SINGULARITY OF MONOMIAL CURVES IN A ${ }^{3}$ AND GORENSTEIN MONOMIAL CURVES IN A ${ }^{4}$

JÜRGEN KRAFT

Let $2 \leqq s \in \mathbf{N}$ and $\left\{n_{1}, \ldots, n_{s}\right\} \subseteq \mathbf{N}^{*}$. In 1884, J. Sylvester [13] published the following well-known result on the singularity degree δ of the monomial curve whose corresponding semigroup is $S:=\left\langle n_{1}, \ldots, n_{s}\right\rangle$: If $s=2$, then

$$
\delta=\frac{1}{2}\left(n_{1}-1\right)\left(n_{2}-1\right)
$$

Let $K:=-\mathbf{Z} \backslash S$ and

$$
a_{i}:=\min \left\{a \in \mathbf{N}^{*} \mid a n_{i} \in \sum_{j \neq i} \mathbf{N} \cdot n_{j}\right\}
$$

for all $1 \leqq i \leqq s$. We introduce the invariant

$$
\kappa:=\operatorname{card} K \backslash S-\operatorname{card} S \backslash K=2 \delta-1
$$

of S involving a correction term to the Milnor number 2δ [4] of S. As a modified version and extension of Sylvester's result to all monomial space curves, we prove the following theorem: If $s=3$, then

$$
\kappa=\left(a_{1}-1\right) n_{1}+\left(a_{2}-1\right) n_{2}+\left(a_{3}-1\right) n_{3}-a_{1} a_{2} a_{3} .
$$

We prove similar formulas for $s=4$ if S is symmetric.
0. Basic invariants of monomial curves. Let A be a field and B a monomial curve over A in $\mathbf{A}^{s}, s \in \mathbf{N}^{*}$; that is, there exists a set $\left\{n_{1}, \ldots, n_{s}\right\} \subseteq \mathbf{N}^{*}$ with $\operatorname{gcd}\left(n_{1}, \ldots, n_{s}\right)=1$ such that

$$
B \cong A\left[\left[X_{1}, \ldots, X_{s}\right]\right] / \mathfrak{B}
$$

where

$$
\begin{aligned}
& \mathfrak{B}:=\operatorname{ker}\left(A\left[X_{1}, \ldots, X_{s}\right] \rightarrow C:=A[[S]]\right) \\
& X_{i} \mapsto t^{n_{i}},
\end{aligned}
$$

and S is the numerical semigroup

[^0]$$
\left\langle n_{1}, \ldots, n_{s}\right\rangle:=\mathbf{N} n_{1}+\ldots+\mathbf{N} n_{s} .
$$

Let Φ denote the isomorphism

$$
\text { Quot } B \xrightarrow[\rightarrow]{\sim} \text { Quot } C
$$

induced by $B \xrightarrow{\sim} C$. As usual, we call

$$
d:=d(B)=d(S)=\mu(\mathfrak{B})-\operatorname{codim} \mathfrak{B}
$$

the deviation of B (of S), and

$$
m:=m(B)=m(S)=\min \left\{n_{1}, \ldots, n_{s}\right\}
$$

the multiplicity of B (of S).
If $I \subseteq \mathbf{Z}$, then I is called a fractional S-ideal if and only if $I \neq \emptyset$ and $S+I \subseteq I$ (cf. [8]). For a fractional S-ideal I let

$$
G(I)=I \backslash(M+I)
$$

denote the (unique) minimal system of generators of I and define

$$
\mu(I):=\operatorname{card} G(I) .
$$

Further let

$$
I-J:=\{z \in \mathbf{Z} \mid z+J \subseteq I\}
$$

for a fractional S-ideal $J, I^{-1}:=S-I$, and $I^{\vee}:=-\mathbf{Z} \backslash I$.
Fundamental fractional S-ideals are S, the maximal ideal $M:=M(S)$:
$=S \backslash\{0\}, M^{-1}$, and the canonical ideal $K:=K(S):=S^{\vee}$. Let

$$
\begin{aligned}
r: & =r(B)=r(S)=\operatorname{dim}_{A} \mathfrak{m}_{B}^{-1} / B \\
& =\operatorname{dim}_{A} \mathfrak{m}_{B}^{-1} /\left(\mathfrak{m}_{B}^{-1} \cap B\right)-\operatorname{dim}_{A} B /\left(B \cap \mathfrak{m}_{B}^{-1}\right)
\end{aligned}
$$

denote the type of B (of S). The canonical ideal

$$
\Phi^{-1}\left(\sum_{x \in K} A t^{x}\right)
$$

of B we will shortly denote by \mathfrak{f}.
Here we will also be interested in the invariant

$$
\begin{aligned}
\kappa: & =\kappa(B):=\kappa(S):=\operatorname{dim}_{A} \mathfrak{f} /(\mathfrak{f} \cap B)-\operatorname{dim}_{A} B /(B \cap \mathfrak{f}) \\
& =\operatorname{card} K \backslash S-1
\end{aligned}
$$

of B (of S), which we will use as a measure of the singularity of B. Note that $\kappa+1$ is the Milnor number [4] and $\frac{1}{2}(\kappa+1)$ is the singularity degree of B. We have

$$
\begin{aligned}
& r(B)=1 \Leftrightarrow B \text { is Gorenstein, } \\
& d(B)=0 \Leftrightarrow B \text { is a complete intersection, and } \\
& \kappa(B)=-1 \Leftrightarrow B \text { is regular. }
\end{aligned}
$$

For us, the study of the singularity of B is the study of $\mathfrak{f} /(f) B)$ and the computation of $\kappa(B)$ in terms of a minimal system of generators of \mathfrak{B}. By computing a basis of $\mathfrak{m}_{B}^{-1} / B$, we will be able to achieve our goal in case $s=3$ (Section 1) and in case $s=4$ if B is Gorenstein (Section 2). Let

$$
z^{<}:=\min M^{-1} \backslash S \quad \text { and } \quad z^{>}:=\max M^{-1} \backslash S
$$

Denote $z^{<}$and $z^{>}$by z if B is Gorenstein. Note that $z^{>}+1$ is the conductor of S.

Proposition 1. If $S \subset \mathbf{N}$, then $M^{-1} \subseteq \mathbf{N}$ is also a numerical semigroup. Moreover, S is of the form \widetilde{M}^{-1} for some numerical subsemigroup \widetilde{S} of S, which, if $S \subset \mathbf{N}$, can be chosen to have the same multiplicity as S.

Proof. Let $S \subset \mathbf{N}$ and take $\widetilde{S}:=\{0\} \cup(S+m) \subseteq S$. Then

$$
\tilde{M}^{-1}=\{z \in \mathbf{Z} \mid z+(S+m) \subseteq \widetilde{S}\} \supseteq S
$$

On the other hand $z \in \widetilde{M}^{-1}$ implies $z+m=0$ or $z+m=s+m$ for some $s \in S$, and hence $z \in S$. But $z=-m<0$ is not possible, because $\widetilde{M}^{-1} \subseteq \mathbf{N}$. Therefore $S=\widetilde{M}^{-1}$.

PROPOSItion 2. $G(K)=-M^{-1} \backslash S$.
Proof.

$$
\begin{aligned}
G(K)=\{-y \mid y \in \mathbf{Z} \backslash S & \text { and there does not exist an } s \in M \text { such } \\
& \text { that }-y=s+(-x) \text { for some } x \in \mathbf{Z} \backslash S\} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
-G(K) & =\{y \in \mathbf{Z} \backslash S \mid y+s \in S \text { for all } s \in M\} \\
& =M^{-1} \backslash S
\end{aligned}
$$

Corollary. $\mathbf{Z} \backslash S=\bigcup_{y \in M^{-} \backslash S}\{y-s \mid s \in S\}$.
In particular, $\mu(K)=1$ if and only if S is symmetric (cf. [6] for the definition of a symmetric numerical semigroup).

If char $A=0$, then using a theorem of Seidenberg [12], one has

$$
\mathrm{m}_{B}^{-1} \cong \operatorname{Der}_{A} B \xrightarrow{\leftrightarrows} \operatorname{Der}_{A} C=\sum_{d \in M^{-1}} A t^{d+1} \frac{\partial}{\partial t},
$$

$t^{d+1} \frac{\partial}{\partial t}$ being homogeneous of degree d. If $S \subset \mathbf{N}$, then $M^{-1} \subseteq \mathbf{N}$, so that
the scalar multiples of the Euler derivation $t \frac{\partial}{\partial t}$ of C are the only homogeneous derivations of C of weight $\leqq 0$ ([10], also [14]; concerning this, J. Wahl [14] proves a theorem for surfaces). We have

$$
\operatorname{Der}_{A} C=\sum_{d \in G\left(M^{-1}\right)} C t^{d+1} \frac{\partial}{\partial t},
$$

where $\left\{\left.t^{d+1} \frac{\partial}{\partial t} \right\rvert\, d \in G\left(M^{-1}\right)\right\}$ is a minimal system of generators of $\operatorname{Der}_{A} C$, and hence

$$
\mu\left(\operatorname{Der}_{A} C\right)=\mu\left(M^{-1}\right)
$$

Further

$$
\left[t^{d+1} \frac{\partial}{\partial t}, t^{d^{\prime}+1} \frac{\partial}{\partial t}\right]=\left(d+d^{\prime}\right) t^{d+d^{\prime}+1} \frac{\partial}{\partial t} \quad \text { for all } d, d^{\prime} \in M^{-1} .
$$

In particular

$$
\left[t \frac{\partial}{\partial t}, t^{d+1} \frac{\partial}{\partial t}\right]=d t^{d+1} \frac{\partial}{\partial t} \quad \text { for all } d \in M^{-1} .
$$

If $S \subset \mathbf{N}$, then Proposition 2 shows

$$
G\left(M^{-1}\right)=\{0\} \cup M^{-1} \backslash S=-G(K) \cup\{0\}
$$

and hence $\mu\left(M^{-1}\right)=r+1$, and as 0 corresponds to $t \frac{\partial}{\partial t}$, this means that the minimal generators of M^{-1} (the Euler derivation taken out) are reflected to the minimal generators of the canonical ideal K. This illustrates the distinguished role the Euler derivation plays among the elements of a minimal system of generators of $\mathrm{Der}_{A} B$.

