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Classical gluon fields and the color glass condensate

In the previous chapter we developed a two-step approach to DIS: one first sums the mul-
tiple rescatterings, leading to the GGM formula resumming powers of α2

s A
1/3, and then

one includes the small-x evolution effects, which enter via s-channel gluon emissions and
absorptions, by resumming powers of αsY . Here we generalize this two-step approach,
making it applicable to other high energy scattering processes. We show that the GGM
approximation is equivalent to treating the gluon field in the nucleus classically, according
to the prescription of the McLerran–Venugopalan (MV) model. Quantum evolution cor-
rections to the MV model come in through the Jalilian-Marian–Iancu–McLerran–Weigert–
Leonidov–Kovner (JIMWLK) evolution equation, which, in particular, provides an all-Nc

generalization of the dipole approach. The color glass condensate (CGC) is introduced.

5.1 Strong classical gluon fields: the McLerran–Venugopalan model

5.1.1 The key idea of the approach

Let us consider a large ultrarelativistic nucleus in the infinite-momentum frame. The nucleus
is taken as being described by the Glauber model of Sec. 4.2. We are interested in the small-
x tail of the gluon wave function in the nucleus. As follows from Eq. (2.56), in the rest
frame of the nucleus the small-x gluons have a coherence length of order

lcoh ∼ 1

mNx
, (5.1)

where mN is the mass of a nucleon. If the Bjorken-x variable is sufficiently small then the
coherence length may become very large, much larger than the size of the nucleus. Such
small-x gluons would be produced by the whole nucleus coherently in the longitudinal
direction. An example of this interaction is shown in the left-hand panel of Fig. 5.1. There
the small-x gluon (denoted by the wavy line) interacts coherently with several Lorentz-
contracted nucleons. Indeed the nucleons, and the nucleus as a whole, are color-neutral and
one might think that a coherent gluon would simply not “see” them. However, the gluon
is coherent only in the longitudinal direction: in the transverse direction it is localized on
the scale x⊥ ∼ 1/kT , with kT ≡ k⊥ the transverse momentum of the gluon. If kT � �QCD,
which is a necessary condition for using gluon degrees of freedom, the transverse extent of
the gluon is much smaller than the sizes of the nucleons. Because of this the gluon interacts
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~ A    nucleons
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S

Fig. 5.1. Left-hand panel: a small-x gluon sees the whole nucleus coherently in the longitudi-
nal direction and interacts with several different nucleons in it. Right-hand panel: the effec-
tive color charge seen by the gluon in the IMF as a result of a random walk in color space.
(Reprinted from Jalilian-Marian and Kovchegov (2006), with permission from Elsevier.) A
color version of this figure is available online at www.cambridge.org/9780521112574.

with only part of each nucleon in the transverse direction, as shown in the left-hand panel
of Fig. 5.1. The color charge in the segment of a nucleon that the gluon is traversing does
not have to be zero: the gluon may run into, say, a single valence quark. As a result of such
interactions, the gluon “feels” some effective color charge in all the nucleons’ segments that
it traverses. In our Glauber approximation we assume that all the nucleons are independent,
so that interactions with parts of different nucleons are similar to a random walk in color
space. If each individual nucleon’s segment has a typical color charge g, then, owing to
the random walk nature of the process, the total color charge seen by the gluon at a fixed
impact parameter is g

√
n, where n ∼ A1/3 is the number of nucleons at a fixed transverse

coordinate of the gluon.
In the infinite-momentum frame, owing to Lorentz contraction all the nucleons appear

to be squeezed into a thin “pancake” of Lorentz-contracted nucleus, as shown at the right
in Fig. 5.1. One may then define the effective color charge density seen by a gluon in
the transverse plane of the nucleus (McLerran and Venugopalan 1994a, b, c). The typical
magnitude of these color charge density fluctuations is given by the color charge squared
divided by the transverse area of the nucleus, (g

√
n)2/S⊥ = g2n/S⊥. The number of color

charge sources in the whole nucleus is proportional to the number of nucleons in the
nucleus, n ∼ A. The typical color charge density fluctuations are, therefore, characterized
by the momentum scale

μ2 ∼ g2A

S⊥
∼ �2

QCDA1/3. (5.2)

It is important to notice that the momentum scale in Eq. (5.2) grows with A as A1/3,
similarly to the saturation scale in the GGM model (4.50) (see also (4.52)). The important
conclusion we can draw from Eq. (5.2) is that for sufficiently large nuclei their small-x
wave functions are characterized by a hard momentum scale μ that is much larger than
�QCD. It is likely that the large scale μ determines the running of the strong-coupling
constant, αs = αs(μ2), allowing for a small-coupling αs description of the process. Field
theories with small coupling are usually dominated by classical fields, with the quantum
corrections suppressed by extra powers of the small coupling constant αs . Therefore the
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200 Classical gluon fields and the color glass condensate

dominant small-x gluon field of a large nucleus is classical and given by the solution
of the classical Yang–Mills equations of motion. This is the essential key idea of the
McLerran–Venugopalan model (McLerran and Venugopalan (1994a, b, c).

Another way to reach this conclusion about the dominance of the classical fields is to
argue that the gluon density in the transverse plane is (see Eq. (3.131))

ρglue = xGA

S⊥
. (5.3)

For a dilute nucleus xGA = AxGN ∼ A, so that ρglue ∼ A1/3 and is therefore large for
a nucleus with A � 1, resulting in the high occupation number of gluons. Such a high
occupation number implies the dominance of the classical physics: hence the gluon field
should be classical (McLerran and Venugopalan 1994a). Moreover, ρglue has the dimensions
of mass squared, giving us a new momentum scale μ2 ∼ ρglue, which is consistent with
that in Eq. (5.2). The strongest gluon field possible in the QCD Lagrangian (1.1) at small
coupling g is of order some momentum scale times 1/g, as can be inferred by equating
the linear and nonlinear terms in the field strength tensor (1.4). Hence the resulting strong
gluon field should be of order Aμ ∼ 1/g (cf. Eq. (3.137)), which is characteristic of classical
gluon fields (e.g. instanton fields).

We see that the MV model is based on the observation that the larger-x partons (such
as the valence quarks in the nucleons) in a large nucleus serve as classical sources for the
smaller-x gluons. We now are going to find this classical gluon field.

5.1.2 Classical gluon field of a single nucleus

According to the prescription of the MV model, we need to solve the classical Yang–Mills
equations

DμFμν = J ν, (5.4)

with an ultrarelativistic nucleus providing the source current J ν , so that in the infinite-
momentum frame

J ν = δν+ρ(x−, �x⊥), (5.5)

where ρ(x−, �x⊥) is the color charge density.1 The adjoint covariant derivative is defined by

DμFμν ≡ ∂μFμν − ig
[
Aμ, Fμν

]
(5.6)

in the standard convention.
The classical gluon field of a nucleus is easier to find in the covariant ∂μAμ = 0 gauge.

To do this we will assume, for simplicity, that all the relevant large-x color charge in
the nucleus is carried by the valence quarks. Furthermore, we will specifically choose to
consider a nucleus with “mesonic” nucleons made out of qq̄ pairs instead of three valence

1 Unlike in the previous chapter, where the nucleus was either at rest or moving along the x− light cone, in this chapter
we take the nucleus to be moving along the x+ light cone direction, in order for the notation to agree with the majority
of the literature on the subjects discussed here. A simple + ↔ − substitution relates the results of the two chapters.
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"NUCLEON"

QUARK

ANTIQUARK

Fig. 5.2. The model for a nucleus where the “nucleons” are quark–antiquark pairs.
(Reprinted with permission from Kovchegov (1996). Copyright 1996 by the American
Physical Society.)

quarks (Kovchegov 1996). (This latter assumption merely simplifies the calculations; the
conclusions are easy to generalize to the case of real nuclei.) Our model of the nucleus is
depicted in Fig. 5.2. Considering the nucleus to be moving ultrarelativistically in the light
cone plus direction, we label “valence” quark and antiquark coordinates by �xi⊥, x−

i and
�x ′
i⊥, x ′−

i in accordance with their position along the x−-axis, so that

x−
1 , x ′−

1 < x−
2 , x ′−

2 < · · · < x−
A , x ′−

A . (5.7)

In the recoilless eikonal approximation considered here, neither coordinate in a quark-
antiquark pair changes due to the emission of gluon fields.

In our theoretical nucleus a nucleon consists of a qq̄ pair, where the quark and antiquark
move as free particles inside the nucleon but are not able to leave the nucleon due to
confinement. Similarly, in the Glauber model of the nucleus the nucleons can be anywhere
within the nucleus with equal probability. As we will see shortly, in the IMF and in the
covariant ∂μAμ = 0 gauge the gluon field of, say, quark i located at x−

i is proportional to
δ(x− − x−

i ). Since the quarks (and anti-quarks) in the model have different x−
i -coordinates,

the fields of the individual quarks (anti-quarks) cannot overlap and we can construct the
gluon field of the nucleus as a sum of the fields of the quarks and anti-quarks. We first will
find this sum in the covariant gauge, and after that we will transform the total field to the
A+ = 0 light cone gauge, which is more convenient for calculating the gluon distribution
function.

Starting from a nucleus at rest in the covariant gauge, we write the color charge density
as

ρcov(�x) =
N2

c −1∑
a=1

taρa
cov(�x), (5.8)

with

ρa
cov(�x) = g

A∑
i=1

(tai )[δ3(�x − �xi) − δ3(�x − �x ′
i)] (5.9)
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202 Classical gluon fields and the color glass condensate

where �xi is the location of the quark in the ith nucleon, �x ′
i is the location of the antiquark,

and the (tai ) are SU(Nc) generators acting in the color space of the ith nucleon. The subscript
cov denotes the covariant ∂μAμ = 0 gauge.

