, 1]:

νk2
1 + iak1 +K = λ, νk2

2 + iak2 = λ,

with roots

k±1 =
−ia±√

4νλ− a2 − 4νK
2ν

, k±2 =
−ia±√

4νλ− a2

2ν
·

Remark 6.1. As we are interested in the asymptotics λ→ ∞, we do not have to consider the case Δi < 0.

We then look for eigenfunctions of the type:

u(x) =
(
c+1 eik+

1 x + c−1 eik−
1 x
)
· �[0, 1

2 ](x) +
(
c+2 eik+

2 x + c−2 eik−
2 x
)
· �[ 12 ,1](x).

Then the conditions read:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 = u(0) = c+1 + c−1 ,

0 = u(1) = c+2 eik+
2 + c−2 eik−

2 ,

0 = u((1
2 )−) − u((1

2 )+) = c+1 eik+
1 /2 + c−1 eik−

1 /2 − c+2 eik+
2 /2 − c−2 eik−

2 /2,

0 = ∂xu((1
2 )−) − ∂xu((1

2 )+) = ik+
1 c

+
1 eik+

1 /2 + ik−1 c
−
1 eik−

1 /2 − ik+
2 c

+
2 eik+

2 /2 − ik−2 c
−
2 eik−

2 /2,

(6.3)
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which has a non trivial solution if and only if

sin
(
k−1 − k+

1

4

)
· (k−2 eik+

2 /2 − k+
2 eik−

2 /2) + sin
(
k−2 − k+

2

4

)
· (k−1 eik−

1 /2 − k+
1 eik+

1 /2) = 0. (6.4)

We rewrite the previous equation using

k±1 =
−ia
2ν

± l1, k±2 =
−ia
2ν

± l2, (6.5)

with

l1 =
√

4νλ− a2 − 4νK
2ν

, l2 =
√

4νλ− a2

2ν
· (6.6)

We have k−2 eik+
2 /2 − k+

2 eik−
2 /2 = 2e

a
4ν

(
a
2ν sin( l2

2 ) − l2 cos( l2
2 )
)
.

Similarly, k−1 eik−
1 /2 − k+

1 eik+
1 /2 = −2e

a
4ν

(
a
2ν sin( l1

2 ) + l1 cos( l1
2 )
)
. Then (6.4) reads as

l2 sin
(
l1
2

)
cos
(
l2
2

)
+ l1 sin

(
l2
2

)
cos
(
l1
2

)
= 0. (6.7)

For large values of λ, (6.6) gives l1 ∼ l2 ∼
√
λ

ν
, and thanks to (6.7) we get l1 ∼ l2 ∼ πm, with m ∈ Z

∗. We

will denote l1,m and l2,m the solutions of equation (6.7) equivalent to πm, for m ∈ Z
∗, k±1,m, k±2,m the associated

roots, λm the eigenvalues, and em the eigenvectors.
Let us now compute the eigenvectors of AK . As we saw, they can be written as

em =
(
c+1 eik+

1 x + c−1 eik−
1 x
)
· �[0, 1

2 ](x) +
(
c+2 eik+

2 x + c−2 eik−
2 x
)
· �[ 12 ,1](x)

(at the moment, we omit m for readability).
The first condition in (6.3) is c+1 + c−1 = 0, so that we get c−1 = −c+1 . Setting c1 = 2ic+1 and using (6.5), we

can rewrite em as:
em = c1e

a
2ν x sin(l1x)�[0, 1

2 ](x) +
(
c+2 eik+

2 x + c−2 eik−
2 x
)
· �[ 12 ,1](x).

The second condition in (6.3) is c+2 eik+
2 + c−2 eik−

2 = 0, so that we get c−2 = −c+2 ei(k+
2 −k−

2 ) = −c+2 e2il2 . Setting
c2 = −2ic+2 and using (6.5) again, we get

em = c1e
a
2ν x sin(l1x)�[0, 1

2 ](x) + c2eil2e
a
2ν x sin(l2(1 − x))�[ 12 ,1](x).