Proposition 3. S is symmetric if and only if $z^{<}=z^{>}$, that is, $\mu\left(M^{-1}\right) \leqq 2$. In this case

$$
\operatorname{Der}_{A} C=C t \frac{\partial}{\partial t}+C t^{z+1} \frac{\partial}{\partial t}=C t \frac{\partial}{\partial t}+A t^{z+1} \frac{\partial}{\partial t}
$$

if $\operatorname{char} A=0$.
Proof. " \Rightarrow " is true, because $z^{>}-z^{<} \in M$ implies

$$
z^{>}=z^{<}+\left(z^{>}-z^{<}\right) \in S,
$$

and " \Leftarrow " because of the corollary (cf. [6], [10]).

1. Singularity of monomial curves in $\mathbf{A}^{\mathbf{3}}$. For the computation of a basis of $\mathfrak{m}_{B}^{-1} / B$, one needs the important invariants of S

$$
a_{i}:=\min \left\{a \in \mathbf{N}^{*} \mid a n_{i} \in \sum_{\substack{j=1 \\ j \neq i}}^{s} \mathbf{N} \cdot n_{j}\right\}, \quad 1 \leqq i \leqq s,
$$

for $s>1$, which were introduced by S. Johnson [9]. (Let $a_{1}:=1$ if $s=1$.) Theorems 1, 2, and 3 were essentially known to him; however, he did not take the ideal-theoretic point of view and did not distinguish clearly the cases I and II of the following theorem. This was later done by J. Herzog [6].

Theorem 1 (Relations of monomial curves in $\mathbf{A}^{\mathbf{3}}$). If $s=3$, then precisely one of the following two cases does occur:
(I) $\mathfrak{B}=\left(X_{i}^{a_{i}}-X_{j}^{a_{j}}, X_{k}^{a_{k}}-X_{i}^{a_{k i}} X_{j}^{a_{k j}}\right)$
for some $(i, j, k) \in S_{3}$ and some $a_{k i}, a_{k j} \in \mathbf{N} ; d=0$.
(II) $\mathfrak{B}=\left(X_{1}^{a_{1}}-X_{2}^{a_{12}} X_{3}^{a_{13}}, X_{2}^{a_{2}}-X_{3}^{a_{23}} X_{1}^{a_{21}}, X_{3}^{a_{3}}-X_{1}^{a_{31}} X_{2}^{a_{32}}\right)$
with unique $a_{12}, a_{13}, a_{23}, a_{21}, a_{31}, a_{32} \in \mathbf{N}^{*}$ having the property

$$
a_{i}=a_{j i}+a_{k i} \text { for all }(i, j, k) \in S_{3} ; d=1
$$

Definition. Let \mathfrak{J} be a graded fractional B-ideal and $x \in \mathfrak{F}$ a fractional monomial in x_{1}, \ldots, x_{s}. Then we will call the unique basis $\omega_{x}(\mathfrak{s})$ of $\mathfrak{s} / B x$, consisting of residue classes of fractional monomials in x_{1}, \ldots, x_{s}, the Apéry-basis of $\tilde{\Im}$ with respect to x. Let $\omega_{x}:=\omega_{x}(B)$ for all $x \in B$.

Theorem 2 (Weights of monomial curves in \mathbf{A}^{3}). Let $s=3$. Then in case

$$
\begin{align*}
& \text { (I) } n_{i}=a_{j} a_{k}, n_{j}=a_{k} a_{i}, \quad \text { and } \quad n_{k}=a_{i} a_{k j}+a_{k i} a_{j}, \tag{I}\\
& \text { (II) } n_{i}=a_{j} a_{k}-a_{k j} a_{j k} \text { for all }(i, j, k) \in S_{3} .
\end{align*}
$$

Proof. The Apéry-bases of B with respect to x_{1}, \ldots, x_{s} look as follows.

In case I one has

$$
A\left[\left[X_{h}, X_{k}\right]\right] /\left(X_{h}^{a_{h}}, X_{k}^{a_{k}}\right) \cong B / B x_{g} \xrightarrow{\leftrightarrows} A[[S]] /\left(t^{n_{g}}\right)
$$

for all $\{g, h\}=\{i, j\}$. Hence

$$
\omega_{x_{g}}=\left\{\left(x_{h}^{\beta} x_{k}^{\gamma}\right)^{-} \mid 0 \leqq \beta \leqq a_{h}-1 \text { and } 0 \leqq \gamma \leqq a_{k}-1\right\}
$$

for all $\{g, h\}=\{i, j\}$, and therefore $n_{i}=a_{j} a_{k}$ and $n_{j}=a_{k} a_{i}$ (and $\left.n_{k}=a_{k i} a_{j}+a_{k j} a_{i}\right)$.

As for $\omega_{x_{k}}$, note that

$$
A\left[\left[X_{i}, X_{j}\right]\right] /\left(X_{i}^{a_{i}}-X_{j}^{a_{j}}, X_{i}^{a_{k}} X_{j}^{a_{k j}}\right) \cong B / B x_{k} \xrightarrow{\sim} A[[S]] /\left(t^{n_{k}}\right)
$$

and hence

$$
\begin{aligned}
\omega_{x_{k}} & =\left\{\left(x_{i}^{\alpha} x_{j}^{\beta}\right)^{-} \mid 0 \leqq \alpha \leqq a_{i}-1 \text { and } 0 \leqq \beta \leqq a_{k j}-1\right\} \\
& \cup\left\{\left(x_{i}^{\alpha} x_{j}^{\beta}\right)^{-} \mid 0 \leqq \alpha \leqq a_{k i}-1\right. \\
& \left.\quad \text { and } a_{k j} \leqq \beta \leqq a_{j}+a_{k j}-1\right\} .
\end{aligned}
$$

Therefore $n_{k}=a_{i} a_{k j}+a_{k i} a_{j}$.
In case II one has

$$
A\left[\left[X_{j}, X_{k}\right]\right] /\left(X_{j}^{a_{i j}} X_{k}^{a_{i k}}, X_{j}^{a_{j}}, X_{k}^{a_{k}}\right) \xrightarrow{\leftrightarrows} A[[S]] /\left(t^{n_{i}}\right)
$$

for all $(i, j k) \in S_{3}$. Hence

$$
\begin{aligned}
\omega_{x_{i}} & =\left\{\left(x_{j}^{\beta} x_{k}^{\gamma}\right)^{-} \mid 0 \leqq \beta \leqq a_{i j}-1 \text { and } 0 \leqq \gamma \leqq a_{i k}-1\right\} \\
& \cup\left\{\left(x_{j}^{\beta} x_{k}^{\gamma}\right)^{-} \mid 0 \leqq \beta \leqq a_{i j}-1 \text { and } a_{i k} \leqq \gamma \leqq a_{k}-1\right\} \\
& \cup\left\{\left(x_{j}^{\beta} x_{k}^{\gamma}\right) \mid a_{i j} \leqq \beta \leqq a_{j}-1 \text { and } 0 \leqq \gamma \leqq a_{i k}-1\right\}
\end{aligned}
$$

for all $(i, j, k) \in S_{3}$, and therefore

$$
n_{i}=a_{j} a_{i k}+a_{i j} a_{k}-a_{i j} a_{i k} \quad \text { for all }(i, j, k) \in S_{3} .
$$

In case II, for all $(i, j, k) \in S_{3}$ the integers

$$
\alpha_{i j}:=a_{i j} n_{j}-a_{j i} n_{i} \quad \text { and } \quad z_{i j}:=a_{k i} n_{i}+a_{j} n_{j}-n_{1}-n_{2}-n_{3}
$$

depend only on $\operatorname{sign}(i, j, k)$. Hence $a:=\left|\alpha_{i j}\right|$ is completely independent of $(i, j, k) \in S_{3}$, and one gets two numbers $z^{+}:=z_{i j}$ and $z^{-}:=z_{j i}$ for any $(i, j, k) \in A_{3}$.

