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INJECTIVELY IMMERSED TORI IN BRANCHED COVERS
OVER THE FIGURE EIGHT KNOT

by KERRY N. JONES
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An algorithm is given for determining presence or absence of injectively (at the fundamental group level)
immersed tori (and constructing them, if present) in a branched cover of S3, branched over the figure eight
knot, with all branching indices greater than 2. Such tori are important for understanding the topology of 3-
manifolds in light of (for example) the Jaco-Shalen-Johannson torus decomposition theorem and the fact that
the figure eight knot is universal, i.e., that all 3-manifolds are representable as branched covers of S3, branched
over the figure eight knot.

The algorithm is principally geometric in its derivation and graph-theoretic in its operation. It is applied to
two examples, one of which has an incompressible torus and the other of which is atoroidal.

1991 Mathematics subject classifications: 57M12, 57M15, 57R42, 57R12.

1. Introduction

The purpose of this paper is to prove the following theorem and to describe the
algorithm in question:

Theorem 6.1. Let M be a branched cover of S3, branched over the figure eight knot,
such that all branching indices of M are ^ 3. Then, there exists an effective algorithm for
deciding whether or not M admits any n^-injectively immersed tori, and for constructing
any that exist.

The importance of this result lies primarily in the fact [5] that the figure eight knot is
universal. That is, that all closed, orientable 3-manifolds are obtainable as branched
covers over S3, branched over the knot. We also obtain results about incompressible
(embedded) tori in some cases. Existence or nonexistence of injectively immersed tori is
critical to the understanding of a 3-manifold in light of the Jaco-Shalen and Johannson
torus decomposition [7,8] which plays such a pivotal role in Thurston's geometrization
conjecture and the recent result of Gabai and Casson (independently, see [2]) which,
when combined with earlier results of Mess and Scott (see [11,12]) shows that a 3-
manifold which admits an injectively immersed torus, but no incompressible surfaces,
must be Seifert-fibred.

Our approach to developing this algorithm will be partly geometric and partly
combinatorial in nature. We will first describe a fixed geometric structure on S3 which
lifts in a particularly nice way to a geometric structure on any branched cover of S3,
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branched over the figure eight knot, which has the required minimum branching index.
We will then use this geometric structure to gradually reduce the problem of finding
injectively immersed tori in this branched cover to a problem of finding paths in a
certain graph which satisfy certain easily verified conditions. We will also obtain an a
priori upper bound on the length of paths which must be considered, so that our
algorithm can not only find tori when they exist, but also ascertain when they do not.

The overall organization of this paper is as follows: the geometric structures that we
will need (Euclidean cone manifold structures) are described in Section 1. Section 2
discusses the particular cone manifold structure on S3 which will be lifted to the
branched covers of S3. Section 3 describes the first dimensional reduction that we will
need, reducing questions about tori in 3-manifolds to questions about geodesies in 2-
manifolds. Section 4 describes how to make the actual calculations needed in Section 3
from combinatorial data about the particular branched cover on which we are working.
In Section 5, we discuss the final dimensional reduction, to a particular kind of graph,
and we describe the actual algorithm for finding tori in Section 6. Section 7 applies the
algorithm to two different examples of tenfold branched covers, one of which contains
an incompressible torus and one of which is atoroidal.

We will begin by fixing some notation: let M be a closed, orientable 3-manifold,
K<=S3 the figure eight knot, p: M-*S3 a branched covering map of degree d with
downstairs branching locus K. Let L=p~1(K) have q components Ll,L2,...,Lq. Then,
p\(M — L):->(S3 — K) is a covering map. We associate to this covering map its
monodromy, defined as follows: let x0 be a base point in S3 — K and p~1(x0) =
{xo.Jc^...,^,/-!)}. Then, the monodromy of the covering map is the homomorphism cp:
nl(S

3 — K,x0)->Sd defined by (allowing permutations to act on the right) xil/l(x) = terminal
point of the lift of a loop representing a with initial point Jc,. This gives a 1 — 1
correspondence between degree-^ covering maps with connected domain and conjugacy
classes of transitive representations of 7t1(S

3 — K) to Sd (note that
P#(ni(M — L,Xj)) = (p-1(Stab(0)). T h e branching indices of p a r e the integers n l t n2,..-,nq

which are the degrees of the branched covering restricted to disks transverse to the
components of L. We note that these are the cycle lengths of <p{fj), where n is a (fixed)
meridional homotopy class of S3 — K, except that the cycles will be duplicated precisely
when a component of L covers K nontrivially (longitudinal wrapping).

1. Cone manifolds

The process by which we find the tori in these manifolds is principally geometric in
nature and makes extensive use of cone manifold structures. These may be defined quite
generally for any constant-curvature model (and even more generally for variable
curvature models, see [6]), but for our purposes it will suffice to make the following:

Definition. A Euclidean cone manifold is a metric space obtained as the quotient
space of a disjoint union of a collection of geodesic n-simplices in E" by an isometric
pairing of codimension-one faces in such a combinatorial fashion that the underlying
topological space is a manifold.
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Such a space possesses a flat Riemannian metric on the union of the top-dimensional
cells and the codimension-1 cells. On each codimension-2 cell, the structure is
completely described by an angle, which is the sum of the dihedral angles around all of
the codimension-2 simplicial faces which are identified to give the cell. The singular locus
of a cone manifold is the closure of all of the codimension-2 cells for which this angle is
not 2K (the Reimannian metric may be extended smoothly over all cells whose angle is
2K). We are principally interested in the 3-dimensional case in which the singular locus
is a link with constant cone angle on each component and we make this assumption
throughout the remainder of this paper.

There is a strong relationship between cone manifolds on the one hand and branched
covers on the other. Specifically, if p: M-*N is a branched covering map, branched over
LczN, then any cone manifold structure on N with the singular locus contained in L
lifts to a cone manifold structure on M with the cone locus contained in p~*(L). This
construction is accomplished by lifting the triangulation given by the cone manifold
structure, and the cone angles on M are the obvious ones: if K is a component of
p~l{L) with branching index n and p(K) has a cone angle of 6 (possibly 2K), then K has
a cone angle of nO. Note, in particular, that a non-branched cover (all indices = 1) has a
cone manifold structure with the same cone angles as the base cone manifold. Note also
that some components of the singular locus of the branched covering may actually have
cone angle 2n and thus are not singular in the induced cone manifold structure. To
avoid confusion, we will refer to the singular locus of the branched covering as the
"singular locus" and to the subset of this that has cone angle # 2n as the "cone locus".

Next, we consider the geodesies in a cone manifold. A geodesies is extendible until it
hits the cone locus. When a geodesic hits a component of the cone locus with cone
locus less than 2K, it admits no extension as a geodesic. When a geodesic hits a
component of the cone locus with cone locus greater than 2K, it has a pencil of possible
geodesic extensions, resulting in the impossibility of extending an exponential map
(without allowing singularities in the exponential map itself) past that point, even
though geodesic extensions exist. It is fairly easy to see that this does not result in any
points of the manifold being inaccessible by uniquely extendible geodesies from any
other point unless some cone angle is greater than 2K. Thus, the exponential map is
surjective when all cone angles are less than 2K (there are conjugate points even if the
manifold is simply-connected, thus implying that cone angles less than 2K "act like"
positive curvature). Now, consider a simply-connected Euclidean cone manifold in
which all cone angles are greater than 2K. The exponential map is no longer surjective,
but it is one-to-one and is in fact a diffeomorphism onto its image. It should be noted
that in any case, the domain of the exponential map is E3 with a collection of
"generalized half-planes" deleted, where a "generalized half-plane" is determined by a
line, ray or line segment L in E3 and consists of the union of rays originating at points
of L which emanate directly away from the origin (the generating segment of each
generalized half-plane corresponds to a portion of a component of the cone locus that is
in the domain of the exponential map). We note here also that the domain of the
exponential map is a subset of E3 only when the exponential map is based at a point
which is not a cone point. We may, nevertheless define the exponential map based at a
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cone point, but its domain of definition is a subset, not of E3, but of the Euclidean cone
manifold which is homeomorphic to IR3 and has a single line of cone locus with cone
angle equal to the cone angle at the base point. We will, in fact, need this construction
subsequently.