Boosting into the IMF we obtain

ρa
cov(x−, �x⊥) = 2g

A∑
i=1

(tai )[δ(x− − x−
i )δ2(�x⊥ − �xi⊥) − δ(x− − x ′−

i )δ2(�x⊥ − �x ′
i⊥)],

(5.10)

where now ρcov(x−, �x⊥) is the plus component of the current Jμ, in accordance with
Eq. (5.5). As one can readily verify, the solution of the Yang–Mills equations (5.4) with the
source given in (5.5), (5.10) is

A+
cov = − g

π

N2
c −1∑

a=1

A∑
i=1

ta(tai )
[
δ(x− − x−

i ) ln(|�x⊥ − �xi⊥|�)−δ(x− − x ′−
i ) ln(|�x⊥−�x ′

i⊥|�)
]
,

A−
cov = 0, �A⊥

cov = 0, (5.11)

where � is some infrared cutoff. The only nonzero component of the field strength in the
covariant gauge is then

F⊥+
cov = g

π

N2
c −1∑

a=1

A∑
i=1

ta(tai )

[
δ(x− − x−

i )
�x⊥ − �xi⊥

|�x⊥ − �xi⊥|2 − δ(x− − x ′−
i )

�x⊥ − �x ′
i⊥

|�x⊥ − �x ′
i⊥|2
]
. (5.12)

The gluon field in Eq. (5.11) is itself a solution of the classical Yang–Mills equa-
tions. However, as we mentioned before, the field in the A+ = 0 light cone gauge is
needed to find the gluon distribution resulting from classical physics. We have to gauge-
transform the field from Eq. (5.11) into the light cone gauge. The field in the new
gauge is

ALC
μ = SAcov

μ S−1 − i

g
(∂μS)S−1. (5.13)

Requiring the new gauge to be the light cone gauge, A+
LC = 0, we solve for S to obtain2

S(x−, �x⊥) = P exp

⎧⎨
⎩ ig

2

−∞∫
x−

dx ′−A+
cov(x ′−, �x⊥)

⎫⎬
⎭ , (5.14)

where, as usual, the symbol P denotes path-ordering of the operators in the integral. The
matrix of the gauge transformation is given by a Wilson line (Wilson 1974) along the x−

light cone. (The choice of the contour of the Wilson line in Eq. (5.14) is not unique: the
freedom to choose the contour is directly related to the residual gauge freedom within the

2 The factor 1/2 in Eq. (5.14) is due to our definition of the light cone components in Sec. 1.3.

https://doi.org/10.1017/9781009291446.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291446.006


5.1 Strong classical gluon fields: the MV model 203

A+ = 0 gauge.) The gluon field in the A+ = 0 light cone gauge is

�A⊥
LC(x−, �x⊥) = 1

2

x−∫
−∞

dx ′−F+⊥
LC (x ′−, �x⊥)

= 1

2

x−∫
−∞

dx ′−S(x ′−, �x⊥)F+⊥
cov (x ′−, �x⊥)S−1(x ′−, �x⊥), (5.15)

with A−
LC = 0. Since the fields do not depend on x+ we have suppressed x+ in all the

arguments.
Substituting Eq. (5.12) into Eq. (5.15) we obtain the classical gluon field for an ultrarel-

ativistic nucleus in its light cone gauge (Kovchegov 1996, Jalilian-Marian et al. 1997a):

�ALC
⊥ (x−, �x⊥) = g

2π

N2
c −1∑

a=1

A∑
i=1

(tai )

[
S(x−

i , �x⊥)taS−1(x−
i , �x⊥)

�x⊥ − �xi⊥
|�x⊥ − �xi⊥|2 θ (x− − x−

i )

− S(x ′−
i , �x⊥)taS−1(x ′−

i , �x⊥)
�x⊥ − �x ′

i⊥
|�x⊥ − �x ′

i⊥|2 θ (x− − x ′−
i )

]
.

(5.16)

An explicit expression for S(x−, �x⊥) can be obtained by substituting the covariant-gauge
field (5.11) into Eq. (5.14) and integrating over the delta-functions. This yields

S(x−, �x⊥) =
A∏

i=1

exp

⎧⎨
⎩ ig2

2π

N2
c −1∑

a=1

ta(tai ) ln
|�x⊥ − �xi⊥|
|�x⊥ − �x ′

i⊥|θ (x− − x−
i )

⎫⎬
⎭ , (5.17)

where the terms in the product are ordered from left to right with increasing index i. In
arriving at Eq. (5.17) we have coarse-grained our treatment of the nucleus, assuming that
the coordinate x− is either larger or smaller than the position of the nucleon on the light
cone, taken now to be approximately equal to x−

i . Hence we do not have situations where
only one quark in a nucleon contributes to S(x−, �x⊥). Individual nucleon contributions
are suppressed by powers of A, hence neglecting one of them is justified in our Glauber,
A � 1, approximation for the nucleus.

The calculation of the Wilson line (5.14), which led to Eq. (5.17), also allows us to
determine the region of applicability of the classical approximation used in the MV model.
Note that the covariant-gauge field (5.11) is of order g; hence, in terms of the Feynman
diagrams it corresponds to the emission of a gluon by the valence (anti)quarks (see also
Exercise 5.1). The Wilson line (5.14) is then given by gluon exchanges between valence
quarks and the path of the Wilson line, as shown in Fig. 5.3A. In fact the product in
Eq. (5.17) consists of one-gluon exchanges in the exponents, each term corresponding to
a given nucleon. It seems that if we expand the exponentials in the product (5.17) we can
have as many gluon exchanges with each nucleon as we like. Formally, this is indeed the
case: nonetheless, we claim that, to keep the classical approximation under control we
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204 Classical gluon fields and the color glass condensate

A B

Fig. 5.3. Diagrams contributing to the Wilson line (5.14) in the validity domain of the
classical approximation (A) and beyond (B).

Fig. 5.4. Diagrammatic representation of the non-Abelian Weizsäcker–Williams field of a
nucleus. The cross denotes the location xμ where the field is measured.

cannot exceed more than two gluons per nucleon, as shown in Fig. 5.3A (which means
expanding each exponential in Eq. (5.17) up to order g4). Indeed, one would be tempted
to go beyond this limit and include a three-gluon exchange diagram by expanding the
exponentials to order g6, as depicted on the left of Fig. 5.3B. However, at order g6, in
calculating the Wilson line in the full perturbative QCD theory we should also include the
diagram on the right of Fig. 5.3B. Such a diagram contains a gluon self-energy correction
and is essentially nonclassical, as it cannot be evaluated by classical methods. Therefore we
would lose control over the diagram calculation if we tried to use classical methods at order
g6. Hence the classical approximation is only valid in QCD as long as we do not exceed
the two-gluon per nucleon limit (Kovchegov 1997). This conclusion is similar to what we
saw in the GGM approximation: the resulting resummation parameter for the classical MV
approach is again α2

s A
1/3, just as in the GGM case (4.46). Even the diagram in Fig. 5.3A is

similar to the GGM diagram in Fig. 4.5. We see that the GGM formula can be thought of
as having been obtained in the classical approximation.

Equation (5.16) gives the solution of the classical equations of motion for a given
configuration of valence quarks (and antiquarks in our model) inside the nucleons and
of nucleons inside the nucleus. We will refer to the field in Eq. (5.16) as the non-
Abelian Weizsäcker–Williams field, since this is a non-Abelian analogue of the well-
known Weizsäcker–Williams field in electrodynamics. A diagram corresponding to the
non-Abelian Weizsäcker–Williams field of a nucleus is shown in Fig. 5.4 (Kovchegov
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5.1 Strong classical gluon fields: the MV model 205

1997). Diagrams corresponding to the classical gluon field are tree level, in accordance
with the conventional understanding of classical dynamics. (The apparent loop in Fig. 5.4
is not a quantum loop, as, together with a diagram in which the gluon couplings to the
quark line are interchanged, it contributes as if the intermediate quark line were on mass
shell (cf. Fig. 4.7) and thus is equivalent to two independent quark–gluon interactions.)

The classical gluon field (5.16) in the MV model can alternatively be found using a
description of the valence quark distribution in the nucleus by a continuous light cone
color charge density ρLC(x−, �x⊥) related to the covariant-gauge density (5.10) by a gauge
rotation:

ρLC(x−, �x⊥) = S(x−, �x⊥)ρcov(x−, �x⊥)S−1(x−, �x⊥) (5.18)

(McLerran and Venugopalan 1994a, b, c, Jalilian-Marian et al. 1997a). In such a description
one does not have to specify a model for the point valence charges, such as that in Fig. 5.2,
though the dilute nucleus approximation is employed.