Theorem $3\left(\mathrm{~m}^{-1} / B\right.$ for monomial curves in $\left.\mathbf{A}^{3}\right)$. Let $s=3$. Then in case
(I) $\mathrm{m}_{B}^{-1} / B=A\left(x_{l}^{a_{l}} x_{k}^{a_{k}} / x_{1} x_{2} x_{3}\right)^{-} \cong A t^{2}$
with

$$
z=a_{l} n_{l}+a_{k} n_{k}-n_{1}-n_{2}-n_{3} \quad \text { for all } l \in\{i, j\} ; r=1
$$

(II) $\quad \mathfrak{m}_{B}^{-1} / B=A\left(x_{i}^{a_{k i}} x_{j}^{a_{j}} / x_{1} x_{2} x_{3}\right)^{-}+A\left(x_{j}^{a_{k j}} x_{i}^{a_{i}} / x_{1} x_{2} x_{3}\right)^{-}$

$$
\cong A t^{2^{+}}+A t^{2^{-}} \text {for all }(i, j, k) \in A_{3}, \text { and }
$$

$$
z^{<}=\min \left\{z^{+}, z^{-}\right\}=z^{>}-a
$$

with

$$
z^{>}=\max \left\{z^{+}, z^{-}\right\} ; r=2
$$

Proof. Using the notation of the proof of Theorem 2, we see that in case I we have

$$
\left\{\left(x_{h}^{a_{h}-1} x_{k}^{a_{k}-1}\right)^{-}\right\}
$$

as A-basis of the socle of $B / B x_{g}$, and in case II we have

$$
\left\{\left(x_{j}^{a_{j j}-1} x_{k}^{a_{k}-1}\right)^{-},\left(x_{j}^{a_{j}-1} x_{k}^{a_{i k}-1}\right)^{-}\right\}
$$

as A-basis of the socle of $B / B x_{i}$. As for all $b \in B,(\bar{x} \mapsto \overline{x / b}), x \in B$, gives an isomorphism of the socle of $B / B b$ and $m_{B}^{-1} B$, we get the assertion.

Let e denote the Euler derivation $\sum_{i=1}^{s} n_{i} x_{i} \frac{\partial}{\partial x_{i}}$ of B. Assuming char $A=0$, we can also write Theorem 3 as

Theorem 3^{\prime} (Module of derivations of monomial curves in \mathbf{A}^{3}). Let $s=3$. Then in case
(I) $\operatorname{Der}_{A} B=B e+B\left(n_{g} x_{h}^{a_{h}-1} x_{k}^{a_{k}-1} \frac{\partial}{\partial x_{g}}+n_{h} x_{g}^{a_{g}-1} x_{k}^{a_{k}-1} \frac{\partial}{\partial x_{h}}\right.$

$$
\left.+n_{k} x_{g}^{a_{k g}-1} x_{h}^{a_{h}+a_{k h}-1} \frac{\partial}{\partial x_{k}}\right) \cong C t \frac{\partial}{\partial t}+C t^{z+1} \frac{\partial}{\partial t}
$$

for all $\{g, h\}=\{i, j\}$ such that $a_{k g} \neq 0$.
(II) $\operatorname{Der}_{A} B=B e+B \sum_{\substack{(i, j, k) \in S_{3} \\ \operatorname{sign}(i, j, k)=+1}} n_{i} x_{j}^{a_{i j-1}} x_{k}^{a_{k}-1} \frac{\partial}{\partial x_{i}}$

$$
\begin{aligned}
& +B \sum_{\substack{(i, j, k) \in S_{3} \\
\operatorname{sign}(i, j, j, k)=-1}} n_{i} x_{j}^{a_{i j-1}} x_{k}^{a_{k}-1} \frac{\partial}{\partial x_{i}} \\
& \cong C t \frac{\partial}{\partial t}+C t^{z^{+}+1} \frac{\partial}{\partial t}+C t^{z^{-}+1} \frac{\partial}{\partial t} . \\
& {\left[t^{<+1} \frac{\partial}{\partial t}, t^{z^{>}+1} \frac{\partial}{\partial t}\right]=a t \Sigma_{i}^{3}\left(a_{i}-2\right) n_{i}+1 \frac{\partial}{\partial t}} \\
& =a x_{1}^{a_{1}-1} x_{2}^{a_{2}-2} x_{3}^{a_{3}-2} e .
\end{aligned}
$$

Remark 1. Note that in the complete intersection cases the derivations $t^{z+1} \frac{\partial}{\partial t}$ can be written as determinants called "trivial derivations" by J. Wahl [14].

Corollary 1 (Canonical ideal of monomial curves in \mathbf{A}^{3}). Let $s=3$. Then in case
(I) $\mathfrak{f}=B\left(x_{1} x_{2} x_{3} / x_{l}^{a_{l}} x_{k}^{a_{k}}\right) \cong C t^{-z}$ for all $l \in\{i, j\}$.
(II)

$$
\begin{aligned}
\mathfrak{f} & =B\left(x_{1} x_{2} x_{3} / x_{i}^{a_{k i}} x_{j}^{a_{j}}\right)+B\left(x_{1} x_{2} x_{3} / x_{j}^{a_{k}} x_{i}^{a_{i}}\right) \\
& \cong C t^{-z^{+}}+C t^{-z^{-}} \text {for all }(i, j, k) \in A_{3} .
\end{aligned}
$$

Proof. See Theorem 3 and Proposition 2.
Corollary 2. Let $s=3$. Then in case

$$
\begin{align*}
z= & a_{1} a_{2} a_{3}+\left(a_{i} a_{k j}+a_{k i} a_{j}\right) a_{k}-a_{j} a_{k}-a_{k} a_{i}-\left(a_{i} a_{k j} a_{k i} a_{j}\right), \tag{I}\\
z^{+} & =a_{1} a_{2} a_{3}+a_{31} a_{12} a_{23} \\
& -\left(a_{2} a_{13}+a_{12} a_{23}\right)-\left(a_{3} a_{21}+a_{23} a_{31}\right)-\left(a_{1} a_{32}+a_{31} a_{12}\right), \\
z^{-} & =a_{1} a_{2} a_{3}+a_{21} a_{32} a_{13} \\
& -\left(a_{3} a_{12}+a_{13} a_{32}\right)-\left(a_{1} a_{23}+a_{21} a_{13}\right)-\left(a_{2} a_{31}+a_{32} a_{21}\right),
\end{align*}
$$

and

$$
a=\left|a_{31} a_{12} a_{23}-a_{21} a_{32} a_{13}\right|
$$

Proof. See Theorem 3 and Theorem 2.
Remark 2. Note that the determination of $z^{>}$was a problem posed by G. Frobenius occasionally in his lectures (cf. [5, C7] for references).

We now come to the modified version and extension of a result of J. Sylvester [13] on the singularity degree of numerical semigroups generated by two elements.

THEOREM 4 (Singularity of monomial curves in \mathbf{A}^{3}). Let $s=3$. Then in case
(I) $\kappa=a_{1} a_{2} a_{3}+\left(a_{i} a_{k j}+a_{k i} a_{j}\right) a_{k}-a_{j} a_{k}-a_{k} a_{i}-\left(a_{i} a_{k j}+a_{k i} a_{j}\right)$.
(II) $\kappa=a_{1} a_{2} a_{3}+a_{31} a_{12} a_{23}+a_{21} a_{32} a_{13}$

$$
-\left(a_{2} a_{3}-a_{32} a_{23}\right)-\left(a_{3} a_{1}-a_{13} a_{31}\right)-\left(a_{1} a_{2}-a_{21} a_{12}\right)
$$

Proof. Of course, in case I, the formula for κ follows from Corollary 2, since S is symmetric; but we want to illustrate here a way of computing κ which also works in non-Gorenstein cases; namely, we want to study $\mathfrak{f} /(\mathfrak{f} \cap B)$.
I. Consider the following two subcases:
(A) $\quad X_{k}^{a_{k}}-X_{l}^{a_{l}} \in \mathfrak{P}$ for some (all) $l \in\{i, j\}$.
(B) $\quad X_{k}^{a_{k}}-X_{l}^{a_{l}} \notin \mathfrak{B}$ for some (all) $l \in\{i, j\}$.