Finally, the third condition in (6.3) is em((1
2 )−) − em((1

2 )+) = 0, leading to c2 = c1
sin( l1

2 )
sin( l2

2 )
e−il2 , so that

em(x) = e
a
2ν x

(
sin(l1x)�[0, 1

2 ](x) +
sin( l1

2 )
sin( l2

2 )
sin(l2(1 − x))�[ 12 ,1](x)

)
.

6.3. Asymptotic expansion of the eigenvalues

Now we look for the additional terms of the expansion of l1 and l2, for large λ. This expansion can be looked
for as

l2 = πm+ α+
β

m
+

γ

m2
+ o

(
1
m2

)
·
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Using (6.6) we get l1 =
√
l22 − K

ν , and then l1 = πm+ α′ +
β′

m
+

γ′

m2
+ o

(
1
m2

)
, with

α′ = α, β′ = β − K

2νπ
, γ′ = γ +

αK

2νπ2
· (6.8)

Then we have:

sin
(
l1
2

)
= sin

(
πm+ α

2

)
cos θ′ + cos

(
πm+ α

2

)
sin θ′ + o

(
1
m2

)
,

cos
(
l1
2

)
= cos

(
πm+ α

2

)
cos θ′ − sin

(
πm+ α

2

)
sin θ′ + o

(
1
m2

)
,

sin
(
l2
2

)
= sin

(
πm+ α

2

)
cos θ + cos

(
πm+ α

2

)
sin θ + o

(
1
m2

)
,

cos
(
l2
2

)
= cos

(
πm+ α

2

)
cos θ − sin

(
πm+ α

2

)
sin θ + o

(
1
m2

)
,

(6.9)

with

cos θ = cos
(
β

2m
+

γ

2m2

)
= 1 − β2

8m2
+ o

(
1
m2

)
,

sin θ = sin
(
β

2m
+

γ

2m2

)
=

β

2m
+

γ

2m2
+ o

(
1
m2

)
,

(6.10)

and similar approximations for cos θ′ and sin θ′.
We then replace equations (6.9)-(6.10) into equation (6.7). The terms of order 1 in m are:

(πm+ α)
(

sin
(
πm+ α

2

)
cos
(
πm+ α

2

)
+ sin

(
πm+ α

2

)
cos
(
πm+ α

2

))
= 0,

leading to sin(πm+ α) = 0 and therefore α = 0. Consequently, (6.8) reads as:

β′ = β − K

2νπ
, γ′ = γ. (6.11)

The terms of order 0 in m are then:

0 = πm cos2
(πm

2

) β′

2m
− πm sin2

(πm
2

) β

2m
− πm sin2

(πm
2

) β′

2m
+ πm cos2

(πm
2

) β

2m
⇔ 0 = (−1)mπ(β + β′),

leading to β + β′ = 0 and then, thanks to (6.11): β =
K

4νπ
, and β′ = − K

4νπ
.

Similarly, the terms of order −1 in m lead to:

0 =
(
sin2

(πm
2

)
− cos2

(πm
2

))
(γ′ + γ) ,

so that γ′ + γ = 0, and then, using (6.11): γ = γ′ = 0.
We thus have the following expansions:

l2,m = πm+
K

4νπm
+ o

(
1
m2

)
, l1,m = πm− K

4νπm
+ o

(
1
m2

)
· (6.12)
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6.4. Proof of Theorem 2.4

Let us now come back to our problem. Equation (6.1) can be written thanks to AK as⎧⎨⎩
∂tw +AK(w) = 0,
w|x=0 = w|x=1 = 0,

w|t=0 = w0.
(6.13)

To solve this equation, we decompose w0(x) on the basis em: w0(x) =
∑
m∈Z

wm
0 em(K;x), and we get

w(t, x) =
∑
m∈Z

wm
0 e−λm(K)tem(K;x).