It was observed above that cone angles less than 2n "act like" positive curvature. The
reverse is true in the following sense:

Lemma 1.1. / / M is a Euclidean cone manifold with all cone angles > 2n, then M
admits a metric of nonpositive sectional curvature, which is flat on the complement of an
arbitrarily small neighbourhood of the cone locus. Furthermore, any surface that intersects
the cone locus transversely has negative sectional curvature relative to this metric in a
neighbourhood of the intersection.

Proof. Working in Fermi coordinates in a solid torus neighbourhood of a given
component of the cone locus, we see that the metric is of the form

ds2 = dt2 + dr2 + g\r) dO2, where 0 < r < r0

where g(r) = r\j//2n, and if/ is the cone angle at the given component of the cone locus.
Considering all metrics of the given form (allowing g to vary), we observe that such a

metric is smooth at the core geodesic if and only if g(0)=0 and g'(0) = l. A
straightforward but tedious calculation shows that the principal curvatures are 0,0, and
—g"(r)/g(r). Our method of smoothing the cone metrics will be to remove a (metrically)
regular neighourhood of each component of the cone locus and replace each of these
solid tori by another (smooth) solid torus whose boundary metric and second
fundamental form agree with the original solid torus. Let us choose the smooth metric
to also be of the given symmetric form, say ds2 = dt2 + dr2+g2(r)d92 for 0<r<ro. Then,
the two metrics may be glued together smoothly whenever the values and derivatives of
g at r0 agree with the values and derivatives of g at r0 to whatever degree of smoothness
is desired.

Now, referring to the sectional curvature computation made earlier, it is apparent
that if g is non-concave and positive, the resulting metric will have nonpositive sectional
curvature. Thus, it suffices to construct a non-concave function g such that £(0)=0,
g'(0)=l, g(fo)=g{ro), and g'(ro)=g'(ro) for some ro>0. But, this can be done precisely
when g'(r0)>loi//>2n. The second claim is clear from the fact that it is the (r,6) plane
that picks up the negative sectional curvature in this construction. It should be noted
that the resulting metric is the product of a negatively curved disk and a circle. Q

Next, we make a few observations about injectively immersed tori in Euclidean cone
manifolds with all cone angles >2n. The main results we will need involve the
relationship between totally geodesic tori in the cone metric and totally geodesic tori in
the smooth metrics approximating the cone metric.
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Lemma 1.2. / / M is a Euclidean cone manifold with all cone angles > In then in any
of the above smoothings of that metric, any injectively immersed torus is homotopic to a
totally geodesic torus. Furthermore, M is irreducible.

Proof. First, we smooth the cone metric to a metric of nonpositive sectional
curvature via Lemma 1.1. We now note that the 2-plane that actually picks up negative
curvature in the construction is the 2-plane spanned by dr and d6. Thus, by the Gauss
equation, any minimal surface intersecting the old cone locus transversely will inherit
negative curvature in a neighbourhood of the intersection. Since there is no place in the
manifold to pick up canceling positive curvature, a minimal torus must not intersect the
cone locus transversely. A similar Gauss equation argument shows that any minimal
torus in a 3-manifold of nonpositive sectional curvature must be totally geodesic.

To complete the proof of the first part of the lemma, we appeal to the standard result
that injectively immersed surfaces in 3-manifolds are homotopic to minimal surfaces
[14].

To show irreducibility, we use a similar argument to show that there are no essential
2-spheres, and use the Cartan-Hadamard theorem [13] to assert that the universal cover
of M is U3 and thus that there are no fake 3-cells in M. •

The next result is not needed in this paper, but illustrates clearly the structure of
totally geodesic tori (cone metric and smooth metric) as well as the techniques we will
be using subsequently and so is included here as an intuition-building exercise for the
reader.

Lemma 1.3. If M is a Euclidean cone manifold with all cone angles > In and S is a
totally geodesic (cone metric) immersed torus, then there is a smooth metric (as in Lemma
1.1) in which S is homotopic to a totally geodesic torus which has the same intersection
pattern with the smoothing neighbourhood that S does with the cone locus.

Proof. If S may be homotoped off of the cone locus, then we're done (take a
sufficiently tight smoothing so that S is disjoint from the smoothing neighbourhood,
then S itself is totally geodesic), so assume that S intersects the cone locus. In order to
be totally geodesic in the cone metric, it must contain any component of the cone locus
that it intersects and the dihedral angles on each side of the intersection with the cone
locus must be ^n. By our blanket assumption of "no vertices," the intersections of S
with the cone locus must cut S up into immersed annuli of uniform width.

Let w be the minimum width of one of these annuli and e be the maximum distance
such that the uniform neighbourhood of S of radius e is a regular neighbourhood. Take
a smoothing of radius r = min (vv/4, e/2). Now, let U be the uniform neighbourhood of S
of radius 2r (in the cone metric). U is the image of an immersion of T = Sl xS1 x / into
M (by regularity). Call this immersion <f>: T-*M. Thus, we may pull back both metrics
(cone and smooth) from M to T, yielding a smooth and a cone metric on T. S being
totally geodesic implies that T is convex in the cone metric and hence convex in the
smooth metric (they are the same in a neighbourhood of dT). Furthermore, the action
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of Sl in T by translation in the direction of the components of the cone locus is an
isometric action with respect to both metrics. Thus, we have induced cone and smooth
metrics on/J = S ' x / (quotient of T by this action—the projection, which we denote by
\j/, is a fibration. In fact, it is a fibre bundle projection map with structure group S1). R
is also convex in both of these metrics. In particular, there is a closed geodesic, X, (with
respect to the smooth metric) in the homotopy class of a generator of n^R). Note that
X cannot "back up" (that is, its pattern of intersections with the smoothing neighbour-
hood is the same as the intersection pattern of i//((t>~1(S)) with the smoothing
neighbourhood) since the smooth metric on R has nonpositive curvature.

\l/~i(X) is a totally geodesic (smooth metric) torus homotopic to (f>~l{S) and thus
(j>(il/~1(X)) is a totally geodesic (smooth metric) torus homotopic to S via a homotopy in
U. Clearly the intersection pattern did not change (by the remark at the end of the
preceding paragraph). •

Using similar techniques, we obtain the following lemma, which we will need.

Lemma 1.4. / / M is a Euclidean cone manifold with all cone angles > In and S is an
injectively immersed torus, then S is homotopic to a totally geodesic (cone metric) immersed
torus.

Proof. First, some preliminary remarks about our method of proof: Lemma 1.2
allows us to construct totally geodesic tori homotopic to S in any smoothing of the
cone metric. Once we have such a torus, we may "straighten it out" to a piecewise
totally geodesic torus in the cone metric by essentially reversing the procedure of
Lemma 1.3. However, it need not be the case that all of the dihedral angles at
intersections along components of the cone locus are ^.n. Our game plan is to show
that if we take a sufficiently tight smoothing to begin with, this construction does yield
a totally geodesic (cone metric) torus.