In case (A) let $b_{k i}:=a_{i}$ and $b_{k j}:=a_{j}$, and in case (B) choose $b_{k i}, b_{k j} \in \mathbf{N}^{*}$ with

$$
X_{k}^{a_{k}}-X_{i}^{b_{k i}} X_{j}^{b_{k j}} \in \mathfrak{P} .
$$

Define

$$
I:=\mathbf{N}_{a_{i}+b_{k i}-2} \times \mathbf{N}_{a_{j}+b_{k j}-2} \times \mathbf{N}_{a_{k}-1}
$$

and

$$
X:=\sum_{\left(\alpha_{i}, \alpha_{j}, \alpha_{k}\right) \in I} A\left(x \cdot x_{i}^{\alpha_{i}} x_{j}^{\alpha_{j}} x_{k}^{\alpha_{k}}\right),
$$

where

$$
x:=x_{1} x_{2} x_{3} / x_{l}^{a_{l}} x_{k}^{a_{k}} \quad \text { for all } l \in\{i, j\}
$$

If

$$
\begin{aligned}
I^{\prime}:=\left\{\left(\alpha_{i}, \alpha_{j}, \alpha_{k}\right) \in I \mid \alpha_{l}<a_{l}-1 \text { for all } l \in\right. & \{i, j\} \\
& \text { or } \left.\alpha_{k}<a_{k}-1\right\},
\end{aligned}
$$

then

$$
\mathfrak{f} /(\mathfrak{f} \cap B)=\sum_{\left(\alpha_{i}, \alpha_{j}, \alpha_{k}\right) \in I} A\left(x \cdot x_{i}^{\alpha_{i}} x_{j}^{\alpha_{j}} x_{k}^{\alpha_{k}}\right)^{-} \cong X /(X \cap B) .
$$

Further define

$$
\begin{aligned}
& I d_{i j}:=\left\{\left(\alpha_{i}, \alpha_{j}, \alpha_{k}\right) \in I \mid \alpha_{i} \geqq a_{i} \text { and } \alpha_{j} \leqq b_{k j}-1\right\}, \\
& X d_{i j}:=\sum_{\left(\alpha_{i}, \alpha_{j}, \alpha_{k}\right) \in I d_{i j}} A\left(x \cdot x_{i}^{\left.\alpha_{i} x_{j}^{\alpha_{j}} x_{k}^{\alpha_{k}}\right),}\right.
\end{aligned}
$$

and $X d_{j i}$ in the same way.
There are $\left(a_{i}+b_{k i}-1\right)\left(a_{j}+b_{k j}-1\right) a_{k}$ representations taken into consideration for the formation of the elements of generating X, and those elements having two representations are precisely the elements generating $X d_{i j}=X d_{j i}=: X d$. Hence

$$
\begin{aligned}
\operatorname{dim}_{A} X & =\left(a_{i}+b_{k i}-1\right)\left(a_{j}+b_{k j}-1\right) a_{k} \\
& -\left(b_{k i}-1\right)\left(b_{k j}-1\right) a_{k} .
\end{aligned}
$$

Now define

$$
\begin{aligned}
& (I \cap z+H)_{l m}:=\left\{\left(\alpha_{i}, \alpha_{j}, \alpha_{k}\right) \in I \mid \alpha_{l} \geqq a_{l}-1\right. \\
& \left.\quad \quad \text { and } \alpha_{m} \geqq a_{m}-1\right\}
\end{aligned}
$$

and

$$
(X \cap B)_{l m}=\sum_{\left(\alpha_{i}, \alpha_{j}, \alpha_{k}\right) \in(I \cap z+H)_{l m}} A\left(x \cdot x_{i}^{\alpha_{i}} x_{j}^{\alpha_{j}} x_{k}^{\alpha_{k}}\right)
$$

for all $(l, m, n) \in A_{3}$. Then

$$
X \cap B=\sum_{(l, m, n) \in A_{3}}(X \cap B)_{l m} \quad \text { in case }(\mathrm{A}),
$$

and

$$
X \cap B=(X \cap B)_{i k}+(X \cap B)_{j k} \quad \text { in case }(\mathrm{B})
$$

and there are

$$
\begin{aligned}
b_{k i}\left(a_{j}+b_{k j}-1\right)+\left(a_{i}+b_{k i}-1\right) b_{k j} & \\
& +b_{k i} b_{k j} a_{k}-3 b_{k i} b_{k j}+b_{k i} b_{k j}
\end{aligned}
$$

representations taken into consideration for the formation of the elements generating $X \cap B$ in case (A), and

$$
b_{k i}\left(a_{j}+b_{k j}-1\right)+\left(a_{i}+b_{k i}-1\right) b_{k j}-b_{k i} b_{k j}
$$

representations in case (B). Those elements having two representations are precisely the elements generating

$$
(X \cap B) \cap X d=Y_{i j}+Y_{j i}
$$

with

$$
\begin{aligned}
J_{i j}: & =\left\{\left(\alpha_{i}, \alpha_{j}, \alpha_{k}\right) \in I \mid \alpha_{i} \geqq a_{i}, \alpha_{j} \leqq b_{k j}-2,\right. \\
Y_{i j}: & =\sum_{\left(\alpha_{i}, \alpha_{j}, \alpha_{k}\right) \in J_{i j}} A\left(x \cdot x_{i}^{\alpha_{i}} x_{j}^{\alpha_{j}} x_{k}^{\alpha_{k}}\right),
\end{aligned}
$$

and $Y_{j i}$ defined in the same way. As $Y_{i j}=Y_{j i}$, we get

$$
\begin{aligned}
\operatorname{dim}_{A} X \cap B & =b_{k i}\left(a_{j}+b_{k j}-1\right)+\left(a_{i}+b_{k i}-1\right) b_{k j}+b_{k i} b_{k j} a_{k} \\
& -2 b_{k i} b_{k j}-\left(b_{k i}-1\right)\left(b_{k j}-1\right)
\end{aligned}
$$

in case (A), and

$$
\begin{aligned}
\operatorname{dim}_{A} X \cap B & =b_{k i}\left(a_{j}+b_{k j}-1\right)+\left(a_{i}+b_{k i}-1\right) b_{k j}-b_{k i} b_{k j} \\
& -\left(b_{k i}-1\right)\left(b_{k j}-1\right)
\end{aligned}
$$

in case (B). Therefore

$$
\begin{aligned}
\kappa & =\operatorname{dim}_{A} X-\operatorname{dim}_{A} X \cap B-1 \\
& =\left(b_{k i}-1\right) a_{j} a_{k}+a_{i}\left(b_{k j}-1\right) a_{k}+a_{i} a_{j} a_{k}-b_{k i}\left(a_{j}-1\right) \\
& -\left(a_{i}-1\right) b_{k j}-b_{k i} b_{k j} a_{k}+b_{k i} b_{k j}-b_{k i}-b_{k j} \\
& =2 a_{1} a_{2} a_{3}-a_{2} a_{3}-a_{3} a_{1}-a_{1} a_{2}
\end{aligned}
$$

in case (A), and

$$
\begin{aligned}
\kappa & =\left(b_{k i}-1\right) a_{j} a_{k}+a_{i}\left(b_{k j}-1\right) a_{k}+a_{i} a_{j} a_{k}-b_{k i}\left(a_{j}-1\right) \\
& -\left(a_{i}-1\right) b_{k j}-b_{k i}-b_{k j} \\
& =a_{1} a_{2} a_{3}+\left(a_{i} b_{k j}+b_{k i} a_{j}\right) a_{k}-a_{j} a_{k}-a_{k} a_{i}-\left(a_{i} b_{k j}+b_{k i} a_{j}\right)
\end{aligned}
$$

in case (B).
II. Define

$$
I:=\mathbf{N}_{a_{1}-2} \times \mathbf{N}_{a_{2}-2} \times \mathbf{N}_{a_{3}-2}
$$

and

$$
X^{ \pm}:=\sum_{\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in I} A\left(x^{ \pm} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} x_{3}^{\alpha_{3}}\right),
$$

where

$$
x^{+}:=x_{1} x_{2} x_{3} / x_{i}^{a_{k i}} x_{j}^{a_{j}} \text { and } x^{-}:=x_{1} x_{2} x_{3} / x_{j}^{a_{k j}} x_{i}^{a_{i}}
$$

for all $(i, j, k) \in A_{3}$. Then

$$
\mathfrak{f} /(\mathfrak{f} \cap B) \cong X^{+}+X^{-} .
$$

Further define

$$
I_{i j}:=\left\{\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in I \mid \alpha_{i} \geqq a_{j i} \text { and } \alpha_{j} \leqq a_{k j}-2\right\}
$$

and

$$
X_{i j}^{ \pm}:=\sum_{\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in I_{i j}} A\left(x^{ \pm} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} x_{3}^{\alpha_{3}}\right)
$$

for all $(i, j, k) \in S_{3}$ with $\operatorname{sign}(i, j, k)= \pm 1$.
There are $2\left(a_{1}-1\right)\left(a_{2}-2\right)\left(a_{3}-1\right)$ representations taken into consideration for the formation of the elements generating $X^{+}+X^{-}$. As $X_{i j}^{+}=X_{j i}^{-}$for all $(i, j, k) \in A_{3}$, those elements having two representations are precisely the elements generating

$$
X^{+} \cap X^{-}=\sum_{(i, j, k) \in A_{3}} X_{i j}^{+},
$$

and therefore

$$
\begin{aligned}
\kappa & =\operatorname{dim}_{A}\left(X^{+}+X^{-}\right)-1 \\
& =2\left(a_{1}-1\right)\left(a_{2}-1\right)\left(a_{3}-1\right) \\
& -\sum_{(i, j, k) \in A_{3}}\left(a_{k i}-1\right)\left(a_{k j}-1\right)\left(a_{k}-1\right)-1 \\
& =2 a_{1} a_{2} a_{3}-\sum_{(i, j, k) \in A_{3}} a_{k i} a_{k j} a_{k} \\
& -\sum_{(i, j, k) \in A_{3}}\left(\left(a_{i j} a_{k}+a_{i k} a_{j}\right)-a_{i j} a_{i k}\right) \\
& =a_{1} a_{2} a_{3}+a_{31} a_{12} a_{23}+a_{21} a_{32} a_{13}-\sum_{(i, j, k) \in A_{3}}\left(a_{j} a_{k}-a_{k j} a_{j k}\right) .
\end{aligned}
$$

Corollary 1. In case I, $n_{i}=a_{j} a_{k}, n_{j}=a_{k} a_{i}$, and $n_{k}=a_{i} a_{k j}+a_{k i} a_{j}$.
Proof. There exists an $\alpha \in \mathbf{N}^{*}$ such that $n_{i}=\alpha a_{j}$ and $n_{j}=\alpha a_{i}$. Hence there exists a $\lambda \in \mathbf{N}^{*}$ such that $\lambda \alpha=a_{k}$, since $\operatorname{gcd}\left(n_{1}, n_{2}, n_{3}\right)=1$. Now $\kappa=z$ shows that $\lambda=1$.