Similarly, the backward equation is ⎧⎨⎩
∂tw̃ +A−K′(w̃) = 0,
w̃|x=0 = w̃|x=1 = 0,

w̃|t=0 = w̃0.
(6.14)

And using the eigenvectors em(−K ′;x) of A−K′ , if

w̃0(x) =
∑
m∈Z

w̃m
0 em(−K ′;x), (6.15)

then w̃(t, x) =
∑
m∈Z

w̃m
0 e−λm(−K′)tem(−K ′;x). So the Back and Forth Nudging problem w(t = T ) = w̃(t = T )

can be stated as follows: for each n, there exists a function w̃0 so that

e−λn(K)T en(K;x) =
∑
m∈Z

w̃m
0 e−λm(−K′)T em(−K ′;x).

To improve readability, let us denote

em(K;x) = em(x), em(−K ′;x) = ẽm(x), λn(K) = λn, λm(−K ′) = λ̃m, li,m = li,m(K), l̃i,m = li,m(−K ′).

Then the problem is to find w̃0 so that

e−λnT en(x) =
∑
m∈Z

w̃m
0 e−λ̃mT ẽm(x). (6.16)

As we will see later, the following basis (fp) is orthogonal to (em):

fp(x) = e−
a
2ν x

(
sin(l1x)�[0, 1

2 ](x) +
sin( l1

2 )
sin( l2

2 )
sin(l2(1 − x))�[ 12 ,1](x)

)
.

And similarly with (ẽm) and (f̃p).
To compute w̃0

p we form the scalar product of equation (6.16) with f̃p, and we get:

w̃p
0 = e(λ̃p−λn)T

(
en(x); f̃p(x)

)
(
ẽp(x); f̃p(x)

) · (6.17)
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We are going to prove that this equation does not define a function, or even a distribution, because the
coefficients w̃p

0 grow too fast with p: indeed, we will show that the coefficients w̃p
0 grow as exponentials, therefore

faster than any polynomial, and thus w̃ is not defined in the distribution sense. To do so, we will provide
asymptotic expansions of

(
ẽp(x); f̃p(x)

)
and

(
en(x); f̃p(x)

)
:

(
ẽp(x); f̃p(x)

)
=

∫ 1

0

e
a
2ν x

⎛⎝sin
(
l̃1,px

)
�[0, 12 ](x) +

sin
(

l̃1,p

2

)
sin
(

l̃2,p

2

) sin
(
l̃2,p(1 − x)

)
�[ 12 ,1](x)

⎞⎠
· e− a

2ν x

⎛⎝sin(l̃1,px)�[0, 1
2 ](x) +

sin

(
l̃1,p
2

)
sin

(
l̃2,p
2

) sin
(
l̃2,p(1 − x)

)
�[ 12 ,1](x)

⎞⎠ dx

=
1
4

⎛⎜⎝1 +

⎛⎝ sin

(
l̃1,p
2

)
sin

(
l̃2,p
2

)
⎞⎠2
⎞⎟⎠+

1
4

⎛⎜⎝− sin
(
l̃1,p

)
/l̃1,p −

⎛⎝ sin

(
l̃1,p
2

)
sin

(
l̃2,p
2

)
⎞⎠2

sin
(
l̃2,p

)
/l̃2,p

⎞⎟⎠.

Using the asymptotic expansion (6.12) we get:
sin(l̃1,p)

l̃1,p

=
sin
(
πp+ K′

4νπp + o
(

1
p2

))
πp+ K′

4νπp + o
(

1
p2

) = ±
(

K ′

4νπ2p2
+ o

(
1
p2

))
,

and
sin(l̃2,p)

l̃2,p

=
sin
(
πp− K′

4νπp + o
(

1
p2

))
πp− K′

4νπp + o
(

1
p2

) = ±
(
− K ′

4νπ2p2
+ o

(
1
p2

))
.

If p is even, we have:

sin
(

l̃1,p

2

)
= ±

(
K ′

8νπp
+ o

(
1
p2

))
, sin

(
l̃2,p

2

)
= ±

(
− K ′

8νπp
+ o

(
1
p2

))
,

so that

⎛⎝ sin

(
l̃1,p
2

)
sin

(
l̃2,p
2

)
⎞⎠2

= 1 + o

(
1
p

)
.