To begin, we take any smoothing of the cone metric. By Lemma 1.2, S is homotopic
to a totally geodesic torus in this metric. If this torus can be taken to be disjoint from
the smoothing neighbourhood, then we're done. So, assume that this totally geodesic
torus cannot be homotoped off of the smoothing neighbourhood (and stay totally
geodesic). Then, by the symmetry and structure of the smooth metric in the smoothing
neighbourhood we must have the torus divided up into annuli that are alternately
contained in and disjoint from the smoothing neighbourhood. Let A be a curve in this
torus intersecting each of the boundary curves of these annuli exactly once. Let X be a
closed geodesic (cone metric) in M freely homotopic to X. It is easy to see that X must
intersect the cone locus (otherwise the torus could be homotoped off of the cone locus).
Let r be the maximum radius such that the uniform neighbourhood of the union of X
and the cone locus is a regular neighbourhood and consider now the smoothing of
radius r/2.

In this smoothing, any geodesic freely homotopic to X must have the same
intersection pattern with the smoothing neighbourhood that X has with the cone locus.
This follows from a convexity argument similar to the one used in the proof of Lemma
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1.3. One obtains a regular neighbourhood of X which is an immersion of a convex (in
either metric) solid torus.

Thus, the totally geodesic (smooth metric) torus homotopic to S has an intersection
pattern around its longitude that is the same intersection pattern possessed by the cone
geodesic 1. In particular, if we "straighten out" this torus, the dihedral angles at each
intersection of two annuli are ^ n on both sides. Thus, the straightened torus is in fact
totally geodesic in the cone metric. •

2. The figure eight knot

The relevance of Euclidean cone manifolds to the figure eight knot becomes clear
when we observe that:

Lemma 2.1. S3 admits a Euclidean cone manifold structure with cone locus the figure
eight knot and cone angle 2n/3.

Proof. Consider the tesselation of E3 by rhombic dodecahedra (see Fig. 2.1).
To see that these do indeed tesselate E3, observe that a rhombic dodecahedron may

be constructed from two cubes of equal size by cutting one cube into six isometric
pyramids with apex at the centre of the cube, and then gluing these pyramids onto the
faces of the other cube. The tesselation is then clear—take the usual tesselation of E3 by
cubes, colour them red and blue alternately, and dissect all the blue cubes, attaching the
pyramids to the adjacent red cubes. Next, consider the Euclidean 3-manifold whose
gluing diagram is given by Fig. 2.2 (all identifications are isometric since all faces of a
rhombic dodecahedron are congruent).

We assert that this manifold is the 3-fold cyclic branched cover of S3 branched over
the figure eight knot. To see this, observe that the edges labeled 3 and 6, together with
an arc from the vertex at the centre of the diagram to the vertex at infinity are identified
into a closed loop. Furthermore, observe that rotation through 27t/3 about the arc gives
a Z3 action on the manifold with fixed-point set equal to the loop just described (one
needs merely to check that this rotation commutes with the identifications on the
polyhedron). Also note that, due to the identifications on the polyhedron, this rotation
is in fact the same as a rotation about edge 3 or edge 6 (which is as it should be since
they are in the same component of the fixed point set as the axis of rotation). The
quotient of the Euclidean manifold by this group action gives a Euclidean cone
manifold (actually a Euclidean orbifold) whose fundamental domain and identifications
are given, along with some fundamental group calculations, in Fig. 2.3

To see that this manifold is topologically S3 and that the cone locus is the figure eight
knot, observe the topological realization of this diagram in Fig. 2.4. •

3. The associated 2-manifold

By combining the results of the previous two sections, we see that any branched cover
of S3, branched over the figure eight knot, with minimum branching index 3, has a
Euclidean cone manifold structure with all cone angles greater than 2n, and thus
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FIGURE 2.1

FIGURE 2.2

Lemma 1.4 tells us that all of the injectively immersed tori are in fact homotopic to
totally geodesic tori. In particular, if we base the exponential map at a point on the lift
of such a torus to the universal cover of M (which we denote by M), we have that the
lift of the torus is in the image of the exponential map (being totally geodesic) and that
such a torus corresponds to a 2-plane in E3 which

(a) misses (at least with regard to transverse intersections) all of the "bad" line
segments (that map to the cone locus of M) and

(b) has compact image in M (via the composition of the exponential map with the
covering map).

https://doi.org/10.1017/S0013091500018356 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500018356


INJECTIVELY IMMERSED TORI IN BRANCHED COVERS

. A •
. AM

taw*- t *W ^ ^

| |= cone locus

a = loop through A,
b&ck through A'.
Similarly for b^c^d.

xj(M — cone locus)

239

HGURE 2.3

all identifications
are on dB3.
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in the interior. c
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to yield S3.

HGURE 2.4

At this point, we have two distinct cases to consider, depending on whether or not
there is any cone locus in our branched cover M. If there is no cone locus, then any
plane satisfying (b) will automatically satisfy (a). In the case of branched covers over the
figure eight knot with all branching indices equal to 3, (b) is always satisfied by any
plane having a normal with rational coordinates relative to the coordinatization given
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above (since translation by 2 in the principal directions is an orbifold deck transforma-
tion of the figure eight knot orbifold structure, any such plane has compact image in S3.
Since the branched covering is a proper map, this plane must have compact image in
M, also). Thus, when all branching indices are equal to 3, there are always injectively
immersed tori in M.

Now, consider the case in which the cone locus of M is nonempty (the remainder of
this paper will be occupied with this case). The following lemma allows us to restrict
our search to tori that contain a component of the singular locus.

Lemma 3.1. Let M be a Euclidean cone manifold with nonempty, compact cone locus
which has all cone angles > 2n and let S be an injectively immersed torus in M. Then, S is
homotopic to a torus T which contains some component of the cone locus of M.

Proof. First, by Lemma 1.4 we may assume that S is totally geodesic and flat, and
thus contains any component of the cone locus that it intersects. So, if S actually
intersects the cone locus of M, we're done. Therefore, assume that S is disjoint from the
cone locus of M. Let x be the minimum distance between S and the cone locus of M.
Lift S to a plane P in M, the universal cover of M. Then, the uniform r-neighbourhood
of P contains no cone locus and hence is a flat "slice" of M. Clearly, S is homotopic to
the image in M of either boundary component of this neighbourhood. Furthermore,
these contain a component of the cone locus of M if they intersect transversely, the cone
locus would penetrate the r-neighbourhood, in violation of the definition of r). Let T be
the image in M of either of these boundary components. •

Thus, to find a "canonical form" for injectively immersed tori in M (where M is a
branched cover over the figure eight knot with minimum branching index 3) we will
homotope the torus to a totally geodesic torus containing some component of the cone
locus, which will cut the torus up into totally geodesic annuli. We should note that such
a "canonical form" is not, strictly speaking, canonical. When we have a totally geodesic
torus which is disjoint from the cone locus, there are two possible directions in which it
may be translated, and these give rise to distinct (but homotopic) tori which are cut up
into totally geodesic annuli by intersections with the cone locus. We will discuss the
resolution of this ambiguity in Section 6. Our next question, however, is when such
annuli exist, or equivalently, when two components of the cone locus in the universal
cover of M may be joined by an infinite flat strip (the universal cover of an annulus). To
answer this question, we will work in E3, or rather, the domain of the exponential map
of M, the universal cover of M.