In the point-charge approach presented above, in order to calculate a physically observ-
able quantity one has to average over all possible positions of quarks and anti-quarks in
the nucleons and of nucleons in the nucleus, which, in this classical approximation, would
correspond to averaging over many scattering events. In the continuous density approach
this would correspond to integrating the observable over all charge densities ρLC(x−, �x⊥)
with some weight functional W [ρLC]. The weight functional for a group of independent
valence quarks has to be Gaussian, so that the integral would be of the form (McLerran and
Venugopalan 1994a, Jalilian-Marian et al. 1997a)

∫
DρLCW [ρLC] ≡

∫
DρLC exp

⎧⎨
⎩−
∫

d2x⊥

∞∫
−∞

dx− tr
[
ρ2

LC(x−, �x⊥)
]

μ2(x−, �x⊥)

⎫⎬
⎭ . (5.19)

Here μ2(x−, �x⊥) is some function of the coordinates: it is a measure of the color-charge
fluctuations and is a generalization of μ from Eq. (5.2). (The Gaussian form of Eq. (5.19)
can be verified explicitly and μ2(x−, �x⊥) can be found in the point-charge approach pre-
sented above: this was done in Kovchegov (1997).) The expectation value of some density-
dependent operator Ôρ would then be given by

〈Ôρ〉 =
∫ DρLCÔρW [ρLC]∫ DρLCW [ρLC]

. (5.20)

5.1.3 Classical gluon distribution

Using Eq. (5.16) we can derive a formula for the distribution of gluons in the nucleus.
First we need to derive an expression for the gluon distribution as a function of the
gluon field operator. Working in the A+ = 0 light cone gauge, we expand the gluon field
operator in terms of creation and annihilation operators in the form (see e.g. Lepage and
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Brodsky 1980)

�Aa
LC⊥(x+ = 0, x−, �x⊥) =

∫
k+>0

d2k⊥dk+

(2π )32k+
∑
λ=±1

{
âa

λ(�k⊥, k+)�ελ
⊥e−ik·x + â

a†
λ (�k⊥, k+)�ελ∗

⊥ eik·x
}

,

(5.21)

where

[âa
λ(�k⊥, k+), âb†

λ′ (�k′
⊥, k′+)] = 2k+(2π )3δ(k+ − k′+)δ2(�k⊥ − �k′

⊥)δλλ′δab. (5.22)

Using these creation and annihilation operators we can write the number of gluons with
transverse momentum k⊥ and light cone momentum k+ (per unit transverse momen-
tum squared dk2

⊥ and per unit rapidity dk+/k+) as the Weizsäcker–Williams distribution
function,

φWW
(
x, k2

⊥
) = π

2(2π )3

∑
λ=±1

N2
c −1∑

a=1

〈A|âa†
λ (�k⊥, k+)âa

λ(�k⊥, k+)|A〉, (5.23)

where |A〉 is a state of the nucleus and, as usual, x = k+/p+ with p+ the large light cone
momentum of the nucleons in the nucleus. We have implicitly assumed that the gluon
distribution does not depend on the direction of the gluon transverse momentum and have
replaced d2k⊥ by πdk2

⊥. The quantity φWW (x, k2
⊥) is the unintegrated gluon distribution

of the nucleus (cf. Eq. (3.92)). The standard (integrated) gluon distribution is related to
φWW

(
x, k2

⊥
)

by Eq. (3.93).

Solving Eq. (5.21) for âa
λ and â

a†
λ and using the result in Eq. (5.23) yields

φWW
(
x, k2

⊥
) = (k+)2

8π2

∫
d2x⊥d2y⊥ei�k⊥·(�x⊥−�y⊥)

∞∫
−∞

dx−dy−e−ik+(x−−y−)/2

×
〈
A

∣∣∣∣tr [ �ALC
⊥ (0, x−, �x⊥) · �ALC

⊥ (0, y−, �y⊥)
] ∣∣∣∣A
〉
. (5.24)

To perform the Fourier transformations over x− and y− note that the non-Abelian WW
field of Eq. (5.16) is essentially a theta function in x−, i.e., θ (x−), since the x−-extent of
the ultrarelativistic nucleus moving in the x+-direction is negligibly small. Writing

�ALC
⊥ (0, x−, �x⊥) ≈ θ (x−) �ALC

⊥ (0, x− = +∞, �x⊥) ≡ θ (x−) �ALC
⊥ (�x⊥), (5.25)

we reduce Eq. (5.24) to

φWW
(
x, k2

⊥
) = 1

2π2

∫
d2x⊥d2y⊥ei�k⊥·(�x⊥−�y⊥)

〈
tr
[

�ALC
⊥ (�x⊥) · �ALC

⊥ (�y⊥)
]〉

, (5.26)

where, for brevity, we denote the averaging in the state |A〉 simply by angle brackets.
For the classical gluon field (5.16), averaging in the state |A〉 implies averaging over the
positions of the valence quarks in the nucleons and of the nucleons in the nucleus, along
with averaging over the quark colors. For the field found as a function of the charge density
ρLC(x−, �x⊥), the averaging is the same as that defined in Eq. (5.20). One can also show
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that the definition of the unintegrated gluon distribution (5.26), after integration over �k⊥,
can be recast into a form consistent with the standard definition of the integrated gluon
distribution, which can be found in Sterman (1993).

Substituting the classical gluon field (5.16) into the expression for the unintegrated gluon
distribution (5.26) we obtain

φWW
(
x, k2

⊥
) = αs

2π3

∫
d2x⊥d2y⊥ei�k⊥·(�x⊥−�y⊥)

A∑
i,j=1

×
〈
(tai )(tbj ) tr

[
S(x−

i , �x⊥)taS−1(x−
i , �x⊥)S(x−

j , �y⊥)tbS−1(x−
j , �y⊥)

]

× �x⊥ − �xi⊥
|�x⊥ − �xi⊥|2 · �y⊥ − �xj⊥

|�y⊥ − �xj⊥|2 + a.c.

〉
, (5.27)

where summation over repeated color indices is implied and a.c., the antiquark contribu-
tions, stands for three more terms, involving antiquarks.

In the spirit of the Glauber large-nucleus approximation, we assume that the contribution
of the ith nucleon is not contained in S(x−

i , �x⊥) (the same for the j th nucleon in S(x−
j , �y⊥)):

this means that averaging over the color space of the quarks in the ith and the j th nucleons
can be carried out separately, giving (1/Nc)tri[(tai )] = 0 and (1/Nc)trj [(tbj )] = 0 unless
i = j , in which case we get (1/Nc)tri[(tai )(tbi )] = [1/(2Nc)]δab. This simplifies Eq. (5.27)
to

φWW
(
x, k2

⊥
) = αs

4π3Nc

∫
d2x⊥d2y⊥ei�k⊥·(�x⊥−�y⊥)

A∑
i=1

× 〈tr [S(x−
i , �x⊥)taS−1(x−

i , �x⊥)S(x−
i , �y⊥)taS−1(x−

i , �y⊥)
] 〉

×
[∫

d2xi

T (�xi⊥)

A

�x⊥ − �xi⊥
|�x⊥ − �xi⊥|2 · �y⊥ − �xi⊥

|�y⊥ − �xi⊥|2 + a.c.

]
. (5.28)

We have now written out the averaging over �xi⊥ explicitly, but neglecting the difference
between the location of a nucleon and the location of a quark in the nucleon. We have
also neglected the difference between x−

i and x ′−
i in the arguments of S, since, as we have

assumed, the ith nucleon does not contribute to S. The nuclear profile function T (�b⊥) was
defined in Eq. (4.31): the ratio T (�b⊥)/A is the transverse-plane probability density for
finding a nucleon at impact parameter �b⊥.

To simplify Eq. (5.28) further we will use the following group theory identity, which we
will formulate in general terms for future use. Define a fundamental Wilson line along an
arbitrary (not necessarily closed) contour C by

V ≡ P exp

⎧⎨
⎩ig
∫
C

dx · A

⎫⎬
⎭ , (5.29)
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208 Classical gluon fields and the color glass condensate

where, as usual, Aμ =∑a taAa
μ and the ta are the SU(Nc) generators in the fundamental

representation. Similarly, define the adjoint Wilson line along the same contour C by

U ≡ P exp

⎛
⎝ig

∫
C

dx · A
⎞
⎠ (5.30)

where now Aμ =∑a T aAa
μ with (T a)bc = −if abc the SU(Nc) generators in the adjoint

representation. As can be verified explicitly, the following identity relates these two Wilson
lines:

Uabt
b = V †taV . (5.31)

This relation also leads to another useful formula:

Uab = 2tr
[
tbV †taV

]
. (5.32)

Note also that, since the adjoint SU(Nc) generators T a are purely imaginary,

Uab = U ∗
ab = U

†
ba. (5.33)

Using Eq. (5.31) with V = S−1 = S† we write

S(x−
i , �x⊥)taS−1(x−

i , �x⊥) = U
†
ab(x−

i , �x⊥)tb (5.34)

where (cf. Eqs. (5.14) and (5.17))

U (x−, �x⊥) = P exp

⎧⎨
⎩ ig

2

−∞∫
x−

dx ′−A+
cov(x ′−, �x⊥)

⎫⎬
⎭

=
A∏

i=1

exp

{
ig2

2π
T a(tai ) ln

|�x⊥ − �xi⊥|
|�x⊥ − �x ′

i⊥|θ (x− − x−
i )

}
. (5.35)

We now can rewrite the term in the second line of Eq. (5.28) as

〈
tr
[
S(x−

i , �x⊥)taS−1(x−
i , �x⊥)S(x−

i , �y⊥)taS−1(x−
i , �y⊥)

] 〉 = 1

2

〈
Tr
[
U †(x−

i , �x⊥)U (x−
i , �y⊥)

] 〉
(5.36)

where the trace Tr is over the adjoint indices.
Employing Eq. (5.35) and expanding the contribution of the (i − 1)th nucleon up

to order g4, in accordance with the two-gluons-per-nucleon limitation of the classical
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approach, we get

Tr
[
U (x−

i , �y⊥)U †(x−
i , �x⊥)

]
= Tr

{
U (x−

i−1, �y⊥)

[
1 + ig2

2π
T c(t ci−1) ln

|�y⊥ − �xi−1⊥||�x⊥ − �x ′
i−1⊥|

|�y⊥ − �x ′
i−1⊥||�x⊥ − �xi−1⊥|

− g4

2(2π )2
T cT d (t ci−1)(tdi−1) ln2 |�y⊥ − �xi−1⊥||�x⊥ − �x ′

i−1⊥|
|�y⊥ − �x ′

i−1⊥||�x⊥ − �xi−1⊥| + O(g6)

]
U †(x−

i−1, �x⊥)

}
.