Corollary 2. Let $s=3$. Then

$$
\kappa=\sum_{\sigma=1}^{s}\left(a_{\sigma}-1\right) n_{\sigma}-\prod_{\sigma=1}^{s} a_{\sigma}
$$

with n_{1}, n_{2}, n_{3} as in Theorem 2.
Remark 3. It is a result of M. Schaps [11] that space curves are always smoothable. As they are also unobstructed by [7, 3.2], we have by $[\mathbf{3}, 4.1]$

$$
t^{1}=\kappa+r
$$

computed for all monomial space curves.
Very useful for the construction of examples is the following lemma, a weaker version of which is stated in [9].

Lemma [9]. Assume $s=3$. 1. Let $b_{1}, b_{2}, b_{3} \in \mathbf{N}^{*}$ and $b_{\nu \lambda}, b_{\nu \mu} \in \mathbf{N}$ for some $(\lambda, \mu, \nu) \in S_{3}$. Assume

$$
\begin{aligned}
& X_{\lambda}^{b_{\lambda}}-X_{\mu}^{b_{\mu}} \in \mathfrak{P}, \quad X_{\nu}^{b_{\nu}}-X_{\lambda}^{b_{\lambda \lambda}} X_{\mu}^{b_{\nu \mu}} \in \mathfrak{P}, \quad \text { and } \\
& n_{\lambda}=b_{\mu} b_{\nu} \quad \text { and } \quad n_{\mu}=b_{\nu} b_{\lambda}
\end{aligned}
$$

Then we are in case I , and we have $\left(b_{\lambda}=a_{\lambda}\right.$ or $\left.b_{\mu}=a_{\mu}\right)$ and $b_{\nu}=a_{\nu}$. If $\nu=k$ in Theorem 1, then we also have $b_{\lambda}=a_{\lambda}$ and $b_{\mu}=a_{\mu}$.
2. Let $b_{i}, b_{i j}, b_{i k} \in \mathbf{N}^{*}$ for all $(i, j, k) \in A_{3}$. Assume

$$
\begin{aligned}
& X_{i}^{b_{i}}-X_{j}^{b_{i j}} X_{k}^{b_{i k}} \in \mathfrak{B}, \quad b_{i}=b_{j i}+b_{k i}, \quad \text { and } \\
& n_{i}=b_{j} b_{k}-b_{k j} b_{j k} \quad \text { for all }(i, j, k) \in A_{3}
\end{aligned}
$$

Then we are in case II, and we have $b_{i}=a_{i}$ and hence $b_{i j}=a_{i j}$ for all $(i, j, k) \in S_{3}$.

Proof. 1. If we were in case II, then we would have

$$
n_{\lambda}=b_{\mu} b_{\nu} \geqq a_{\mu} a_{\nu}>a_{\mu} a_{\nu}-a_{\nu \mu} a_{\mu \nu}=n_{\lambda}
$$

Hence we are in case I. If $\nu \in\{i, j\}$, then let $\{\nu, \rho\}=\{i, j\}$, and we get $b_{k}=a_{k}$ and $b_{\nu}=a_{\nu}$ from

$$
n_{\rho}=b_{k} b_{\nu} \geqq a_{k} a_{\nu}=n_{\rho}
$$

And if $\nu=k$, then

$$
\begin{aligned}
& n_{\lambda}=b_{\mu} b_{\nu} \geqq a_{\mu} a_{\nu}=n_{\lambda} \\
& n_{\mu}=b_{\nu} b_{\lambda} \geqq a_{\nu} a_{\lambda}=n_{\mu}
\end{aligned}
$$

show $b_{\mu}=a_{\mu}, b_{\nu}=a_{\nu}$, and $b_{\lambda}=a_{\lambda}$.
2. If we were in case I, then

$$
b_{i j} b_{k}+b_{k j} b_{i k}=n_{i}=a_{j} a_{k}=n_{i}=b_{j} b_{i k}+b_{i j} b_{j k}
$$

would show $b_{i j}<a_{j}$ and $b_{i k}<a_{k}$, and we would get the contradiction

$$
\left(b_{i}-a_{i}\right) n_{i}+\left(a_{j}-b_{i j}\right) n_{j}=b_{i k} n_{k}
$$

Hence we are in case II.
The rest follows from [9]. Note that the assumption

$$
\operatorname{gcd}\left(n_{1}, n_{2}\right)=\operatorname{gcd}\left(n_{2}, n_{3}\right)=\operatorname{gcd}\left(n_{3}, n_{1}\right)=1
$$

in [9] is not necessary.
Remark 4. Note that in part 1 of the lemma one can have $b_{\lambda} \neq a_{\lambda}$ or $b_{\mu} \neq a_{\mu}$. Consider for example $\langle 6,9,8\rangle$. Here

$$
\begin{aligned}
& \mathfrak{B}=\left(X_{1}^{3}-X_{2}^{2}, X_{3}^{3}-X_{1}^{4}\right), X_{1}^{4}-X_{3}^{3} \in \mathfrak{B}, X_{2}^{2}-X_{1}^{3} \in \mathfrak{B}, \\
& 6=3 \cdot 2,8=2 \cdot 4, \text { and } a_{1}=3
\end{aligned}
$$

but $b_{1}=4$.
Example (Pythagorean monomial space curves). Let $s=3$. We call B a Pythagorean monomial curve if and only if B is not a complete intersection and there exists an $(i, j, k) \in S_{3}$ such that

$$
b:=a_{k i}=a_{j}=a_{k} \quad \text { and } \quad a:=a_{j i}=a_{k j}=a_{j k} .
$$

These have $a_{i}=a+b, a_{i j}=a_{i k}=b-a$, and hence

$$
\mathfrak{B}=\left(X_{i}^{a+b}-X_{j}^{b-a} X_{k}^{b-a}, X_{j}^{b}-X_{k}^{a} X_{i}^{a}, X_{k}^{b}-X_{i}^{b} X_{j}^{a}\right) .
$$

As $n_{i}=b^{2}-a^{2}, n_{j}=2 a b$, and $n_{k}=a^{2}+b^{2}$, we get

$$
\kappa=b^{3}-a^{3}+2 a b^{2}-2 b(a+b)
$$

and a and b are positive natural numbers of opposite parity with $b>a$ and $\operatorname{gcd}(a, b)=1$.

Further $n_{i}^{2}+n_{j}^{2}=n_{k}^{2}$ showing

$$
X_{k}^{n_{k}}-X_{i}^{n_{i}} X_{j}^{n_{j}} \in \mathfrak{B}
$$

In fact, we have the identity

$$
\begin{aligned}
& X_{k}^{a^{2}}+b^{2}-X_{i}^{b^{2}-a^{2}} X_{j}^{2 a b} \\
& =X_{k}^{a^{2}}\left(\left(X_{k}^{b}\right)^{b-1}+\left(X_{k}^{b}\right)^{b-2}\left(X_{i}^{b} X_{j}^{a}\right)+\ldots\right. \\
& \left.+\left(X_{i}^{b} X_{j}^{a}\right)^{b-1}\right)\left(X_{k}^{b}-X_{i}^{b} X_{j}^{a}\right)-X_{i}^{b^{2}-a^{2}} X_{j}^{a b}\left(\left(X_{j}^{b}\right)^{a-1}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\left(X_{j}^{b}\right)^{a-2}\left(X_{k}^{a} X_{i}^{a}\right)+\ldots+\left(X_{k}^{a} X_{i}^{a}\right)^{a-1}\right)\left(X_{j}^{b}-X_{k}^{a} X_{i}^{a}\right) \\
& =\left(X_{k}^{a^{a^{b}}} \sum_{l=0}^{b-1}\left(X_{k}^{b}\right)^{b-1-l}\left(X_{i}^{b} X_{j}^{a}\right)^{\prime}\right)\left(X_{k}^{b}-X_{i}^{b} X_{j}^{a}\right) \\
& -\left(X_{i}^{b^{2}-a^{2}} X_{j}^{a b} \sum_{l=0}^{a-1}\left(X_{j}^{b}\right)^{a-1-l}\left(X_{k}^{a} X_{i}^{a}\right)^{\prime}\right)\left(X_{j}^{b}-X_{k}^{a} X_{i}^{a}\right) .
\end{aligned}
$$

Conversely, assume there exists a $k \in\{1,2,3\}$ such that

$$
n_{i}^{2}+n_{j}^{2}=n_{k}^{2} \quad \text { for some } i, j \in\{1,2,3\} \backslash\{k\} .
$$