Suppose that we are given a component Co of the cone locus of M, and we wish to
determine which other components of the cone locus cobound, together with Co, an
infinite flat strip which does not intersect the cone locus except at its boundary (we will
call this a simple strip). Let us base the exponential map at a point on Co. Recall that
the domain of definition of the exponential map based at a cone point is a subset of the
cone manifold homeomorphic to IR3 with a single line of cone locus. Let us call this
manifold N. Note that, generally speaking, N is no more difficult to work with than E3,
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X
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X

FIGURE 3.1. Note: only the left picture is conformally correct.

because there is no interaction between various components of the cone locus, Working
in N, we see that any component of the singular locus which cobounds a simple strip
with Co has a preimage in N parallel to Co. Consider now the projection of N to a
plane P orthogonal to the preimage of Co (and to the other component, as well). Note
that this plane will be Euclidean with a single cone point. Let this projection be denoted
n: N-*P. Recall that the complement of the domain of the exponential map consists of a
number of generalized half-planes. Denote by S the subset of P consisting of the
projected images of the generating segments of these generalized half-planes. S consists
of line segments (corresponding to portions of the cone locus not parallel to Co) and
isolated points (corresponding to components of the cone locus parallel to Co) and is a
subset of the set consisting of the edges and centres of the hexagons in the tesselation of
P by equilateral hexagons and triangles (there is also one equilateral 2n-gon, where
2nn/3 is the cone angle at Co—see Fig. 3.1). Let So denote the union of the isolated
points of S. Then, the other components of the singular locus of M which cobound a
single strip with Co are the preimages under n of the points of So such that the interior
of the geodesic segment from ij/{C0) is disjoint from S. Two simple strips with a
common boundary component can be combined into a geodesic strip precisely when the
projection at this common component of the come locus consists of geodesic segments
which meet with angles S; n on each side (measured in the normal cone 2-manifold).

It is convenient at this point to introduce the notion of an elemental strip. An
elemental strip is an infinite flat totally geodesic strip in M cobounded by two adjacent
components of the preimage in M of the figure eight knot (that is, the lifts to M of the
singular locus of M). By adjacent, we mean that the distance between them is the
minimum distance possibile for parallel components of the preimage of the figure eight
knot. An elemental strip corresponds to a segment from the centre of a hexagon to the
centre of an adjacent hexagon in Fig. 3.1.

Next, we observe that we may construct a (disconnected) 2-dimensional Euclidean
cone manifold with boundary that encapsulates all the information necessary to decide
whether or not there exists a geodesic strip cobounded by any two given components of
the cone locus of M. We will refer to this as the associated 2-manifold of M and
construct it as follows: For each component C of the preimage in M of the figure-eight
knot, take an equilateral polygon with In sides, where 2nn/3 is the cone angle at C (may
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be 2n). This equilateral polygon will be metrically a Euclidean cone manifold with (at
most) a single cone point with cone angle 2nn/3 at the centre, and corresponds to the
central polygon of the normal cone manifold in the domain of the exponential map,
based at some point on C. We then glue together (at their vertices, not their edges)
polygons corresponding to components of the figure eight knot which cobound
elemental strips, in a fashion which respects the obvious ordering of the elemental strips
around a component of the cone locus and respects the orientation of each polygon by
the normal direction it inherits by lifting an orientation of the figure eight knot. At this
stage, we have the "hexagons" in our tesselation taken care of, and just need to add the
triangles (which are really triangles since there is no cone point in the interior of a
triangle in Fig. 3.1). We do this by gluing in an equilateral triangle on "both sides" of
any vertex along which two polygons are glued. That is, at any vertex where two
polygons are glued, the ordering of the elemental strips and the orientation on the
polygons fixes two pairs of edges (one edge from each polygon in each pair) which are
on the same side of the vertex, and we will glue in a triangle at each such pair of edges.
We will identify any two such triangles that share a common edge. This construction
produces a Euclidean cone 2-manifold with boundary. The boundary consists of edges
of the polygons, neither of whose endpoints correspond to an elemental strip, together
with the free edges of any triangles which are incident on only two polygons.

By construction and our remarks above, two components of the cone locus of M
cobound a geodesic strip if and only if there is a geodesic in the associated 2-manifold
joining the centres of their corresponding polygons. In fact, as the following lemma will
show, they cobound a geodesic strip if and only if their polygons are in the same
component of the associated 2-manifold.

Lemma 3.2. The associated 2-manifold of M, a branched cover over the figure eight
knot with all branching indices > 3 is convex and each component is simply-connected.

Proof. Convexity first: Since the boundary of the associated 2-manifold is piecewise
geodesic, it suffices to verify that, when measured from "inside" the associated 2-
manifold, all corners have angle ^ n. Since the boundary consists of two distinct kinds
of edges (free edges of polygons and free edges of triangles), we have three kinds of
corners to consider. For the moment, let us assume that polygons share a vertex only
when there is an elemental strip between them (by construction, if there is an elemental
strip then they share a vertex, but we have not shown the converse yet).

Polygonal-polygonal corners: any two polygonal boundary edges that meet at a
corner must be consecutive edges of the same polygon, since, if they belonged to
different polygons, two triangles would have been glued in at that vertex and neither of
the edges in question would have been on the boundary. Consecutive edges of the same
polygon meet at an angle of 27i/3 when measured from the centre of that polygon.

Polygonal-triangular corners: inspection of Fig. 3.1 shows that these corners all meet
at an angle of n.

Triangular-triangular corners: this is the only nontrivial case. It suffices to show that
if a polygon, Po, is joined to two other polygons, P t amd P2, at vertices which are
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separated by only one vertex, then Po is also joined to a polygon P3 at the intervening
vertex. This will show that there are no triangular-triangular corners, since any such
corner would necessarily involve two different triangles (by construction, a triangle has
at most one free edge). So suppose that POl Pu and P2 are configured in this way and
there is no elemental strip from the centre of Po through the vertex between the two
vertices where Po is joined to the other two polygons. Consider the exponential map
based at a point on the component of the singular locus of M corresponding to the
centre of Po. The domain of this map contains an infinite prism isometric to Po x U.
The fact that there is no elemental strip in the direction of the vertex in question (call it
u3), implies that there is some component of the cone locus of M which intersects the
corresponding line v3 x U. Now, a component of cone locus remains "visible" (in the
domain of the exponential map) at least until it passes "behind" another component of
the cone locus. In particular, any components of the cone locus that intersect v3 x U.
traverse one or the other (depending on their slope) of the faces of PoxU that is
incident on v3 x U. So, one of the adjacent v( x U intersects this same component of cone
locus. But there are elemental strips containing each of these lines, so they can't
intersect the cone locus at all. Thus, there must be an elemental strip through v3 x U as
well.

Now, this argument also shows that no two vertices of polygons are "accidentally"
identified. That is, if any two vertices of polygons are identified because they are
identified to the same vertex of a triangle, then they are also identified because there is
an elemental strip through that vertex. This is because the nonexistence of an elemental
strip implies the existence of some cone locus which would be positioned so as to
necessarily rule out the existence of one or the other of the identifications at the other
two vertices of the triangle (which are both necessary to force such an "accidential"
identification).