(5.37)

Averaging over the color space of the (i − 1)th nucleon we obtain

〈
Tr
[
U (x−

i , �y⊥)U †(x−
i , �x⊥)

] 〉 = 〈Tr
[
U (x−

i−1, �y⊥)U †(x−
i−1, �x⊥)

] 〉
×
[

1 − α2
s

〈
ln2 |�y⊥ − �xi−1⊥|

|�y⊥ − �x ′
i−1⊥|

|�x⊥ − �x ′
i−1⊥|

|�x⊥ − �xi−1⊥|
〉 ]

. (5.38)

The logarithm in the second line of Eq. (5.38) looks like that arising from the two-gluon-
exchange high energy interaction of an onium �x⊥, �y⊥ with an onium �xi−1⊥, �x ′

i−1⊥, as can
be seen from comparing Eq. (5.38) with Eq. (3.139). Indeed this is natural, since the result
arises from the expansion of up to two gluons per nucleon shown in Fig. 5.3 (except that
here we have two adjoint Wilson lines instead of the single fundamental Wilson line in
Fig. 5.3). The result of averaging this term over the impact parameter and over angular
orientations of the nucleon can be obtained by comparing Eq. (3.139) with its averaged
version (3.25). We are assuming that our nucleus is very large; hence, averaging over all
impact parameter values up to infinity is applicable here.

We now assume that �x⊥ and �y⊥ are perturbatively close to each other, so that |�x⊥ − �y⊥| �
1/�QCD and is much smaller than the nucleon size. In the nucleus, when averaging the
logarithm-squared term in Eq. (5.38) we also have to multiply the transverse integral by the
probability density for finding the nucleon at �b⊥, i.e., by T (�b⊥)/A (cf. Eq. (5.28)). In our
coarse-grained picture of the nucleus we will assume that both coordinates are located at
the same impact parameter �b⊥ = (�x⊥ + �y⊥)/2 as far as the nuclear profile function T (�b⊥)
is concerned. Then we can rewrite Eq. (5.38) as

〈
Tr
[
U (x−

i , �y⊥)U †(x−
i , �x⊥)

] 〉 = 〈Tr
[
U (x−

i−1, �y⊥)U †(x−
i−1, �x⊥)

] 〉
×
[

1 − 2πα2
s

T (�b⊥)

A
(�x⊥ − �y⊥)2 ln

1

|�x⊥ − �y⊥|�
]
, (5.39)

where we have neglected the term 1 in comparison with the logarithm in Eq. (3.25),
since |�x⊥ − �y⊥| � 1/�. As usual � ∼ �QCD is an IR cutoff, with 1/� approximately the
nucleon size. Equation (5.39) has the contribution of the (i − 1)th nucleon factorized from
the rest of the expression.
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210 Classical gluon fields and the color glass condensate

Iterating the above steps for all the other nucleons we end up with

〈
Tr
[
U (x−

i , �y⊥)U †(x−
i , �x⊥)

]〉
= (N2

c − 1)

[
1 − Q2

sG(�b⊥)

4A
(�x⊥ − �y⊥)2 ln

1

|�x⊥ − �y⊥|�

]i−1

≈ (N2
c − 1) exp

{
− i − 1

A

Q2
sG(�b⊥)

4
(�x⊥ − �y⊥)2 ln

1

|�x⊥ − �y⊥|�

}
, (5.40)

where in the last step we have used the fact that A � 1. The gluon saturation scale,

Q2
sG(�b⊥) = 8πα2

s T (�b⊥), (5.41)

can be obtained from the quark saturation scale Eq. (4.50) if one replaces CF by Nc in
the latter and multiplies the result by 2. This factor 2 is due to the fact that in arriving
at Eq. (4.50) we modeled each nucleon by a quark, while now nucleons are modeled as
quarkonia.

Before we continue, let us pause to stress the importance of the result obtained in
Eq. (5.40).

On Wilson lines and the S-matrix

Equation (5.40), which is necessary for our calculation of the WW gluon distribution, is in
fact a very important result in itself. As the nucleons are ordered along the x−-axis we can
make the replacement

i − 1

A
→ x−

i

L
, (5.42)

with L the net x−-extent of the nucleus as defined in Sec. 4.2 (up to a + ↔ − interchange).
The exponent in Eq. (5.40) then becomes equivalent to Eq. (4.43) if in the latter we note
that ρA is independent of the longitudinal coordinate (inside the nucleus), use σqq̄N from
Eq. (4.25), replace CF by Nc in Eq. (4.43), and interchange the + and − coordinates in
order to work in the same coordinate frame. The only real difference, CF versus Nc, is due
to quark degrees of freedom versus gluon degrees of freedom. We see that, in the covariant
gauge, the S-matrix of a dipole scattering on a nucleus is equivalent to the correlator
of the two Wilson lines. Namely, U (x−, �y⊥) describes a gluon propagating from x− to
−∞ along the x−-axis with the transverse coordinate fixed at �y⊥. Similarly, U †(x−, �x⊥)
describes a gluon at �x⊥ propagating along the x−-axis from −∞ to x−. The fact that the
transverse coordinates of the gluons are invariant is the same property of eikonal scattering
as we saw in the GGM and dipole models. (In the classical field correlator (5.28), no
actual gluon propagates: it just so happens that the correlator is related to an average
of two adjoint Wilson lines, which, in turn, is equivalent to a gluon dipole scattering
matrix.)
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x+ = 0 ⊥

x−

nucleus/hadron

fast quark

x+ = 0 ⊥

x−

nucleus/hadron

fast gluon

A

B

Fig. 5.5. The Wilson lines for (A) a fast quark and (B) a fast gluon scattering in the field of
the target nucleus.

Generalizing this conclusion, we see that the propagator of an eikonal quark moving
along the light cone x−-axis can be replaced by the Wilson line

V�x⊥ = P exp

⎧⎨
⎩ ig

2

∞∫
−∞

dx−A+(x+ = 0, x−, �x⊥)

⎫⎬
⎭ (5.43)

and the propagator of the eikonal antiquark can be replaced by the conjugate Wilson line
V

†
�x⊥ . The propagator of an eikonal gluon moving along the light cone x−-axis can be

replaced by the adjoint Wilson line

U�x⊥ = P exp

⎧⎨
⎩ ig

2

∞∫
−∞

dx−A+(x+ = 0, x−, �x⊥)

⎫⎬
⎭ . (5.44)

The Wilson lines defined in Eqs. (5.43) and (5.44) are illustrated schematically in
Figs. 5.5A and B, respectively, as propagators of the eikonal quark and gluon moving along
the x−-axis and interacting with the gluon field of the nucleus.

The Wilson line correlator (5.40) and the correspondence between such a correlator and
the S-matrix were derived in the ∂μAμ = 0 covariant gauge: the same results are true in
the light cone gauge of the projectile, A− = 0. For the light cone gauge of the nucleus,
A+ = 0, the Wilson line correlator has to be augmented by gauge links at x− = ±∞,
making it a closed gauge-invariant Wilson loop: the links do not contribute in the A− = 0
and ∂μAμ = 0 gauges but are important in the A+ = 0 gauge.

The S-matrix for a quark dipole scattering on a nuclear target, defined in Eq. (4.38)
(in the notation of Eq. (4.140) and/or Eq. (4.214)) can be rewritten in terms of the
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212 Classical gluon fields and the color glass condensate

Wilson lines as

S(�x1⊥, �x0⊥, Y ) = 1

Nc

〈
tr
[
V�x1⊥V

†
�x0⊥

]〉
, (5.45)

with the factor of 1/Nc inserted to average over the colors of the quarks (up to the + ↔ −
convention difference). Similarly, for a gluon dipole the S-matrix is

SG(�x1⊥, �x0⊥, Y ) = 1

N2
c − 1

〈
Tr
[
U�x1⊥U

†
�x0⊥

]〉
. (5.46)

As we have just observed, using the result (5.40) in Eq. (5.46) would lead to the gluon
S-matrix in the GGM model. We see that, for high energy scattering in the covariant and
A− = 0 gauges, diagrammatic calculations are equivalent to calculations of Wilson lines.
Below we will see that Wilson lines can be conveniently used to construct S-matrices for
the scattering of other objects, more complicated than a dipole, on a nuclear target.

With the help of Eqs. (5.40) and (5.36) we can rewrite the WW gluon distribution (5.28)
as

φWW
(
x, k2

⊥
) = αsCF

4π3

∫
d2b⊥d2r⊥ei�k⊥·�r⊥

A∑
i=1

exp

{
− i − 1

A

r2
⊥Q2

sG(�b⊥)

4
ln

1

r⊥�

}

× T (�b⊥)

A

[∫
d2xi

�x⊥ − �xi⊥
|�x⊥ − �xi⊥|2 · �y⊥ − �xi⊥

|�y⊥ − �xi⊥|2 + a.c.

]
, (5.47)

where

�r⊥ = �x⊥ − �y⊥, �b⊥ = �x⊥ + �y⊥
2

, (5.48)

and we have assumed that for a large nucleus T (�xi⊥) ≈ T (�b⊥). The integration over �xi⊥
in Eq. (5.47) can now be carried out using the Fourier decomposition from Eq. (A.10) and
employing Eq. (A.9) and is left as an exercise for the reader. It yields∫

d2xi

�x⊥ − �xi⊥
|�x⊥ − �xi⊥|2 · �y⊥ − �xi⊥

|�y⊥ − �xi⊥|2 = 2π ln
1

|�x⊥ − �y⊥|�. (5.49)

The antiquark contribution in Eq. (5.47) contains a term depending simply on x ′
i⊥, which

simply doubles the contribution in Eq. (5.49), while the terms depending on both xi⊥ and
x ′

i⊥ simply modify the IR cutoff in Eq. (5.49) by a multiplicative constant that we can
neglect. In the end the contents of the square brackets in the last line of Eq. (5.47) give us
only twice the contribution in Eq. (5.49).