If p is odd, then

sin

(
l̃1,p

2

)
= ±

(
1 + o

(
1
p

))
, sin

(
l̃2,p

2

)
= ±

(
1 + o

(
1
p

))
, and

⎛⎝sin
(

l̃1,p

2

)
sin
(

l̃2,p

2

)
⎞⎠2

= 1 + o

(
1
p

)
·

Therefore we get

(
ẽp(x); f̃p(x)

)
=

1
4

⎛⎜⎝1 +

⎛⎝ sin
(

l̃1,p

2

)
sin
(

l̃2,p

2

)
⎞⎠2⎞⎟⎠+

1
4

⎛⎜⎝− sin
(
l̃1,p

)
/l̃1,p − sin

(
l̃2,p

)
/l̃2,p

⎛⎝ sin
(

l̃1,p

2

)
sin
(

l̃2,p

2

)
⎞⎠2⎞⎟⎠

=
1
2

+ o

(
1
p

)
· (6.18)
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Let us now compute
(
en(x); f̃p(x)

)
:

(
en(x); f̃p(x)

)
=
∫ 1

0 e
a
2ν x
(
sin(l1,nx)�[0, 1

2 ](x) + sin(l1,n/2)
sin(l2,n/2) sin(l2,n(1 − x))�[ 12 ,1](x)

)
· e− a

2ν x
(
sin(l̃1,px)�[0, 1

2 ](x) + sin(l̃1,p/2)

sin(l̃2,p/2)
sin(l̃2,p(1 − x))�[ 12 ,1](x)

)
dx

=
(
l21,n − l̃21,p

)−1 (
l22,n − l̃22,p

)−1 [
l1,nl2,n

(
−l2,n sin(l̃1,p/2) cos(l1,n/2)− l1,n cos(l2,n/2) sin(l̃1,p/2) sin(l1,n/2)

sin(l2,n/2)

)
+ l̃1,pl̃2,p

(
−l̃2,p sin(l1,n/2) cos(l̃1,p/2) − l̃1,p cos(l̃2,p/2) sin(l1,n/2) sin(l̃1,p/2)

sin(l̃2,p/2)

)
+ l1,nl̃2,p

(
l̃2,p sin(l̃1,p/2) cos(l1,n/2) + l1,n cos(l̃2,p/2) sin(l1,n/2) sin(l̃1,p/2)

sin(l̃2,p/2)

)
+ l̃1,pl2,n

(
l2,n sin(l1,n/2) cos(l̃1,p/2) + l̃1,p cos(l2,n/2) sin(l̃1,p/2) sin(l1,n/2)

sin(l2,n/2)

)]
·

Now we use l21,n − l22,n = −K/ν and (6.7) to get:

l1,nl2,n

(
−l2,n sin(l̃1,p/2) cos(l1,n/2) − l1,n cos(l2,n/2) sin(l̃1,p/2)

sin(l1,n/2)
sin(l2,n/2)

)
= −K

ν
l1,n sin(l̃1,p/2) cos(l1,n/2).

Similarly, we get

l̃1,p l̃2,p

(
−l̃2,p sin(l1,n/2) cos(l̃1,p/2)− l̃1,p cos(l̃2,p/2) sin(l1,n/2)

sin(l̃1,p/2)

sin(l̃2,p/2)

)
=
K ′

ν
l̃1,p sin(l1,n/2) cos(l̃1,p/2).

And also using l21,n − l22,n = −K/ν, l̃21,p − l̃22,p = K ′/ν and (6.7), the last two terms become:

l1,n l̃2,p

(
l̃2,p sin(l̃1,p/2) cos(l1,n/2) + l1,n cos(l̃2,p/2) sin(l1,n/2) sin(l̃1,p/2)

sin(l̃2,p/2)

)
+ l̃1,pl2,n

(
l2,n sin(l1,n/2) cos(l̃1,p/2) + l̃1,p cos(l2,n/2) sin(l̃1,p/2) sin(l1,n/2)

sin(l2,n/2)

)
= − l1,n(K ′/ν) sin(l̃1,p/2) cos(l1,n/2) + l̃1,p(K/ν) sin(l1,n/2) cos(l̃1,p/2).