Choose i and j so that n_{i} is odd and n_{j} is even. Then, as is well known, there exist $a, b \in \mathbf{N}^{*}$ of opposite parity with $\operatorname{gcd}(a, b)=1$ and $b>a$ such that

$$
n_{i}=b^{2}-a^{2}, n_{j}=2 a b \quad \text { and } \quad n_{k}=a^{2}+b^{2} .
$$

And as

$$
\begin{aligned}
& (a+b) n_{i}=(b-a) n_{j}+(b-a) n_{k} \\
& b n_{j}=a n_{k}+a n_{i} \\
& b n_{k}=b n_{i}+a n_{j},
\end{aligned}
$$

we get $a_{k i}=b=a_{j}=a_{k}$ and $a_{j i}=a=a_{k j}=a_{j k}$ by the lemma.
This shows that the Pythagorean monomial space curves are precisely those monomial space curves for which there exists an $(i, j, k) \in S_{3}$ such that $n_{i}^{2}+n_{j}^{2}=n_{k}^{2}$.
2. Singularity of Gorenstein monomial curves in \mathbf{A}^{4}. The next step is the calculation of κ if $s=4$. This will be considerably more complicated than for monomial space curves, as it has been shown by H. Bresinsky [1] that there exist monomial curves in any $\mathbf{A}^{s}, s \geqq 4$, requiring arbitrarily large numbers of generators for their defining ideals.

However, our study of monomial curve singularities can still be carried out, provided one is able to divide the curves in question into subclasses, whose members have defining equations which one can survey. A division of this kind has been made for Gorenstein monomial curves in \mathbf{A}^{4} by H. Bresinsky [2].

Let us first treat the case that B is a complete intersection.
Theorem 5. [2]. (Relations of monomial curves in \mathbf{A}^{4} which are complete intersections). If $s=4$ and $d=0$, then at least one of the following two cases does occur:
(A) $\mathfrak{B}=\left(X_{i}^{a_{i}}-X_{j}^{a_{j}}, X_{k}^{a_{k}}-X_{i}^{a_{k}} X_{j}^{a_{k j}}, X_{l}^{a_{l}}-X_{i}^{a_{i}} X_{j}^{{ }_{l}} X_{k}^{a_{k}}\right)$
for some $(i, j, k, l) \in S_{4}$ with $a_{k i}, a_{k j}, a_{l i}, a_{l j}, a_{l k} \in \mathbf{N}$.
(B) $\mathfrak{B}=\left(X_{i}^{a_{i}}-X_{j}^{a_{j}}, X_{k}^{a_{k}}-X_{l}^{a_{l}}, X_{i}^{b_{i}} X_{j}^{b_{j}}-X_{k}^{b_{k}} X_{l}^{b_{l}}\right)$
for some $(i, j, k, l) \in S_{4}$ with $b_{i}, b_{j}, b_{k}, b_{l} \in \mathbf{N}$.
Remark 5. $\langle 8,9,10,12\rangle$ is an example for case (A), $\langle 10,14,15,21\rangle$ is an example for case (B), and $\langle 10,12,15,18\rangle$ is an example for both cases.

The formulas in case (B) of the following theorem are also due to H . Bresinsky [2].

Theorem 6 (Weights of monomial curves in A^{4} which are complete intersections). Let $s=4$ and $d=0$. Then in case
(A) $n_{i}=a_{j} a_{k} a_{l}, n_{j}=a_{k} a_{l} a_{i}, n_{k}=a_{l}\left(a_{i} a_{k j}+a_{k i} a_{j}\right)$, and

$$
n_{l}=\left(a_{i} a_{k j}+a_{k i} a_{j}\right) a_{l k}+\left(a_{i} a_{l j}+a_{l i} a_{j}\right) a_{k} .
$$

(B)

$$
\begin{aligned}
& n_{i}=a_{j}\left(a_{k} b_{l}+b_{k} a_{l}\right) ; n_{j}=\left(a_{k} b_{l}+b_{k} a_{l}\right) a_{i} \\
& n_{k}=a_{l}\left(a_{i} b_{j}+b_{i} a_{j}\right) ; n_{l}=\left(a_{i} b_{j}+b_{i} a_{j}\right) a_{k}
\end{aligned}
$$

Proof. As in Theorem 2 we consider the Apéry-bases of B with respect to x_{1}, \ldots, x_{s}.

In case (A) one has

$$
B / B x_{i} \cong A\left[\left[X_{j}, X_{k}, X_{l}\right]\right] /\left(X_{j}^{a_{j}}, X_{k}^{a_{k}}, X_{l}^{a_{l}}\right)
$$

if $a_{l i} \neq 0$ and

$$
B / B x_{i} \cong A\left[\left[X_{j}, X_{k}, X_{l}\right]\right] /\left(X_{j}^{a_{j}}, X_{k}^{a_{k}}, X_{l}^{a_{l}}-X_{j}^{a_{l}} X_{k}^{a_{l k}}\right)
$$

if $a_{l i}=0$. Both times

$$
\begin{aligned}
\omega_{x_{i}}=\left\{\left(x_{j}^{\beta} x_{k}^{\gamma} x_{l}^{\delta}\right)^{-} \mid 0 \leqq \beta \leqq a_{j}-1,0 \leqq \gamma \leqq\right. & a_{k}-1, \text { and } \\
& \left.0 \leqq \delta \leqq a_{l}-1\right\}
\end{aligned}
$$

Therefore $n_{i}=a_{j} a_{k} a_{l}$; and the formula for n_{j} one gets by symmetry.
Further

$$
B / B x_{k} \cong A\left[\left[X_{i}, X_{j}, X_{l}\right]\right] /\left(X_{i}^{a_{i}}-X_{j}^{a_{j}}, X_{i}^{a_{k_{i}}} X_{j}^{a_{k j}}, X_{l}^{a_{l}}\right)
$$

if $a_{l k} \neq 0$ and

$$
B / B x_{k} \cong A\left[\left[X_{i}, X_{j}, X_{l}\right]\right] /\left(X_{i}^{a_{i}}-X_{j}^{a_{j}}, X_{i}^{a_{k}} X_{j}^{a_{k j}}, X_{l}^{a_{l}}-X_{i}^{a_{l}} X_{j}^{a_{l}}\right)
$$

if $a_{l k}=0$. Both times

$$
\begin{gathered}
\omega_{x_{k}}=\left\{\left(x_{i}^{\alpha} x_{j}^{\beta} x_{l}^{\delta}\right)^{-} \mid 0 \leqq \alpha \leqq a_{i}-1,0 \leqq \beta \leqq a_{k j}-1\right. \text { and } \\
\left.0 \leqq \delta \leqq a_{l}-1\right\} \\
\cup\left\{\left(x_{i}^{\alpha} x_{j}^{\beta} x_{l}^{\delta}\right)^{-} \mid 0 \leqq \alpha \leqq a_{k i}-1, a_{k j} \leqq \beta \leqq a_{j}+a_{k j}-1\right. \\
\\
\left.\quad \text { and } 0 \leqq \delta \leqq a_{l}-1\right\}
\end{gathered}
$$

and therefore $n_{k}=a_{l}\left(a_{i} a_{k j}+a_{k i} a_{j}\right)$.
As for $\omega_{x_{l}}$, note that

$$
B / B x_{l} \cong A\left[\left[X_{i}, X_{j}, X_{k}\right]\right] /\left(X_{i}^{a_{i}}-X_{j}^{a_{j}}, X_{k}^{a_{k}}-X_{i}^{a_{k i}} X_{j}^{a_{k j}}, X_{i}^{a_{i}} X_{j}^{a_{l j}} X_{k}^{a_{l k}}\right)
$$

and hence

$$
\begin{array}{r}
\omega_{x_{l}}=\left\{\left(x_{i}^{\alpha} x_{j}^{\beta} x_{k}^{\gamma}\right)^{-} \mid 0 \leqq \alpha \leqq a_{i}-1,0 \leqq \beta \leqq a_{k j}-1,\right. \\
\left.\quad \text { and } 0 \leqq \gamma \leqq a_{l k}-1\right\} \\
\cup\left\{\left(x_{i}^{\alpha} x_{j}^{\beta} x_{k}^{\gamma}\right)^{-} \mid 0 \leqq \alpha \leqq a_{k i}-1, a_{k j} \leqq \beta \leqq a_{j}+a_{k j}-1,\right. \\
\left.\quad \text { and } 0 \leqq \gamma \leqq a_{l k}-1\right\} \\
\cup\left\{\left(x_{i}^{\alpha} x_{j}^{\beta} x_{k}^{\gamma}\right)^{-} \mid 0 \leqq \alpha \leqq a_{i}-1,0 \leqq \beta \leqq a_{l j}-1\right. \\
\quad \begin{array}{r}
\text { and } \left.a_{l k} \leqq \gamma \leqq a_{k}+a_{l k}-1\right\} \\
\end{array} \quad\left\{\left(x_{i}^{\alpha} x_{j}^{\beta} x_{k}^{\gamma}\right)^{-} \mid 0 \leqq \alpha \leqq a_{l i}-1, a_{l j} \leqq \beta \leqq a_{j}+a_{l j}-1,\right. \\
\text { and } \left.a_{l k} \leqq \gamma \leqq a_{k}+a_{l k}-1\right\} .
\end{array}
$$