Summing over the index i in Eq. (5.47) and remembering yet again that A � 1 we at
last obtain the non-Abelian WW gluon distribution for a large nucleus (Jalilian-Marian
et al. 1997a)

φWW
(
x, k2

⊥
) = CF

2π3αs

∫
d2b⊥d2r⊥ei�k⊥·�r⊥ 1

r2
⊥

NG(�r⊥, �b⊥, Y = 0), (5.50)
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Fig. 5.6. Diagrammatic representation of the non-Abelian Weizsäcker–Williams distribution
function φWW from Eq. (5.50).

where, by analogy with Eq. (4.51), we have defined the forward amplitude for a gluon
dipole scattering on a nucleus

NG(�r⊥, �b⊥, Y = 0) = 1 − exp

{
− r2

⊥Q2
sG(�b⊥)

4
ln

1

r⊥�

}
. (5.51)

As expected,

NG(�r⊥, �b⊥, Y ) = 1 − SG(�r⊥, �b⊥, Y ); (5.52)

the gluon S-matrix SG was defined in Eq. (5.46).
The result in Eqs. (5.50) and (5.51) is insensitive to the details of the nuclear model and

can be obtained using a continuous color-charge density description (Jalilian-Marian et al.
1997a). To put it in line with the GGM result for the saturation scale (4.50), we note that
for a model in which nucleons are replaced by single valence quarks we have

Q2
sG(�b⊥) = 4πα2

s T (�b⊥). (5.53)

The only difference between (5.53) and (4.50) is the Casimir operator replacement CF →
Nc associated with going from the quark to the gluon degrees of freedom.

Equation (5.50) is the central result of the McLerran–Venugopalan model for a single
nucleus. It is represented diagrammatically in Fig. 5.6 in analogy with the gluon distribution
in Fig. 2.12. Let us now describe its main properties. While exact analytic integration over
r⊥ in Eq. (5.50) appears to be a rather unwieldy task, we can still study the limiting cases
of large and small k⊥ analytically.

For k⊥ � QsG we expand the exponential in Eq. (5.51) to the lowest nontrivial order
and integrate over r⊥, obtaining

φWW
(
x, k2

⊥
) ∣∣∣

k⊥�QsG

≈ CF

4π2αs

1

k2
⊥

∫
d2b⊥Q2

sG(�b⊥). (5.54)

For a nucleus with “nucleons” each consisting of a single valence quark we use Eq. (5.53)
along with Eq. (4.31) to derive

φWW
(
x, k2

⊥
) ∣∣∣

k⊥�QsG

≈ A
αsCF

π

1

k2
⊥

. (5.55)
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This result is consistent with Eq. (4.26) and with both Eqs. (4.48) and (4.27) if we remember
that the unintegrated gluon distribution is connected to the standard integrated one, xG, via
Eq. (3.93). Equation (5.55) demonstrates that at large k⊥ the gluon distribution φWW

(
x, k2

⊥
)

maps onto the standard leading-order perturbative gluon distribution. Equation (5.55) also
shows that outside the saturation region, where nonlinear multiple-rescatterings effects
are not important, the gluon distribution of A nucleons is equal to A times the gluon
distributions of individual nucleons.

The leading-order perturbative distribution has a problem: it scales as 1/k2
⊥, so that at

low k⊥ it will diverge, leading to an infinite number of gluons. Moreover, the corresponding
integrated gluon distribution xG, obtained by integrating φWW over k2

⊥, is also IR divergent;
thus, in the absence of a cutoff, the net number of gluons would still be infinite.

The full distribution φWW in Eq. (5.50) is actually free of such a problem, as can be seen
by studying the opposite limit, deep inside the saturation region, where k⊥ � QsG. There
we see that r⊥ ∼ 1/k⊥ � 1/QsG, so that we can neglect the exponential in Eq. (5.51).
Putting NG = 1 in Eq. (5.50) and integrating over r⊥ > 1/QsG yields

φWW
(
x, k2

⊥
) ∣∣∣

k⊥�QsG

≈ CF

αsπ2

∫
d2b⊥ ln

Q2
sG(�b⊥)

k2
⊥

. (5.56)

We see that the power-law divergence of Eq. (5.55) is softened down to a logarithmic
divergence. While some IR divergence still remains, when Eq. (5.56) is integrated over k⊥
the number of gluons xG is now finite. We conclude that the effect of saturation in the MV
model is to soften the IR divergence, resulting in a finite net number of gluons.

Note also that in Eq. (5.56), deep inside the saturation region, φWW ∼ 1/αs . Remember-
ing the relation between the unintegrated gluon distribution and the classical gluon fields
in Eq. (5.26) we see that

ALC
μ ∼ 1

g
, (5.57)

as expected for classical gluon fields. This is as strong as a gluon field can be at weak
coupling g: we see that the occupation numbers of the classical gluons in the nuclear wave
function are very high, on the one hand justifying the classical approximation while on the
other hand demonstrating an interesting phenomenon, that the virtual gluons in the small-x
wave function form a very dense system.

The unintegrated gluon distribution φWW multiplied by the two-dimensional phase-
space factor k⊥ is plotted schematically in Fig. 5.7 as a function of transverse momentum
kT = k⊥. (In the plot we have assumed for simplicity that the nucleus is a cylinder with its
axis along the z-axis, so that QsG does not depend on �b⊥ and the �b⊥-integral in Eq. (5.50)
can be carried out simply by multiplying the integrand by the transverse area.) The quantity
kT φWW is the number of gluons with a given kT (as opposed to φWW (x, k2

T ), which counts
the gluons with a given k2

T ). The dashed curve in Fig. 5.7 represents the leading-order result
(5.55) with kT φWW ∼ 1/kT , which indeed is IR divergent. The solid curve represents the
full result: one can see from Eq. (5.56) that kT φWW in fact goes to zero as kT → 0. The
distribution kT φWW peaks around the saturation scale, which means that most gluons in
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αs ~ 1

αs << 1

k

Λ
k

are here

Qs

most gluons

QCD

~ k  ln (Q  /k )

      2 φ        (x, k  )

s

~ 1/k

T

T

T T

T T

WW

Fig. 5.7. Phase-space distribution of gluons in transverse momentum space. (Reprinted from
Jalilian-Marian and Kovchegov (2006), with permission from Elsevier.) A color version of
this figure is available online at www.cambridge.org/9780521112574.

the WW wave functions have kT ≈ QsG, and the wave function is indeed describable by
perturbative small-coupling methods.

5.2 The Jalilian-Marian–Iancu–McLerran–Weigert–
Leonidov–Kovner evolution equation

5.2.1 The color glass condensate (CGC)

Let us now find the quantum corrections to the classical MV model due to nonlinear small-x
evolution in the LLA. Small-x evolution can be included either in the wave function of a
projectile, as in Chapter 4, or in the wave function of the target. The Jalilian-Marian–
Iancu–McLerran–Weigert–Leonidov–Kovner (JIMWLK) evolution equation, which we
will derive here, accomplishes the latter. It generalizes the Gaussian weight functional
W [ρLC] from Eq. (5.19) to a rapidity-dependent functional WY [ρLC], which is no longer
of Gaussian form and instead has to be determined from the JIMWLK functional equation
for evolution in the rapidity Y . The averaging prescription (5.20) still holds, generating
rapidity dependence for the expectation values of operators:

〈Ôρ〉Y =
∫ DρLCÔρWY [ρLC]∫ DρLCWY [ρLC]

. (5.58)

The original JIMWLK equation was derived by including quantum corrections in the
classical MV wave function of a large nucleus (Jalilian-Marian et al. 1997b, 1999a, b,
Iancu et al. 2001a, b). The main principle of the JIMWLK derivation comes from the
MV model: one has to separate the partons into those with large x and those with small
x; the large-x partons serve as classical sources for the small-x partons. As we build up
small-x evolution and go to lower x by making steps in rapidity Y → Y + dY , the gluons
at rapidity Y become large-x gluons, and are incorporated into a source of classical fields.
Clearly, as we have already seen in Mueller’s dipole model, the larger-x gluons have a
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216 Classical gluon fields and the color glass condensate

much longer wavelength and lifetime than the smaller-x gluons: it is natural, then, that the
larger-x gluons appear to the smaller-x gluons as “frozen” sources moving along light cone
straight lines. Hence JIMWLK evolution consists of the successive emission of classical
gluon fields, which in turn become the sources of further gluon fields, etc.

The small-x wave function of the ultrarelativistic nucleus given by the MV model with
JIMWLK evolution is referred to as the color glass condensate (Iancu, Leonidov, and
McLerran 2001a, b), abbreviated as CGC. The word “color” refers to the (adjoint) gluon
colors; the word “condensate” refers to the high occupation number of those gluons, leading
to the strongest possible gluon field, like that in Eq. (5.57): while the small-x gluons do
not form a condensate in, say, the Bose–Einstein sense, one can draw a loose analogy
based on the high occupation numbers in both cases. Another loose analogy can be drawn
between the small-x evolution, as a sequence of classical gluon emissions from stationary
sources, and spin glasses, which also have a separation of degrees of freedom according to
a multitude of time scales; this is the origin of the word “glass” in CGC.

Here we will rederive the JIMWLK equation following Mueller (2001). The main idea
for deriving the JIMWLK equation suggested by Mueller is to treat the small increase in
energy (or rapidity) in two different, but equivalent, ways. In the first, one incorporates the
modifications due to the increase in energy into the nuclear wave function (the CGC), which
will then change (evolve); this was done in the original JIMWLK derivation. In the second,
which we have already seen in Mueller’s dipole model, this energy increase is incorporated
into the projectile wave function. Then the projectile will emit one gluon per step of LLA
evolution, and such an emission can be treated perturbatively in a rather simple manner.
Equating these two ways of including high energy corrections, one obtains the JIMWLK
evolution equation for the CGC nuclear wave function.