With convexity proven, it is an easy matter to show simple connectivity, since we
need only show that there are no geodesic loops in the 2-manifold. But this is clear,
since a geodesic loop in the 2-manifold would imply the existence of a geodesic segment
in M whose endpoints are on the same component of the cone locus, but its interior is
disjoint from that component of the cone locus. This would imply, in a suitably tight
smoothing of lft, the existence of two distinct geodesic segments with the same
endpoints, contradicting the Cartan-Hadamard theorem. •

The connection between tori in M and geodesies in the associated 2-manifold is as
follows: to each polygon of the associated 2-manifold there corresponds a component of
the singular locus of M. Each component of the singular locus of M covers a
component of the singular locus of M. Label the polygons of the associated 2-manifold
with numbers from 1 to k, where k is the number of components of the singular locus of
M, using this correspondence. Then an injectively immersed torus in M correspnds to
an infinite geodesic in the associated 2-manifold of M which "repeats" in the sense that
the pattern of labels of the polygons which are intersected by the geodesic repeats.

It should be noted here that most totally geodesic tori can be homotoped to one of
their canonical forms (the tori containing components of the cone locus) simply by
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FIGURE 4.1

parallel translating the corresponding geodesies in the associated 2-manifold. This is not
universally true, however: it is possible to encounter a geodesic boundary component of
the 2-manifold before encountering any cone points in the 2-manifold. In such a case,
the boundary geodesic corresponds to a geodesic in another component of the 2-
manifold that does pass through a cone point. It we wanted to be able to realize any
homotopies of totally geodesic tori inside the 2-manifold, we would need to identify
these boundary components to the corresponding geodesic in the other component of
the 2-manifold, creating a 2-complex. We will not take this approach, but we will have
more to say about this subject near the end of Section 5.

Thus, we have succeeded in reducing questions about tori in 3-manifolds to questions
about geodesies in 2-manifolds. Our next task is to answer the 2-dimensional questions
from the monodromy of M.

4. The elemental strip condition

In this section, we will derive a condition for determining, from the monodromy of
M, whether or not an elemental strip exists at any point in M.

Consider first E3 in its tiling by fundamental domains of the orbifold structure on the
figure eight knot. It is clear that a plane containing an elemental strip must either
contain face A (of some fundamental domain) or bisect the angle between face A and
face A'. So, let us consider all the ways such a plane can intersect other fundamental
domains of the tiling. Note that an elemental strip only intersects the cone locus on its
boundary, so if an elemental strip exists, its intersection pattern with these fundamental
domains is in fact exactly like the intersections in E3 where there is no cone locus.

There are eight combinatorially distinct ways that a plane containing face A or
bisecting faces A and A' can intersect other fundamental domains. These are pictured in
Fig. 4.1.

To see that these are, in fact, all of them, we observe that these regions glue together
as described in Fig. 4.2 to give a four-punctured annulus in S3 — K. Thus, we may
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FIGURE 4.2. Bold lines denote non-transverse intersection with the singular locus. * Denotes a transverse
intersection with the singular locus. Dashed lines indicate homotopic reference paths.

extend our plane in any direction without leaving this set of intersection patterns (note,
however, that we have suppressed one of each pair of patterns which are faces of the
fundamental domain, e.g., face A is listed, but not face A').

Perhaps a few words of explanation are in order about Fig. 4.2: this graph is the dual
graph to the tiling of the annulus by the regions given in Fig. 4.1. The reason why this
is the object of interest is that the monodromy can be used, together with this diagram,
to calculate which fundamental domains in M contain each piece of the tiling of a given
strip, and thus what the cone angles are at each intersection with the singular locus.

Since each of the eight planes occurs exactly once in our four-punctured annulus, we
may take any one of them as our reference point in stating our conditions for existence
of elemental strips. We will consider plane 1 (asee Fig. 4.1) as the reference point. Let us
fix as our basepoint in S 3 - X a point x0 on plane 1 which is not in any of the other 7
planes. Then, if we denote by x0>xl,...,xd_1 the d points of M in the pre-image of x0,
we can consider the problem of whether or not our annulus in S3 can be lifted to an
annulus in M at any of these d points. This is equivalent to deciding which elemental
strips exist in M.

Let us say that a lift of plane 1 at x̂  is an acceptable lift if the interior of the entire
parallelogram region depicted in Fig. 4.2 can be lifted at that basepoint without
intersecting the cone locus (in other words, the four punctures all correspond to the
locus of threefold branching). By examining Fig. 4.2, we see that there is an acceptable
lift at xk if and only if (recall that q> is the monodromy of M and that we are writing
permutation actions on the right)

keF(M) = fix(<p(d3))<p(a ~lcab~l)n fix(q>(d3)) q>{b~l)

n fix(cp(a3))(p(b-') n fix(q>(a3))<p(cab-l)

Now, we consider the problem of whether or not a sequence of such acceptable lifts
will actually close up into an annulus. This will happen for a lift at xk if and only if
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fee G{M) = { j | orbit{(q>(ba- 1c~ lad)y, j) c F(M)}

Furthermore, the set of "other boundary components" (taking plane 5 as the reference
point for the other side) of such annuli is G(M)(p(bd~l).

We will summarize the results of this section in a lemma, for which we need the
following:

Definition. A potential elemental strip is an ordered pair (C, V) where C is a
component of the singular locus of M, and V is a normal vector to C in one of the 2k
possible directions for an elemental strip (where 2kn/3 is the cone angle at C). Each
potential elemental strip is either a primary or secondary potential elemental strip
depending on whether the vector V lies on or bisects (respectively) the A, A' faces in the
tesselation of M by fundamental domains for S3 — K. Note that an elemental strip
always has one side corresponding to a primary potential elemental strip and the other
corresponding to a secondary elemental strip and that each potential elemental strip can
be labelled with a subset of {0, l,...,d—l} by taking the labels of the set of "plane 1"
(primary) or "plane 5" (secondary) planar pieces in M which are covered by the
potential elemental strip.

With this definition, we can state the following:

Lemma 4.1. / / M is the universal cover of M, a branched cover of S3, branched over
the figure eight knot, with all branching indices ^ 3, then a potential elemental strip in M
corresponds to an actual elemental strip if and only if its label set is a subset of G(M) in
the case of primary potential elemental strips or G(M)tp(bd~l) in the case of secondary
elemental strips.

5. Flat graphs

So, we now have a condition, in terms of the monodromy, for deciding on the
existence of an elemental strip. Let us now consider the problem of finding the
"repeating" geodesies in the associated 2-manifold that correspond to tori in M. Our
plan of attack on this problem will again be a dimensional reduction. We will define a
graph and a map taking paths in the associated 2-manifold to paths in the graph such
that geodesies in the associated 2-manifold are taken into an algorithmically recogniz-
able class of paths in the graph. Furthermore, "repeatable" geodesic segments (i.e.
segments that are the basic period for a repeating geodesic) are readily recognizable in
the graph and there is a universal upper bound to the length of a nonrepeatable
geodesic image segment in the graph. This enables us to obtain a terminating algorithm
for finding any tori that are present by enumerating all paths in the graph of length less
than this upper bound and checking whether there are any that are repeatable, thus
corresponding to repeating geodesies in the associated 2-manifold and to tori in M. In
fact, we can do better than this in terms of efficiency: the class of paths that are possible
images of geodesies in the associated 2-manifold is not only algorithmically recogniz-
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FIGURE 5.1

able, it is algorithmically enumerable, so we can limit our search significantly by simply
enumerating all of the paths of this class which have length less than the upper bound.

We will begin by making the following:

Definition. A flat graph is a graph whose vertices are oriented polygons and whose
edges are line segments joining two polygonal faces (see Fig. 5.1) such that each face of
a vertex is incident on at most one edge.

Note that a flat graph is much like a "fat graph" except that there are "stumps" in a
flat graph, that is, unattached edges of the polygonal vertices. It will be clear
momentarily why we need to know not only in what order the edges occur around a
vertex (which would be encoded in a fat graph) but also how many "stumps" occur
between edges.