Therefore

$$
n_{l}=\left(a_{i} a_{k j}+a_{k i} a_{j}\right) a_{l k}+\left(a_{i} a_{l j}+a_{l i} a_{j}\right) a_{k}
$$

In case (B) one has

$$
B / B x_{i} \cong A\left[\left[X_{j}, X_{k}, X_{l}\right]\right] /\left(X_{j}^{a_{j}}, X_{k}^{a_{k}}-X_{l}^{a_{l}}, X_{k}^{b_{k}} X_{l}^{b_{l}}\right)
$$

and hence

$$
\begin{aligned}
& \omega_{x_{i}}=\left\{\left(x_{j}^{\beta} x_{k}^{\gamma} x_{l}^{\delta}\right)^{-} \mid 0 \leqq \beta \leqq a_{j}-1,0 \leqq \gamma \leqq a_{k}-1,\right. \\
&\text { and } \left.0 \leqq \delta \leqq b_{l}-1\right\} \\
& \cup\left\{\left(x_{j}^{\beta} x_{k}^{\gamma} x_{l}^{\delta}\right)^{-} \mid 0 \leqq \beta \leqq a_{j}-1,0 \leqq \gamma \leqq b_{k}-1,\right. \\
&\text { and } \left.b_{l} \leqq \delta \leqq a_{l}+b_{l}-1\right\} .
\end{aligned}
$$

Therefore $n_{i}=a_{j}\left(a_{k} b_{l}+b_{k} a_{l}\right)$; and the formulas for n_{j}, n_{k}, and n_{l} one gets by symmetry.

Theorem $7\left(\mathfrak{m}^{-1} / B\right.$ for monomial curves in \mathbf{A}^{4} which are complete intersections). Let $s=4$ and $d=0$. Then in case
(A) $\mathrm{m}_{B}^{-1} / B=A\left(x_{j}^{a_{j}} x_{k}^{a_{k}} x_{l}^{a_{l}} / x_{1} x_{2} x_{3} x_{4}\right)^{-} \cong A t^{2}$
with

$$
z=a_{j} n_{j}+a_{k} n_{k}+a_{l} n_{l}-n_{1}-n_{2}-n_{3}-n_{4} .
$$

(B) $\quad \mathfrak{m}_{B}^{-1} B=A\left(x_{j}^{a_{j}} x_{k}^{b_{k}} x_{l}^{a_{l}+b_{l}} / x_{1} x_{2} x_{3} x_{4}\right)^{-} \cong A t^{2}$
with

$$
z=a_{j} n_{j}+b_{k} n_{k}+\left(a_{l}+b_{l}\right) n_{l}-n_{1}-n_{2}-n_{3}-n_{4} .
$$

Proof. By the proof of Theorem 6, we have

$$
\left\{\left(x_{j}^{a_{j}-1} x_{k}^{a_{k}-1} x_{l}^{a_{l}-1}\right)^{-}\right\}
$$

as A-basis of the socle of $B / B x_{i}$ in case (A), and

$$
\left\{\left(x_{j}^{a_{j}-1} x_{k}^{b_{k}-1} x_{l}^{a_{l}+b_{l}-1}\right)^{-}\right\}
$$

in case (B).
Assuming char $A=0$, we can also write Theorem 7 as
Theorem 7^{\prime} (Module of derivations of monomial curves in \mathbf{A}^{4} which are complete intersections). Let $s=4$ and $d=0$. Then in case
(A) If $a_{l k} \neq 0$, then define

$$
x:=x_{g}^{a_{k g}+a_{l g}-1} x_{h}^{a_{h}+a_{k h}+a_{l h}-1} x_{k}^{a_{l k}-1}
$$

for any $\{g, h\}=\{i, j\}$ such that $a_{k g} \neq 0$. Otherwise define

$$
x:=x_{g}^{a_{l g}-1} x_{h}^{a_{h}+a_{l h}-1} x_{k}^{a_{k}+a_{l k}-1}
$$

for any $\{g, h\}=\{i, j\}$ such that $a_{l g} \neq 0$. Then $x \in B$ is well-defined and

$$
\begin{aligned}
\operatorname{Der}_{A} B & =B e+B\left(n_{i} x_{j}^{a_{j}-1} x_{k}^{a_{k}-1} x_{l}^{a_{l}-1} \frac{\partial}{\partial x_{i}}+n_{j} x_{i}^{a_{i}-1} x_{k}^{a_{k}-1} x_{l}^{a_{l}-1} \frac{\partial}{\partial x_{j}}\right. \\
& \left.+n_{k} x_{g}^{a_{k g}-1} x_{h}^{a_{h}+a_{k h}-1} x_{l}^{a_{l}-1} \frac{\partial}{\partial x_{k}}+n_{l} x \frac{\partial}{\partial x_{l}}\right) \\
& \cong C t \frac{\partial}{\partial t}+C t^{z+1} \frac{\partial}{\partial t}
\end{aligned}
$$

for all $\{g, h\}=\{i, j\}$ such that $a_{k g} \neq 0$.
(B) $\operatorname{Der}_{A} B=B e+B\left(n_{i} x_{j}^{a_{j}-1} x_{\mu}^{b_{\mu}-1} x_{\nu}^{a_{\nu}+b_{\nu}-1} \frac{\partial}{\partial x_{i}}\right.$

$$
\begin{aligned}
& +n_{j} x_{i}^{a_{i}-1} x_{\mu}^{b_{\mu}-1} x_{\nu}^{a_{\nu}+b_{\nu}-1} \frac{\partial}{\partial x_{j}} \\
& +n_{k} x_{\kappa}^{b_{\kappa}-1} x_{\lambda}^{a_{\lambda}+b_{\lambda}-1} x_{l}^{a_{l}-1} \frac{\partial}{\partial x_{k}} \\
& +n_{l} x_{\kappa}^{b \kappa-1} x_{\lambda}^{a_{\lambda}+b_{\lambda}-1} x_{k}^{a_{k}-1} \frac{\partial}{\partial x_{l}} \\
& \cong C t \frac{\partial}{\partial t}+C t^{z+1} \frac{\partial}{\partial t}
\end{aligned}
$$

for all $\{\kappa, \lambda\}=\{i, j\}$ such that $b_{\kappa} \neq 0$ and all $\{\mu, \nu\}=\{k, l\}$ such that $b_{\mu} \neq 0$.

Remark 6. Note that, as in Remark 1, the derivations $t^{z+1} \frac{\partial}{\partial t}$ are trivial derivations.

Corollary 1 (Canonical ideal of monomial curves in \mathbf{A}^{4} which are complete intersections). Let $s=4$ and $d=0$. Then in case
(A) $\mathfrak{f}=B\left(x_{1} x_{2} x_{3} x_{4} / x_{j}^{a_{j}} x_{k}^{a_{k}} x_{l}^{a_{l}}\right) \cong C t^{-2}$.
(B) $\mathfrak{f}=B\left(x_{1} x_{2} x_{3} x_{4} / x_{j}^{a_{j}} x_{k}^{b_{k}} x_{l}^{a_{l}+b_{l}}\right) \cong C t^{-z}$.

Proof. Use Theorem 7 and Proposition 2.
Corollary 2 (Singularity of monomial curves in \mathbf{A}^{4} which are complete intersections). Let $s=4$ and $d=0$. Then in case
(A) $\kappa=z=\sum_{\sigma=1}^{s}\left(a_{\sigma}-1\right) n_{\sigma}-\prod_{\sigma=1}^{s} a_{\sigma}$
(B) $\kappa=z=\sum_{\sigma=1}^{s}\left(a_{\sigma}-1\right) n_{\sigma}-\prod_{\sigma=1}^{s} a_{\sigma}$

$$
+\left(a_{i} b_{j}+b_{i} a_{j}-a_{i} a_{j}\right)\left(a_{k} b_{l}+b_{k} a_{l}-a_{k} a_{l}\right)
$$

$$
=\left(a_{i} a_{j}+a_{i} b_{j}+b_{i} a_{j}\right)\left(a_{k} a_{l}+a_{k} b_{l}+b_{k} a_{l}\right)-\prod_{\sigma=1}^{s} a_{\sigma}-\sum_{\sigma=1}^{s} n_{\sigma}
$$

with n_{1}, \ldots, n_{s} as in Theorem 6.
Proof. Use Theorem 7 and Theorem 6.
Question. Let \mathfrak{B} be generated by binomials $X_{i}^{a_{i}}-X$ for some $i \in\{1, \ldots, s\}$ and some monomial $X \in A\left[\left[X_{1}, \ldots, X_{s}\right]\right]$.