5.2.2 Derivation of JIMWLK evolution

Just as in the rest of this chapter we will work in the frame where the nucleus is moving
along the x+-axis while the projectile is moving along the x−-axis. We will use the A− = 0
light cone gauge of the projectile. One can show that for the nucleus this gauge is equivalent
to the covariant gauge: clearly the field (5.11) both solves the Yang–Mills equations (5.4)
and satisfies the A− = 0 gauge condition. To make our notation more compact, we define

α(x−, �x⊥) ≡ A+(x+ = 0, x−, �x⊥), (5.59)

with A+ the fundamental-representation gluon field in the A− = 0 gauge. The Yang–Mills
equations give

�α(x−, �x⊥) = ρ(x−, �x⊥), (5.60)

where ρ is also taken in the A− = 0 gauge and � = ∂μ∂μ. We see that the two functions
α(x−, �x⊥) and ρ(x−, �x⊥) are straightforwardly connected, with the latter also related to
ρLC (see Eq. (5.18)): therefore we can replace the integration over ρLC in Eq. (5.58) by
integration over α. Defining a weight functional WY [α] we can rewrite the averaged values
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of operators as (cf. (5.58))

〈Ôα〉Y =
∫

DαÔαWY [α]. (5.61)

where we agree that the normalization of WY [α] is such that∫
DαWY [α] = 1. (5.62)

Indeed, the functional WY [α] is formally different from WY [ρLC], though the two are of
course related: we use the same letter W for both only to simplify the notation. Since in
this section we will be working solely with the field α(x−, �x⊥) this recycling of symbols
should not cause confusion.

Our goal is to construct an evolution equation for WY [α]. Our strategy is first to derive
an evolution equation for the expectation value of some (arbitrary chosen) test operator Ôα ,
obtaining on the one hand

∂Y 〈Ôα〉Y = 〈Kα ⊗ Ôα〉Y =
∫

D α (Kα ⊗ Ôα)WY [α], (5.63)

where Kα is the kernel of the equation and may be a function of the field α(x−, �x⊥); the
symbol ⊗ denotes its action. The rightmost expression in Eq. (5.63) was obtained using
the definition of averaging in Eq. (5.61). On the other hand, differentiating Eq. (5.61) with
respect to Y we get

∂Y 〈Ôα〉Y =
∫

DαÔα∂Y WY [α]. (5.64)

Equating the right-hand sides of Eqs. (5.63) and (5.64), and arranging for the kernel in
Eq. (5.63) to act on WY [α] (by employing integration by parts), we arrive at an evolution
equation for WY [α].

To construct the test operator we define the Wilson lines in accordance with Eqs. (5.43)
and (5.44). The fundamental Wilson line is defined by

V�x⊥ = P exp

⎧⎨
⎩ ig

2

∞∫
−∞

dx−taαa(x−, �x⊥)

⎫⎬
⎭ , (5.65)

while the adjoint Wilson line is

U�x⊥ = P exp

⎧⎨
⎩ ig

2

∞∫
−∞

dx−T aαa(x−, �x⊥)

⎫⎬
⎭ . (5.66)

Following Mueller (2001) we choose the trial operator to be

Ô�x1⊥,�x0⊥ = V�x1⊥ ⊗ V
†
�x0⊥ . (5.67)

This is almost the dipole S-matrix of Eq. (5.45): the operator Ô�x1⊥,�x0⊥ consists of the quark
propagator (Wilson line) V�x1⊥ at �x1⊥ and the antiquark propagator V

†
�x0⊥ at �x0⊥. What is
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x− = 0

x−

Σ
n = 0

∞

1 2 n

Fig. 5.8. Abbreviated notation for the GGM multiple-rescatterings interaction of a projectile
with a nuclear target.

missing is the trace and the average over colors: the symbol ⊗ in Eq. (5.67) underscores
the fact that the color indices of V and V † are fixed (and not summed over):

V�x1⊥ ⊗ V
†
�x0⊥ = (V�x1⊥

)
ij

(
V

†
�x0⊥

)
kl

. (5.68)

We want to derive an evolution equation for Ô�x1⊥,�x0⊥ . Its construction is analogous to
that of the BK equation. The evolution is given by the long-lived s-channel gluons, which
interact with the target over a relatively short period of time. To represent it diagrammatically
we first define an abbreviated notation, in Fig. 5.8. As discussed in Sec. 4.4, the lifetime
of the s-channel gluons, which in our coordinates is x−

coh = k−/k2
⊥, is much longer than

the duration of the GGM multiple-rescatterings interaction of the gluon system with the
nucleus, which is of order 1/p+, with p+ the large light cone momentum of the nucleons.
This should be clear from Fig. 4.23. We now employ this result to define the abbreviated
notation in Fig. 5.8. Since the GGM multiple rescatterings occur over a relatively short time
(compared with the time needed for the development of quantum evolution), we can, for the
purpose of the evolution calculations, include them all in one “instantaneous” interaction
at x− = 0, denoted by the vertical dashed line on the right in Fig. 5.8. Interactions with the
target are summed over for any gluon or quark line crossing the dashed line. We also include
the no-interaction contribution in the sum (the n = 0 term in Fig. 5.8). Note that below we
will sometimes use this dashed-line notation to include successive evolution emissions as
well: owing to the ordering of the s-channel gluons in k− (in the LLA), the lifetimes of the
smaller-k− gluons are shorter and hence they may also appear as instantaneous events to
the larger-k− gluons, which are emitted much earlier and absorbed much later.

Using the notation introduced in Fig. 5.8 we can draw diagrams generating one step of
the evolution of the operator in Eq. (5.67), as shown in Figs. 5.9 and 5.10. Note again that
the dashed line denotes the interaction with the target for any propagator line that it crosses.
Hence diagrams A, B, H, and K in Figs. 5.9 and 5.10 are real, in the sense that in them
the gluon interacts with the target, while the rest of the diagrams are virtual corrections.
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A
B C D

1

0

2

x−

c c

c
d

E F

−∞ 0 +∞

Fig. 5.9. One step of a small-x evolution for the operator V�x1⊥ ⊗ V
†
�x0⊥ with the s-channel

gluon interacting both with the quark and the antiquark Wilson lines.

J K L

G H I

1

0

2

x−

Fig. 5.10. One step of a small-x evolution for the operator V�x1⊥ ⊗ V
†
�x0⊥ ; here an s-channel

gluon is emitted and absorbed solely by either the quark or the antiquark Wilson lines.

The diagrams are grouped into those where the gluon is emitted by the quark and absorbed
by the antiquark or vice versa (Fig. 5.9), and those where the gluon is both emitted and
absorbed only by the quark or only by the antiquark (Fig. 5.10).

We start by analyzing diagrams E and F in Fig. 5.9. The gluon in these graphs does
not interact with the target: hence it has the same color throughout its propagation. The
contribution of these diagrams can be obtained using LCPT methods, similarly to how we
performed the calculations for Mueller’s dipole model. We get

E + F = αs

π2

∫
d2x2 dY

�x21 · �x20

x2
21x

2
20

t cV�x1⊥ ⊗ V
†
�x0⊥ t c. (5.69)

The minus sign due to the coupling to the antiquark, is canceled by the minus sign arising
because the graph is virtual (cf. Eq. (4.64)). The main difference between this result and

https://doi.org/10.1017/9781009291446.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291446.006


220 Classical gluon fields and the color glass condensate

that for dipole evolution is that now our operator is not a dipole, it is V�x1⊥ ⊗ V
†
�x0⊥ without a

color trace: this is why our color matrices t c generated by gluon emission do not multiply
each other and are present explicitly in Eq. (5.69). The placing of the t c comes from the x−

ordering of gluon emission and absorption, taking into account that quark–gluon vertices
must be at x− > 0 since the gluon exchange happens after the quarks scatter at the nucleus.
We also have an integral over the rapidity Y = p′−/k− in Eq. (5.69), with p′− the large
light cone momentum of the quark–antiquark system.

Next let us study diagram A in Fig. 5.9. Its contribution is a little more involved, and
can be written as

A = − αs

π2

∫
d2x2 dY

�x21 · �x20

x2
21x

2
20

Udc
�x2⊥V�x1⊥ t c ⊗ V

†
�x0⊥ td . (5.70)

The expression in Eq. (5.70) consists of the same emission kernel as in Eq. (5.69) and can
be obtained using LCPT. The main difference between (5.70) and (5.69) is due to the fact
that in diagram A the gluon interacts with the target: this is described by the adjoint Wilson
line Udc

�x2⊥ . The gluon colors at the times of emission and absorption do not have to be the
same in this diagram and are labeled c and d, bringing in the color factors t c and td . Finally,
diagram A is “real” (that is, it contains a gluon interacting with the target, of Fig. 4.13) and
hence is different by a minus sign from diagrams E and F.

For reasons that will soon become apparent we would like to cast Eq. (5.70) into the
form of Eq. (5.69). To do so, we use Eq. (5.31) with Eq. (5.33) to write

V taV † = U
†
abt

b, (5.71)

so that

V�x1⊥ t c = U
†ca
�x1⊥ taV�x1⊥ . (5.72)

This, along with Eq. (5.33), allows us to rewrite Eq. (5.70) as

A = − αs

π2

∫
d2x2 dY

�x21 · �x20

x2
21x

2
20

[
U�x1⊥U

†
�x2⊥

]
ab

taV�x1⊥ ⊗ V
†
�x0⊥ tb, (5.73)

where the subscript or superscript positions of the color indices a, b are chosen for conve-
nience only; however, the ordering of the indices is important.