Now, in addition to the 2-manifold associated to M (and closely related to it), we will
construct an associated flat graph, which will be compact, and which will also, as we will
see, encode all of the information necessary to find tori in M or to determine
atoroidality.

To construct the associated flat graph of M, take one polygon with 2k sides for each
/c-cycle in cp{a). If this cycle is (ala2...ak) then label the sides of this 2fc-gon — al,
+ alt —a2, +a2,..., —ak, +ak in clockwise order around the polygon. Take the disjoint
union of these polygons over all cycles in <p(a). Then, for every edge labelled + i where
ieG(M) (see Section 4), join +i to - i^ (M" ' ) .

Now, there appears to be an obvious mapping from paths in the associated 2-
manifold to paths in the flat graph (although some care must be taken in making this
well-defined for nongeneric paths that intersect some polygon only in one of its
vertices—we will make the convention that we perturb such paths slightly to the right
before mapping it to the flat graph). That is almost true, but not quite! In fact, it is a
one-to-many mapping, since there may be more than one cycle in cp(a) for each
component of the singular locus in M. This is because of the possibility of "longitudinal
wrapping" in which a component of the singular locus of M nontrivially covers the
figure eight knot in S3. However, all of the properties in which we are interested are
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FIGURE 5.2

equivalently true for any of these mappings, so if we allow this "mapping" to be a multi-
valued function, it will in fact cause us no difficulties. Let us denote this mapping by r\.
Denote by G the set of geodesic segments in the 2-manifold with endpoints at centres of
the polygons in the 2-manifold. We would like to be able to recognize >;(G)
algorithmically. We will not, however, do exactly that. Instead, we will describe an
algorithmically recognizable class, F, of paths in the flat graph which contains t](G).
Furthermore, we will show that paths in F give rise to paths in G.

To describe F, we first observe that, in a flat graph, a path may be described
completely by specifying an initial (oriented) edge and a sequence of "turns" where each
turn specifies how many faces apart the entering and exiting edges are at each
intermediate vertex. Each turn may be measured in either the positive (clockwise with
respect to the orientation of the vertices) or negative direction (see Fig. 5.2). If the
particular vertex under consideration has k faces, then + j is the same turn as —(k — j).

To describe the class of paths F, we will describe a finite-state automation, which,
when presented with paths in the form just described (initial edge, followed by a
sequence of turns) "accepts" some paths and "rejects" others. The class of paths
accepted by this finite-state automaton will be defined to be F.

The finite-state automaton has 6r states where r is the number of edges in the flat
graph. Each state consists of an ordered pair (c,m) where e is an oriented edge in the
flat graph and me}-1,0, + 1}. If the initial oriented edge of the path is e0, then the
initial state of the automaton is (e0,0). Thereafter, the following rules determine the state
transitions from state (ek,mk) to (ek + l,mk+1) under a turn tk where tk is an integer
modulo nk, the number of edges at the terminal vertex of ek:

(1) ek + 1 is the obvious edge obtained by making the required turn. If this edge does
not exist in the graph, then REJECT.

(2) if tk = 0, ±1 then REJECT.

(3) if mk=0 and tk= ±2, then mk + 1 = +1.

(4) if mk= ± 1 and tk= ±2 (same sign), then REJECT.

(5) if mk= ±1 and tk=+2, then mk+l = + l.
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(6) if mk = ± 1 and tk = + 3 (same sign), then mk +1 = + 1.

(7) if none of (2)-(6) apply, then mk+l=0.

If the end of the path is reached without a rejection, then the path has been accepted
by the finite-state automaton and is in F.

Hereafter, we will, by a slight abuse of terminology, also refer to the second
coordinate of the state pair as the state of a path at a vertex. It will be clear from the
context whether we mean for "state" to include both coordinates or just the second.

Lemma 5.1. r](G) c F.

Proof. First, note that r\ of any path in the associated 2-manifold will never be
rejected on account of rule 1 above—that rule is just for rejecting turn sequences that
don't even correspond to paths, much less geodesies. Now, a geodesic segment in G has
the following structure: it consists of a number of Euclidean geodesic segments between
cone points (that is, segments that have a neighbourhood in which there are no cone
points except for the cone points at the ends) which meet in such a way that the angle
on each side is ^n. Now, each Euclidean geodesic segment has the property that r\
maps it to a path in the flat graph that is identical to the path of a line segment in the
"no cone point" tiling on the left in Fig. 5.1. These segments are all accepted by our
finite-state automaton since each turn in these segments is either a +3 (whichever it
takes to remain on the proper side of the cone point centres of the polygons) or a ±2,
where the +2 and —2 turns alternate (possibly with some intervening +3 turns). The
state variable thus has the geometric significance of remembering the sense of the last
change of direction.

Now, when our path goes through a cone point, the last edge and the state determine
(together) a n/3 sector in which the initial point of this Euclidean segment might lie (to
an observer at the terminal cone point). If this cone point has cone angle 2kn/3, then
the next polygon along a geodesic can be any one of 2k — 4 polygons. All of these but 2
are completely unconstrained, that is, any Euclidean segment that starts out into that
polygon will necessarily make an angle of n or more on each side of the cone point.
This corresponds to "state 0." The other two polygons are such that only Euclidean
segments that lie to one side or the other of their centre correspond to geodesic
continuations of the previous Euclidean segment, and these are precisely what will be
enforced by the finite-state automation. See Fig. 5.3 for an example of this where k = 4.
In this figure, the shaded areas are the sectors in which the previous cone points must
lie, which are determined by the state: +1 has the shaded sector to the left of the edge,
and state — 1 has the shaded sector to the right of the edge. In state 0, all previous cone
points are accessible only by first retracing the last edge (they are all "hidden" behind
the most recent cone point). In state 0, there are 2k — 3 possible continuations of the
path which lie in F.

Thus, we see that any path on G is mapped by t] into F. Further, it does not matter
which "value" of tj we use in this argument (since the graph is defined in a manner
which is equivariant with respect to longitudinal translation), and we get our first
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FIGURE 5.3

FIGURE 5.4

confirmation of the assertion made earlier that the fact that n is multi-valued will cause
us no problems. •

It is tempting to hope that our finite-state automaton is a "geodesic recognition"
automaton, but this is not the case: there are many paths in F that are not the images
under n of any geodesic in G. To see this, consider Fig. 5.4.

The heavy path in Fig. 5.4 is in n(G). However, the light paths also map under n to F.
This is a situation that happens quite generally, as the following lemma suggests:

Lemma 5.2. In the flat graph associated with a branched cover over the figure eight
knor, if Si and S2 are any sequences of turns, then, with any initial edge whatsoever,
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FIGURE 5.5

if and only if

l ,+2,fc-l ,S2>eF

Proof. The two paths are situated as pictured in Fig. 5.5, where the "upper" path is
(Suj, -2,k,S2}.

Now, it is clear from a routine case-by-case verification, based on the states before
and after the j (resp. j+l) turn (the state after the ±2 is always ±1) that the only
possible problem would be that one path or the other would simply fail to exist in the
flat graph, i.e., only rule 1 is a problem. And, indeed, in a general flat graph, the
existence of one of the two paths does not imply the existence of the other. However, the
flat graphs that arise from our construction from a branched cover are special; the proof
of Lemma 3.2 shows us that two special conditions are true in these flat graphs:

(1) At a vertex Vo, if et and e2 are two adjacent edges with other vertices Vt and V2

respectively, then Kj and V2 are joined by an edge e3 which is mutually adjacent
to ex and e2 at Vt and V2, respectively (this is equivalent to the observation that
no two polygons are "accidentally" identified in the 2-manifold).