Is

$$
\kappa=\sum_{\sigma=1}^{s}\left(a_{\sigma}-1\right) n_{\sigma}-\prod_{\sigma=1}^{s} a_{\sigma} ?
$$

Now we will treat the case that B is not a complete intersection.
Theorem 8 [2] (Relations of deviation 2 Gorenstein monomial curves in A^{4}). Let $s=4, d \neq 0$, and $r=1$. Then

$$
\begin{aligned}
\mathfrak{B}=\left(X_{i}^{a_{i}}-X_{k}^{a_{l_{k}}} X_{l}^{a_{i l}}, X_{j}^{a_{j}}-X_{l}^{a_{l l}}\right. & X_{i}^{a_{i j}}, \\
& X_{k}^{a_{k}}-X_{i}^{a_{k i}} X_{j}^{a_{k j}}, \\
& \left.X_{l}^{a_{l}}-X_{j}^{a_{l j}} X_{k}^{a_{k k}}, X_{i}^{a_{j i}} X_{k}^{a_{l k}}-X_{j}^{a_{k j}} X_{l}^{a_{i l}}\right)
\end{aligned}
$$

for some $(i, j, k, l) \in S_{4}$ with unique $a_{i k}, a_{i l}, a_{j l}, a_{j i}, a_{k i}, a_{k j}, a_{l j}, a_{l k} \in \mathbf{N}^{*}$ having the properties

$$
\begin{aligned}
& a_{j i}+a_{k i}=a_{i}, a_{k j}+a_{l j}=a_{j}, a_{l k}+a_{i k}=a_{k}, \quad \text { and } \\
& a_{i l}+a_{j l}=a_{l} ; d=2 .
\end{aligned}
$$

Theorem 9 [2]. (Weights of deviation 2 Gorenstein monomial curves in A^{4}). Under the assumptions of Theorem 8,

$$
\begin{aligned}
& n_{i}=a_{j} a_{k} a_{i l}+a_{k j} a_{i k} a_{j l} ; n_{j}=a_{k} a_{l} a_{j i}+a_{l k} a_{j l} a_{k i} ; \\
& n_{k}=a_{l} a_{i} a_{k j}+a_{i l} a_{k i} a_{l j} ; n_{l}=a_{i} a_{j} a_{l k}+a_{j i} a_{l j} a_{i k} .
\end{aligned}
$$

Proof. Again we consider the Apéry-bases of B with respect to x_{1}, \ldots, x_{s}. One has

$$
B / B x_{i} \cong A\left[\left[X_{j}, X_{k}, X_{l}\right]\right] /\left(X_{k}^{a_{i k}} X_{l}^{a_{i l}}, X_{j}^{a_{j}}, X_{k}^{a_{k}}, X_{l}^{a_{l}}-X_{j}^{a_{l}} X_{k}^{a_{k j}}, X_{j}^{a_{l i}} X\right.
$$

$\left.{ }^{a_{i}}{ }^{\prime}\right)$,
and hence

$$
\begin{aligned}
& \omega_{x_{i}}=\left\{\left(x_{j}^{\beta} x_{k}^{\gamma} x_{l}^{\delta}\right)^{-} \mid 0 \leqq \beta \leqq a_{j}-1,0 \leqq \gamma \leqq a_{k}-1,\right. \\
& \left.\quad \text { and } 0 \leqq \delta \leqq a_{i l}-1\right\} \\
& \cup\left\{\left(x_{j}^{\beta} x_{k}^{\gamma} x_{l}^{\delta}\right)^{-} \mid 0 \leqq \beta \leqq a_{k j}-1,0 \leqq \gamma \leqq a_{i k}-1,\right. \\
& \\
& \left.\quad \text { and } a_{i l} \leqq \delta \leqq a_{l}-1\right\} .
\end{aligned}
$$

Therefore $n_{i}=a_{j} a_{k} a_{i l}+a_{k j} a_{i k} a_{j l}$; and the formulas for n_{j}, n_{k}, and n_{l} one gets by symmetry.

Under the assumptions of Theorem 8,

$$
z_{\lambda \mu \nu}:=a_{\lambda} n_{\lambda}+a_{\mu} n_{\mu}+a_{\kappa \nu} n_{\nu}-n_{1}-n_{2}-n_{3}-n_{4}
$$

is independent of

$$
(\kappa, \lambda, \mu, \nu) \in I:=\left\{(\kappa, \lambda, \mu, \nu) \in S_{4} \mid\langle\kappa, \lambda, \mu, \nu\rangle=\langle i, j, k, l\rangle\right\},
$$

and we have
Theorem $10\left(\mathrm{~m}^{-1} / B\right.$ for deviation 2 Gorenstein monomial curves in A^{4}). Under the assumptions of Theorem 8,

$$
\mathrm{m}_{B}^{-1} / B=A\left(x_{j}^{a_{j}} x_{k}^{a_{k}} x_{l}^{a_{l}} / x_{1} x_{2} x_{3} x_{4}\right)^{-} \cong A t^{z} \quad \text { with } z=z_{j k l} .
$$

Proof. By the proof of Theorem 9 we have

$$
\left\{\left(x_{j}^{a_{j}-1} x_{k}^{a_{k}-1} x_{l}^{a_{i l}-1}\right)^{-}\right\}
$$

as A-basis of the socle of $B / B x_{i}$.
Assuming char $A=0$, we can also write Theorem 10 as
Theorem 10^{\prime} (Module of derivations of deviation 2 Gorenstein monomial curves in \mathbf{A}^{4}). Under the assumptions of Theorem 8,

$$
\operatorname{Der}_{A} B=B e+B \sum_{(\kappa, \lambda, \mu, \nu) \in I} n_{\kappa} x_{\lambda}^{a_{\lambda}-1} x_{\mu}^{a_{\mu}-1} x_{\nu}^{a_{\kappa \nu}-1} \frac{\partial}{\partial x_{\kappa}}
$$

$$
\cong C t \frac{\partial}{\partial t}+C t^{z+1} \frac{\partial}{\partial t} .
$$

Corollary 1 (Canonical ideal of deviation 2 Gorenstein monomial curves in \mathbf{A}^{4}). Under the assumptions of Theorem 8,

$$
\mathfrak{f}=B\left(x_{1} x_{2} x_{3} x_{4} / x_{j}^{a_{j}} x_{k}^{a_{k}} x_{l}^{a_{i l}}\right) \cong C t^{-z}
$$

Proof. Use Theorem 10 and Proposition 2.
Corollary 2 (Singularity of deviation 2 Gorenstein monomial curves in \mathbf{A}^{4}). Under the assumptions of Theorem 8,

$$
\kappa=z=\sum_{\sigma=1}^{s}\left(a_{\sigma}-1\right) n_{\sigma}-\prod_{\sigma=1}^{s} a_{\sigma}+a_{k i} a_{l j} a_{i k} a_{j l}
$$

with n_{1}, \ldots, n_{s} as in Theorem 9.
Proof. Use Theorem 10 and Theorem 9.
Remark 7. As in Remark 3, we have by [3, 4.2 and 4.1]

$$
t^{1}=\kappa+1
$$

computed for all Gorenstein monomial curves in \mathbf{A}^{4}.
Remark 8. Note that most of what we have said in this paper also makes sense for algebraic monomial curves.

References

1. H. Bresinsky, On prime ideals with generic zero $x_{i}=t^{n_{i}}$, Proc. Amer. Math. Soc. 47 (1975), 329-332.
2. Symmetric semigroups of integers generated by 4 elements, Manuscripta Math. 17 (1975), 205-219.
3. R. Buchweitz, On deformations of monomial curves, Séminaire sur les singularités des surfaces (École Polytechnique, Paris, 1977).
4. G. -M. Greuel, Kohomologische Methoden in der Theorie isolierter Singularitäten (Habilitationsschrift Rheinische Friedrich-Wilhelms-Universität, Bonn, 1979).
5. R. Guy, Unsolved problems in number theory, in Unsolved problems in intuitive mathematics, vol. I (Springer, New York-Heidelberg-Berlin, 1981).
6. J. Herzog, Generators and relations of abelian semigroups and semigrouprings, Manuscripta Math. 3 (1970), 175-193.
7. -——Deformationen von Cohen-Macaulay Algebren, J. Reine Angew. Math. 318 (1980), 83-105.
8. J. Herzog and E. Kunz, Die Wertehalbgruppe eines lokalen Rings der Dimension 1, Ber. Heidelberger Akad. Wiss. 2. Abh. (1971).
9. S. Johnson, A linear Diophantine problem, Can. J. Math. 12 (1960), 390-398.
10. J. -M. Kantor, Dérivations sur les singularités quasihomogènes: cas des courbes, C. R. Acad. Sci. Paris, 287A (1978), 1117-1119, and 288A (1979), 697.
11. M. Schaps, Deformations of Cohen-Macaulay schemes of codimension 2 and non-singular deformations of space curves, Am. J. Math. 99 (1977), 669-684.
12. A. Seidenberg, Derivations and integral closure, Pacific J. Math. 16 (1966), 167-173.
13. J. Sylvester, Mathematical questions, with their solutions, Educational Times 41 (1884), 21.
14. J. Wahl, Derivations of negative weight and non-smoothability of certain singularities, Math. Ann. 258 (1982), 383-398.

University of Puerto Rico, Mayaguez, Puerto Rico

[^0]: Received December 23, 1983. This work, which was supported by the Studienstiftung des deutschen Volkes and Purdue University, is included in the author's 1983 Ph.D. thesis.