The rest of the calculation is now clear: using Eqs. (5.31), (5.71), and (5.33) we can
write down expressions for the remaining diagrams in Fig. 5.9:

B = − αs

π2

∫
d2x2 dY

�x21 · �x20

x2
21x

2
20

[
U�x2⊥U

†
�x0⊥

]
ab

taV�x1⊥ ⊗ V
†
�x0⊥ tb, (5.74a)

C + D = αs

π2

∫
d2x2 dY

�x21 · �x20

x2
21x

2
20

[
U�x1⊥U

†
�x0⊥

]
ab

taV�x1⊥ ⊗ V
†
�x0⊥ tb. (5.74b)
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The sum of all the graphs in Fig. 5.9 is

A + B + C + D + E + F

= αs

π2

∫
d2x2 dY

�x21 · �x20

x2
21x

2
20

×
[
1 − U�x1⊥U

†
�x2⊥ − U�x2⊥U

†
�x0⊥ + U�x1⊥U

†
�x0⊥

]
ab

taV�x1⊥ ⊗ V
†
�x0⊥ tb, (5.75)

where 1ab = δab.
Now we turn our attention to the diagrams in Fig. 5.10. Using the same group-theoretical

identities, (5.31), (5.71), and (5.33), we obtain

G + H + I = αs

π2

∫
d2x2

x2
21

dY
[
U�x1⊥U

†
�x2⊥ − 1

]
ab

tbtaV�x1⊥ ⊗ V
†
�x0⊥ , (5.76a)

J + K + L = αs

π2

∫
d2x2

x2
20

dY
[
U�x2⊥U

†
�x0⊥ − 1

]
ab

V�x1⊥ ⊗ V
†
�x0⊥ tbta. (5.76b)

To cast our results into a more compact form suitable for deriving JIMWLK evolution
we need to introduce the derivative with respect to the function αa(x−, �x⊥), with α = taαa .
We note that

δ

δαa(y−, �y⊥)
V�x⊥ = ig

2
δ2 (�x⊥ − �y⊥) U

†ab

�y⊥ [∞, y−]tbV�x⊥ (5.77)

where

U�y⊥[∞, y−] = P exp

⎧⎪⎨
⎪⎩

ig

2

∞∫
y−

dx−T aαa(x−, �y⊥)

⎫⎪⎬
⎪⎭ , (5.78)

so that U�y⊥ = U�y⊥ [∞,−∞]. The Wilson lines in our setup are only nontrivial because of
interactions with the target at x− = 0, as shown in Fig. 5.8 in the GGM approximation.
As already mentioned, the same is true for successive small-x evolution, which generates
gluons with much shorter lifetimes than those of the gluon that we are considering at this
evolution step. Hence, if y− > 0 then U�y⊥ [∞, y−] = 1 and

δ

δαa(y−, �y⊥)
V�x⊥ = ig

2
δ2 (�x⊥ − �y⊥) taV�x⊥ , y− > 0. (5.79)

Taking the hermitian conjugate of this result we obtain

δ

δαa(y−, �y⊥)
V

†
�x⊥ = − ig

2
δ2 (�x⊥ − �y⊥) V

†
�x⊥ ta, y− > 0. (5.80)

Using Eqs. (5.79) and (5.80) we can rewrite Eq. (5.75) as

A + · · · + F = αs

2

∫
d2x⊥d2y⊥dYηab

�x⊥ �y⊥

δ2
(
V�x1⊥ ⊗ V

†
�x0⊥

)
δαa(x−, �x⊥)δαb(y−, �y⊥)

, (5.81)
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with

ηab
�x1⊥ �x0⊥ = 4

g2π2

∫
d2x2

�x21 · �x20

x2
21x

2
20

[
1 − U�x1⊥U

†
�x2⊥ − U�x2⊥U

†
�x0⊥ + U�x1⊥U

†
�x0⊥

]ab

(5.82)

for x−, y− > 0. Note that one of the two functional derivatives on the right-hand side of
Eq. (5.81) acts on V and the other acts on V †. Naively one might expect that to obtain
diagrams G through L one has to generalize Eq. (5.81) by allowing that both derivatives
can act on V or that both can act on V †. This is almost correct. However, performing a
detailed calculation one gets

αs

2

∫
d2x⊥d2y⊥dYηab

�x⊥ �y⊥

[
δ2V�x1⊥

δαa(x−, �x⊥)δαb(y−, �y⊥)

]
⊗ V

†
�x0⊥

= αs

π2

∫
d2x2

x2
21

dY
[

1
2U�x1⊥U

†
�x2⊥ + 1

2U�x2⊥U
†
�x1⊥ − 1

]
ab

tbtaV�x1⊥ ⊗ V
†
�x0⊥ , (5.83)

which is different from Eq. (5.76a) by

αs

2π2

∫
d2x2

x2
21

dY
[
U�x1⊥U

†
�x2⊥ − U�x2⊥U

†
�x1⊥

]
ab

tbtaV�x1⊥ ⊗ V
†
�x0⊥

= − αs

2π2

∫
d2x2

x2
21

dYTr
[
T aU�x1⊥U

†
�x2⊥

]
taV�x1⊥ ⊗ V

†
�x0⊥ , (5.84)

where we have used Eq. (5.33) along with the definition of the adjoint generators T a .
Defining

νa
�x1⊥ = i

gπ2

∫
d2x2

x2
21

Tr
[
T aU�x1⊥U

†
�x2⊥

]
, (5.85)

we can write the contribution of diagrams G, H, and I in Eq. (5.76a) as

G + H + I = αs

2

∫
d2x⊥d2y⊥dYηab

�x⊥ �y⊥

[
δ2V�x1⊥

δαa(x−, �x⊥)δαb(y−, �y⊥)

]
⊗ V

†
�x0⊥

+ αs

∫
d2x⊥ dYνa

�x⊥

[
δV�x1⊥

δαa(x−, �x⊥)

]
⊗ V

†
�x0⊥ . (5.86)

Similarly, diagrams J, K, and L from Eq. (5.76b) give

J + K + L = αs

2

∫
d2x⊥d2y⊥dYηab

�x⊥ �y⊥V�x1⊥ ⊗
[

δ2V
†
�x0⊥

δαa(x−, �x⊥)δαb(y−, �y⊥)

]

+ αs

∫
d2x⊥ dYνa

�x⊥V�x1⊥ ⊗
[

δV
†
�x0⊥

δαa(x−, �x⊥)

]
, (5.87)

with x−, y− > 0 throughout.
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Combining Eqs. (5.81), (5.86), and (5.87) we derive an evolution equation for the
operator (5.67) in the LLA:

∂Y 〈Ô�x1⊥,�x0⊥〉Y = αs

2

∫
d2x⊥d2y⊥

〈
ηab

�x⊥ �y⊥
δ2Ô�x1⊥,�x0⊥

δαa(x−, �x⊥)δαb(y−, �y⊥)

〉
Y

+ αs

∫
d2x⊥

〈
νa

�x⊥

δÔ�x1⊥,�x0⊥

δαa(x−, �x⊥)

〉
Y

, (5.88)

where ηab
�x1⊥ �x0⊥ and νa

�x1⊥ are given by Eqs. (5.82) and (5.85) respectively.

We have obtained Eq. (5.63) in an explicit form for the test operator Ô�x1⊥,�x0⊥ . Using
Eq. (5.64) and integrating by parts, we can recast Eq. (5.88) as∫

DαÔ�x1⊥,�x0⊥∂Y WY [α]

=
∫

DαÔ�x1⊥,�x0⊥

{
αs

2

∫
d2x⊥d2y⊥

δ2

δαa(x−, �x⊥)δαb(y−, �y⊥)

(
ηab

�x⊥ �y⊥WY [α]
)

− αs

∫
d2x⊥

δ

δαa(x−, �x⊥)

(
νa

�x⊥WY [α]
) }

. (5.89)

Equation (5.89) is valid for any operator Ô�x1⊥,�x0⊥ with arbitrary transverse positions �x1⊥, �x0⊥
and for any quark colors. Following the above steps, one may derive the same equation
for an operator constructed from two adjoint Wilson lines. This derivation can be repeated
for an operator constructed from an arbitrary number of fundamental and adjoint Wilson
lines, resulting again in Eq. (5.89). We see that the equation is valid for a broad class of
test operators. We can therefore equate the integrands on both sides of (5.89) to obtain the
Jalilian-Marian–Iancu–McLerran–Weigert–Leonidov–Kovner (JIMWLK) evolution equa-
tion (Jalilian-Marian et al. 1997b, 1999a, b, Iancu, Leonidov, and McLerran 2001a, b,
Weigert 2002, Ferreiro et al. 2002):

∂Y WY [α] =αs

2

∫
d2x⊥d2y⊥

δ2

δαa(x−, �x⊥)δαb(y−, �y⊥)

(
ηab

�x⊥ �y⊥WY [α]
)

− αs

∫
d2x⊥

δ

δαa(x−, �x⊥)

(
νa

�x⊥WY [α]
)
. (5.90)

This is a differential equation for the weight functional WY [α], the Gaussian form of the
functional (5.19) serving as its initial condition. This equation resums all powers of αsY ,
and the Gaussian initial condition resums all classical physic effects (powers of α2

s A
1/3).

(As before we have x−, y− > 0.)
Owing to its complexity, no analytic solution of the JIMWLK equation exists. Its solution

has been obtained only numerically, using lattice gauge theory methods (Rummukainen
and Weigert 2004).