(2) At a vertex Vo, if ex and e2 are two edges with only one possible intervening edge,
then there is an actual edge e3 between et and e2 (this is equivalent to the
observation that there are no triangular-triangular corners on the boundary of
the 2-manifold).

Thus, the existence of the edges of the upper path implies the existence of the edge
that bisects the parallelogram (condition 2) which then implies the existence of both
edges of the lower path (condition 1 used twice). Similarly, the existence of the edges of
the lower path implies the existence of the edges of the upper path. •
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This lemma tells us that any path in F which contains a ±2 turn gives rise to a path
in F which is not in n{G) (since the two paths have the same endpoints and thus at
most one of them can be in n(G)). However, (as the following lemma will show) it is
true that repeatable paths in F give rise to repeatable geodesic segments in G. Our
method of proving this will be to alter an arbitrary repeatable path in F to a path in
n(G) by using moves of the type described in Lemma 5.2, then to show that this path
"lifts" to a repeatable geodesic segment in the 2-manifold. Let us first formalize the
definition of "repeatable":

Definition. A subpath of a path in F is said to be repeatable if its initial and terminal
oriented edges are the same and are traversed in the same state. A geodesic segment g in
G is said to be repeatable if g passes through a cone point, r\(g) is closed and there is a
geodesic segment h in G such that n{h) = n{g)r\(g).

The reason for taking subpaths in F is that all paths begin in state 0, whereas this is
not true for subpaths of these paths. This enables us to have more control over where a
subpath is allowed to go (e.g., any lift of a subpath that starts in state +1 must stay "to
the right" of its initial edge) in a technically convenient way. The cone point condition
for repeatable segments in G only rules out the geodesies that do not correspond to
"canonical" tori in the sense of Lemma 3.1.

Lemma 5.3. There exists a repeatable subpath of a path in F if and only if there exists
a repeatable geodesic segment in G.

Proof. The "if" portion of this lemma is clear from Lemma 5.1 together with the
following observation: if g e G is repeatable, then there is also a geodesic segment k e G
such that tl(k) = n(g)n(g)n(g). Then, the subpath of n(k) consisting of the middle n(g)
together with the initial edge of the last n(g) is a repeatable subpath in F.

For the "only if" part, we will first need a number of technical definitions and
observations.

First, note that any path in F has the property that it is also in F when traversed
backwards (the automaton essentially only rules out paths that make 0 or ± 1 turns or
consecutive ± 2 turns of the same sign without an intervening turn larger than ± 3—in
this form it is clearly symmetric). Let us denote this path by p.

Now, given a path p in F, we will define its inflections to be the vertices at which
either p or p re-enters state 0. A subpath between two inflections will be called an
elementary subpath. Note that an elementary subpath consists entirely of ±2 and +3
turns. It will be technically convenient to always include the endpoints of a path (or
subpath) in the set of inflections.

Given an elementary subpath q of a path p in F, we can define a turn sequence t(q) as
follows: in the flat tesselation (no cone points) given in Fig. 5.1, trace out a path given
by the turn sequence of q (using only + 2, ± 3 turns), then straighten it to a geodesic g.
t(q) is the turn sequence of this geodesic g (again using only ±2, ±3 turns). Note that it
is possible that the initial edge of g is different from the initial edge of the "lift" of q to
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the fiat tesselation. Because of this, we will prefix to this turn sequence a turn describing
the difference between these two edges (this turn will be a 0 or +1 turn but will really
be a way of specifying the initial edge of the geodesic turn sequence). Note that t(q)
need not be in F simply because it need not correspond to a path in the 2-manifold—it
is simply an idealized geodesic turn sequence. We make here the observation (which we
will need subsequently) that if we consider both paths to start in the only nonzero state
which will allow the first ±2 turn to take place, then each turn sequence (q and t(q))
traverses the same number of edges in each nonzero state (this is true of any two paths
in the flat tesselation which follow the rules of F and have the same endpoints).

Similarly, given an elementary subpath q, we can define its geodesic agreement number
n{q) to be the sum of the lengths of the maximal initial and terminal subpaths of q
which agree with t(q) (or its reversal). In the case where q agrees completely with t(q),
however, we will set n(q) = l(q) where l(q) is the length of q (note that the definition
without this proviso would have been 2l(q)). Note that for the purposes of determining
"agreement" we will consider the + 3 turns in t{q) to have whichever signs maximize the
agreement.

Now, define the complexity of a subpath q of a path p in F to be c(q)=(s, t) where
s = the number of non-inflection vertices of q and f = the sum of l(q') — n(q') over all
elementary subpaths q' of q. We will order complexities lexicographically.

Now, let q be a repeatable subpath of a path p e F. Suppose that q # n(g) for g any
geodesic segment in G. Then, the second coordinate of c(q) is nonzero. We will show
that we can alter the subpath q by a sequence of moves of the type described in Lemma
5.2 to reduce c{q). Thus, there is some elementary subpath q' of q and a vextex v0 of q'
where q' departs from t(q'). There are four distinct cases to consider—let tx be the turn
in q' at v0 and t2 be the turn in t(q') at v0. Then, the cases are:

(1) ti = ±3,t2=-2

(2) ^ = ±3,^=12

(3) t1 = - 2 , t 2 = ± 3

(4) ti=+2,t2= ±3

We will do case (1) in detail; the other cases are completely analogous. Since, as
observed earlier, q' and t(q') traverse the same number of edges in each state (and we
must be in state +1 for the t(q') turn to be legal) there must be some vertex t)1 in q',
later than v0, where q' makes a —2 turn. All intervening turns between v0 and vt must
be +3 since q' is an elementary subpath, so before and at »[ we have the turn sequence
±3, — 2 to which we may apply the move described in Lemma 5.2 to obtain either — 2,
+ 2 or +4, + 2. In the former case, we can repeat the move, until we have either moved
the — 2 turn all the way back to v0 or introduced an additional inflection into q. In the
first case, we have increased the geodesic agreement number of the subpath by at least 1
(note that we could not have decreased the geodesic agreement of the other end of the
subpath—this is easily seen by tracing out both turn sequences in the flat tesselation
and is left to the reader). In the second case, the introduction of an additional inflection
also lowers the complexity (although in this case the total geodesic agreement will often
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be reduced—it is essential that the coordinates of the complexity not be reversed from
the order in which we have defined it). Note that our new subpath is repeatable if and
only if the old subpath was (although we may have to alter the path in which it is
embedded also—any moves that altered the initial or terminal edges or states could also
have been done in the immediate vicinity of the opposite end to maintain repeatability).

Thus, we have a new repeatable subpath q which is ri(g) for some geodesic segment g
between two singular points in the 2-manifold. Now, suppose that q contains a real inflection
(i.e., not just an endpoint). Then, by taking a circular shift of q (possible because it is
repeatable) to place the endpoints of q on this inflection, and then repeating the
complexity reduction process just described, we see that ger](G) and that the incidence
angles when we juxtapose two lifts of g are both It n (recall the definition of an inflection
and examining Fig. 5.3). Thus, in this case we have a repeatable geodesic segment in G.