So that we get for
(
en(x); f̃p(x)

)
:

(
en(x); f̃p(x)

)
=
K +K ′

ν
(l21,n − l̃21,p)

−1(l22,n − l̃22,p)
−1(l̃1,p sin(l1,n/2) cos(l̃1,p/2) − l1,n sin(l̃1,p/2) cos(l1,n/2)).

(6.19)
In particular, for K = −K ′ and n �= p, the vectors f̃p are equal to fp and we get (fp; en) = 0, and similarly
(f̃p; ẽn) = 0, as stated before.

We will now give an asymptotic expansion of (6.19). First we have, for fixed n and large p:

(l21,n − l̃21,p)
−1(l22,n − l̃22,p)

−1 ∼ (l21,n − π2p2)−1(l22,n − π2p2)−1. (6.20)
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We will now give an expansion of l̃1,p sin(l1,n/2) cos(l̃1,p/2) − l1,n sin(l̃1,p/2) cos(l1,n/2). To do so, we use equa-
tions (6.9), (6.10) and (6.12):

l̃1,p sin (l1,n/2) cos
(
l̃1,p/2

)
− l1,n sin

(
l̃1,p/2

)
cos (l1,n/2)

=
(
πp+

K ′

4πνp
+ o

(
1
p2

))
sin (l1,n/2)

(
cos (πp/2)

(
1 − β̃′2

8p2
+ o

(
1
p2

))
− sin (πp/2)

(
β̃

2p
+ o

(
1
p2

)))

−l1,n cos (l1,n/2)

(
sin(πp/2)

(
1 − β̃′2

8p2
+ o

(
1
p2

))
+ cos(πp/2)

(
β̃′

2p
+ o

(
1
p2

)))
,

with β̃′ = K′
4νπ . Then for p even we get:

l̃1,p sin(l1,n/2) cos(l̃1,p/2) − l1,n sin(l̃1,p/2) cos(l1,n/2)

= (−1)p/2

[(
πp+

K ′

4πνp
+ o

(
1
p2

))
sin (l1,n/2)

(
1 − β̃′2

8p2
+ o

(
1
p2

))

−l1,n cos (l1,n/2)

(
β̃′

2p
+ o

(
1
p2

))]
·

So that for p large and even we have:

l̃1,p sin(l1,n/2) cos(l̃1,p/2) − l1,n sin(l̃1,p/2) cos(l1,n/2) ∼ (−1)p/2πp sin(l1,n/2), (6.21)

with sin(l1,n/2) �= 0. For p odd, we get:

l̃1,p sin(l1,n/2) cos(l̃1,p/2) − l1,n sin(l̃1,p/2) cos(l1,n/2)

= (−1)(p−1)/2

[
−
(
πp+

K ′

4πνp
+ o

(
1
p2

))
sin(l1,n/2)

(
β̃′

2p
+ o

(
1
p2

))

−l1,n cos(l1,n/2)

(
1 − β̃′2

8p2
+ o

(
1
p2

))]
·

So that for p large and odd we have:

l̃1,p sin(l1,n/2) cos(l̃1,p/2)− l1,n sin(l̃1,p/2) cos(l1,n/2) ∼ (−1)(p−1)/2

[
−K

′

8ν
sin(l1,n/2)− l1,n cos(l1,n/2)

]
, (6.22)

which is a constant (possibly zero), up to the sign.
Equations (6.17), (6.18), (6.20), (6.21) and (6.22) show that the sequence (w̃p

0) is not bounded by any
polynomial in λ̃p, and therefore (6.15) does not define a distribution, so that the Back and Forth Nudging
problem does not have a solution.
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