Returning to operators Ô constructed from the fundamental and/or adjoint Wilson lines
(5.65) and (5.66), we see that the JIMWLK evolution for the expectation value of any such
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operator reduces to Eq. (5.88):

∂Y 〈Ô〉Y = αs

2

∫
d2x⊥d2y⊥

〈
ηab

�x⊥ �y⊥
δ2Ô

δαa(x−, �x⊥)δαb(y−, �y⊥)

〉
Y

+ αs

∫
d2x⊥

〈
νa

�x⊥
δÔ

δαa(x−, �x⊥)

〉
Y

. (5.91)

The diagrammatic representation of the JIMWLK operator evolution (5.91) is again given
by diagrams of the types shown in Figs. 5.9 and 5.10, with s-channel gluon emissions from
all the Wilson lines involved; thus we see that the JIMWLK evolution is driven by the same
physics as the dipole BK evolution but provides an all-Nc generalization of the large-Nc

BK equation. We will show how to obtain BK from JIMWLK in the next section.
Equation (5.91) can be recast in a more compact form if one notices that

1

2

δ

δαa(x−, �x⊥)
ηab

�x⊥ �y⊥ = δ2(�x⊥ − �y⊥)νb
�x⊥ , (5.92)

which reduces Eq. (5.91) to the Fokker–Planck form (Weigert 2002)

∂Y 〈Ô〉Y = αs

2

∫
d2x⊥d2y⊥

〈
δ

δαa(x−, �x⊥)
ηab

�x⊥ �y⊥
δ

δαb(y−, �y⊥)
Ô

〉
Y

. (5.93)

The JIMWLK equation for operators, in the form (5.91) or (5.93), allows one to construct the
usual integro-differential evolution equation for any operator consisting of Wilson lines.
This is a great strength of the JIMWLK approach: one can construct small-x evolution
equations, bypassing diagrammatic analysis, and simply differentiate the operators with
respect to αa .

5.2.3 Obtaining BK from JIMWLK and the Balitsky hierarchy

In this section we are going to show that the Balitsky–Kovchegov equation is obtained
by the CGC (JIMWLK) approach in the limit of a large number of colors (Nc � 1). As
demonstrated above (see Eq. (5.45)), the S-matrix for dipole–nucleus scattering is closely
related to the operator Ô�x1⊥,�x0⊥ of Eq. (5.67). Define the S-matrix operator

Ŝ�x1⊥,�x0⊥ = 1

Nc

tr
[
V�x1⊥V

†
�x0⊥

]
(5.94)

with V defined in Eq. (5.65). The S-matrix (5.45) is then given by

S(�x1⊥, �x0⊥, Y ) = 〈Ŝ�x1⊥,�x0⊥〉Y . (5.95)

Substituting the operator (5.94) into Eq. (5.91) involves a considerable amount of algebra,
which can be navigated by employing Eqs. (5.31) and (5.71), along with the Fierz identities

(ta)ij (ta)kl = 1

2

(
δilδjk − 1

Nc

δij δkl

)
, (5.96)
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which imply that

tr
[
taM1t

aM2
] = 1

2
tr M1 tr M2 − 1

2Nc

tr[M1M2] , (5.97a)

tr
[
taM1

]
tr
[
taM2

] = 1

2
tr[M1M2] − 1

2Nc

tr M1tr M2, (5.97b)

for any Nc × Nc matrices M1,M2. In the end one obtains

∂Y

〈
Ŝ�x1⊥,�x0⊥

〉
Y

= ᾱs

2π

∫
d2x2

x2
10

x2
20x

2
21

[〈
Ŝ�x1⊥,�x2⊥ Ŝ�x2⊥,�x0⊥

〉
Y

− 〈Ŝ�x1⊥,�x0⊥
〉
Y

]
, (5.98)

which looks very similar to the BK equation (4.137). The difference is in the first (nonlinear)
term on the right-hand side of Eq. (5.98): to transform Eq. (5.98) into Eq. (4.137) one has
to make the replacement〈

Ŝ�x1⊥,�x2⊥ Ŝ�x2⊥,�x0⊥
〉
Y

−→ 〈Ŝ�x1⊥,�x2⊥
〉
Y

〈
Ŝ�x2⊥,�x0⊥

〉
Y
. (5.99)

Such a replacement is only justified in the large-Nc limit: clearly each Ŝ is a single-trace
operator and corresponds to a quark loop (a dipole). Cross talk between the loops (dipoles)
corresponds to nonplanar diagrams and, therefore, is Nc-suppressed at large Nc. Hence, for
large-Nc, Eq. (5.98) reduces to the BK equation (4.137) (Weigert 2002, Kovner, Milhano,
and Weigert 2000).

Since in the linearized regime the BK equation reduces to the BFKL equation, we can
also conclude that BFKL evolution is obtained from JIMWLK in the linear regime outside
the saturation region.

Outside the large-Nc limit Eq. (5.98) is not a closed equation, i.e., its right-hand side
contains a quantity 〈Ŝ�x1⊥,�x2⊥ Ŝ�x2⊥,�x0⊥〉Y and we do not know how to express this in terms of
〈Ŝ�x1⊥,�x0⊥〉Y . This quantity 〈Ŝ�x1⊥,�x2⊥ Ŝ�x2⊥,�x0⊥〉Y is a new four-Wilson-line operator, for which
one has to write down a separate evolution equation, again using Eq. (5.91). This evolution
equation in turn contains on its right-hand side an operator with six fundamental Wilson
lines, which would require its own evolution equation, etc. The result of applying the
JIMWLK evolution (5.91) to all these operators would be an infinite set of evolution equa-
tions, in each of which the evolution of the n-Wilson-line operator would be driven by an
(n + 2)-Wilson-line operator. This infinite system of equations is called the Balitsky hier-
archy (Balitsky 1996, 1999a, b). The large-Nc limit truncates the Balitsky hierarchy at the
lowest order, making Eq. (5.98) a closed (BK) equation. Other, perhaps less parametrically
justified, truncations have been proposed (see Weigert 2005). While, just as for JIMWLK,
no analytical solution of the Balitsky hierarchy of equations exists, numerical studies of
JIMWLK in principle allow one to determine the evolution of these multi-Wilson-line
operators with rapidity.

An interesting question concerns the importance of the 1/Nc corrections to BK evolu-
tion. Their size can be found by comparing the expectation value of the S-matrix oper-
ator 〈Ŝ�x1⊥,�x0⊥〉Y obtained from the numerical solution of the full JIMWLK equation with
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Fig. 5.11. The gluon field due to one ultrarelativistic quark.

that for the S-matrix resulting from solving the BK equation for the same initial condi-
tions. We know that for gluon-driven dynamics the 1/Nc corrections are usually of order
1/N2

c ≈ 11%. However, saturation effects tend to play an important role in suppressing
the 1/Nc corrections. It has been shown by explicit numerical solution of JIMWLK that
the corrections to 〈Ŝ�x1⊥,�x0⊥〉Y as compared with those for the BK case are actually close to
0.1% (Rummukainen and Weigert 2004, Kovchegov et al. 2009), which is two orders of
magnitude smaller than the naive estimate above.

We wish to finish this chapter with a general remark: the color glass condensate gives us a
beautiful example of how one can develop an effective theory starting from only a handful
of physical assumptions. This theory is rather complex but it leads to new fundamental
insights about our microscopic theory, QCD, in high energy scattering.

Further reading

In our presentation in this chapter we have tried to give the simplest possible derivations
of the main results of the CGC formalism. We hope that the reader who wants to learn
more on this subject will be able to read the original papers after reading this chapter.
Many aspects of both CGC physics and the relevant derivations have been discussed in
the reviews by McLerran (2005, 2008, 2009b), Iancu and Venugopalan (2003), Weigert
(2005), Jalilian-Marian and Kovchegov (2006), and Gelis et al. (2010). In these reviews the
theoretical topics are discussed together with practical applications and some challenges for
further thinking are given. The relationship between JIMWLK evolution written in terms
of derivatives with respect to the field α as opposed to the originally used color charge
density ρ was explored by Kovner and Milhano (2000). For extended versions of the CGC
formalism we recommend four papers of Kovner and Lublinsky (2005a–d) and the paper
of Hatta et al. (2006).

Exercises

5.1 (a) Construct diagrammatically the gluon field of a single ultrarelativistic quark in
the ∂μAμ = 0 covariant gauge, which contributed to Eq. (5.11). Begin with the
diagram in Fig. 5.11, where the gluon line is off mass shell. Show that the field in
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momentum space is3

Aa
μ(k) = −ig(tai )

−igμν

k2 + iε
ūσ (p − k)γ νuσ ′(p)(2π )δ

(
(p − k)2

)
, (5.100)

where the delta function insures that the outgoing quark is on mass shell (the quark
is assumed to be massless). Simplify Eq. (5.100) using the fact that p+ is very
large and employing Table A.1.

(b) Fourier-transform the result of part (a) into coordinate space using

Aa
μ(x) =

∫
d4k

(2π )4
e−ik·(x−xi )Aa

μ(k). (5.101)

You should obtain (suppressing the quark polarization indices)

Aa+
cov = − g

π
(tai )δ(x− − x−

i ) ln (|�x⊥ − �xi⊥|�) (5.102)

as the only nonzero field component. (You may find Eq. (A.9) useful.)
(c) Repeat the calculation from parts (a) and (b) in the A+ = 0 light cone gauge.

5.2 Prove Eq. (5.31).

5.3 Using Eqs. (A.10) and (A.9) prove Eq. (5.49).

5.4 Neglecting the logarithm in the exponent of Eq. (5.51), integrate Eq. (5.50) over �r⊥
exactly to obtain an approximate expression for the unintegrated WW gluon distribution
φWW . Simplify the answer further by assuming that the nucleus is a cylinder oriented
along the z-axis, so that QsG(�b⊥) = QsGθ (R − b) and the �b⊥-integration is trivial.
Plot the expression obtained for kT φWW as a function of kT /QsG and compare the
curve with Fig. 5.7.

5.5 Prove Eq. (5.92) by direct differentiation.

5.6 Substitute Eq. (5.94) into Eq. (5.91) and take the functional derivatives to show explic-
itly that one arrives at Eq. (5.98).

3 The extra minus sign is due to the fact that the current in Eq. (5.4) is given by J a
μ = −gψ̄γμtaψ , which can be seen by

comparing it with the QCD Lagrangian (1.1).
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