Now, when q contains no real inflections, the geodesic g only intersects cone points
incidentally, that is, in such a way that one of the two angles of incidence is n. For such
geodesies the angles between the geodesic and the incoming (resp. outgoing) edge at any
singular point it encounters are constant. Thus, the positioning within the 7i/3-width
described in the proof of Lemma 5.1 is fixed for these geodesies. Let us now consider
the situation when two lifts of q are juxtaposed: clearly the incoming and outgoing
angles are such that the incidence angles are equal to 0 modulo n/3, and then the
repeatability condition on q implies that one angle or the other is equal to n (since they
are always forced to be >2n/3 by the conditions on F and if they were both greater
than 7t then that vertex would be a real inflection). Thus, we are done, if this geodesic
passes through a cone point. If not, we may translate this geodesic in a normal direction
until we encounter a cone point or the boundary of the 2-manifold. If we encounter a
cone point, then we're done. If we encounter the boundary of the 2-manifold, then by
convexity of the 2-manifold, we must have a geodesic in the boundary of the 2-manifold.
This corresponds to a torus in M that is parallel to two distinct parallel families of
singular locus (one family corresponds to the component in which we have been
translating our geodesic, the other corresponds to the family of parallel components of
cone locus which prevent the 2-manifold from being extended past this component of
boundary). This torus, like all the others, has a canonical form in which it contains a
component of the singular locus, but its canonical form corresponds to a geodesic in
another component of the 2-manifold! (see Fig. 5.6—the two components of the 2-
manifold are depicted as locally embedded in M normal to the singular locus and tiled
by hexagons. The plane corresponding to the geodesic g may be homotoped to the
plane corresponding to the geodesic h by the indicated translation). This is the only case
in which a torus cannot be homotoped to its canonical form by using moves
corresponding to the moves in Lemma 5.2. If we wanted to eliminate this source of
ambiguity, we would need to replace the 2-manifold by a 2-complex by joining the
geodesic boundary components to the geodesies in the other component to which they
correspond (this seems an unnecessary complication! we will discuss later several
possible ways for resolving this ambiguity and finding each homotopy class of tori
exactly once). However, none of this causes us any difficulties in constructing a
repeatable geodesic segment in G in the case where q contains no real inflections.
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FIGURE 5.6

Thus, whether q contains real inflections or not, we have a repeatable geodesic
segment in G. •

At this point it is clear what our algorithm must do: it must find all the repeatable
subpaths of paths in F. Note that to find such subpaths, it suffices to examine paths in F
of length less than 6fc +1 where k is the number of edges in the flat graph, since that is
the number of distinct states of the automaton. If our automaton ever repeats a state, it
has found an injectively immersed torus in M. In particular, we have an a priori upper
bound on the number of paths in F that we need to consider, which is a crucial part of
Theorem 6.1, which we have now proven and will proceed to discuss.

6. Description of the algorithm

At this point, we have proven:

Theorem 6.1. Let M be a branched cover of S3, branched over the figure eight knot,
such that all branching indices of M are ^ 3. Then, there exists an effective algorithm for
deciding whether or not M admits any n ̂ injectively immersed tori, and for constructing
any that exist.

A few words of summary are in order here to describe precisely how the algorithm is
implemented. The algorithm is presented with the branched cover in the form of a
monodromy representations from nl(S

3 — K)->Sd (specifically, two permutations corres-
ponding to the two fundamental group generators a and c in the presentation derived in
Fig. 2.3). From these two permutations, the set G(M) is calculated using the elemental
strip condition derived in Section 4. The flat graph is then constructed from G{M) and
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the monodromy and the path length bound is calculated. Then, the paths in F of length
less than the bound are enumerated and the repeatable subpaths are listed. Each one of
these corresponds to an injectively immersed torus in M and all such tori correspond to
some repeatable subpath (if we allow these "short" subpaths to be combined in the
obvious way into "long" repeatable subpaths which exceed the path length bound). If
there are no repeatable subpaths in F, then M is atoroidal.

It is of course of interest to decide which of these tori are actually embedded
(although this is of somewhat reduced importance in light of the results of Gabai and
Casson mentioned in Section 0). It is known that a smooth minimal torus homotopic to
an embedded torus is either embedded or double covers an embedded one-sided surface
[3], so that the "embeddedness" of a given homotopy class of tori can be checked from
its minimal representative. We will show an example of this in Section 7. Note, however,
that we must be allowed to adjust our totally geodesic maps in the vicinity of the cone
locus (essentially we just take a smoothing and use the lemmas of Section 3) since these
tori are only piecewise smooth. We remark that whether or not a given repeatable path
corresponds to an embedded torus is also algorithmically decidable—one first decom-
poses the torus into pieces of the form detailed in Fig. 4.1, then checks to see that any
that intersect do so only along their edges, and finally that these edges may be "pulled
apart" by checking the types of turns involved at an edge.

The algorithm as we have described it so far is not perhaps as sharp as one might
like, since the correspondence between tori and repeatable subpaths is many-to-many.
However, the ambiguities are readily resolvable in the sense that the algorithm may be
"post-processed" to obtain a unique torus in each homotopy class. We may do this by
declaring two repeatable subpaths to be equivalent if they differ by a "Lemma 5.2
move", a circular shift, the action of (p(ba~ic~iad) or a translation (where this includes
the jump between components illustrated in Fig. 5.6). Then, each homotopy class of tori
corresponds to an equivalence class of repeatable subpaths under this equivalence
relation.

It should be mentioned that in [10], another algorithm was described for finding
these tori when they exist, but that algorithm did not terminate when the branched
cover was atoroidal. The present algorithm not only terminates for any branched cover,
but is much more efficient than the other algorithm in any event—this algorithm can
frequently be applied "by hand" as we will see in the next section, whereas the other
algorithm was really only suitable for machines and gave no real insight as to the
overall structure of M in the way that the associated 2-manifold and flat graph do.

7. Examples

We will conclude with two examples of covers to which this method is applicable,
taken from the list (exhaustive up to degree ten) in [4]. Hempel's presentation of the
figure eight knot group. </i,x,y: fixfi~1=xy~i,fiyn~i=y2x~i}, is quite similar to the
one obtained in Fig. 2.3, the isomorphism being given by
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FIGURE 7.1
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Our two examples are numbers 43 and 37 in [4] which have branching indices (3,3,4)
and (3,7) respectively (call them Mx and M2). The monodromy homomorphisms are as
follows (the group is generated by x and n):

<p1:xi->(052497)(l)(3)(68) jih->(021)(347)(5698)

?2:xi-»(0356)(l)(2487)(9) / I I ->(021)(3758496)

Using our criteria, we compute that Mt has an injectively immersed torus, while M2 is
atoroidal. Doing these examples explicitly will help clarify the torus-finding algorithm.

First, we must find determine which elemental strips exist. For the first example, we
compute that F(M1) = {6,8}, so that acceptable lifts of the parallelogram in Fig. 4.2 exist
at x6 and xs. Now, <p(fta-1c~1a<i) = (012)(374)(59)(68) and so G{M1) = F(Ml). There-
fore, our graph will have two edges, with heads marked 6 and 8 and tails marked
6(p(bd~l) = 5 and 8<p(W"1) = 9. Examining <p(a) tells us how to label the polygons
(vertices) and the resulting flat graph in given in Fig. 7.1. Traversing either edge
repeatedly in state 0 gives a repeating geodesic and both of these corresponding to the
same torus (since q>(bd~l) interchanges these two edges). Furthermore, these repeating
geodesies may be pushed off the cone locus to be disjoint from each other as described
in Section 6, and thus the self-intersection along the cone locus is not essential.

In the second example, atoroidality is clear, since F(M2) = 0, so the graph has no
edges (and hence no closed geodesies!).

By doing a bit more work with Fig. 4.2, one can show that Ml is a Haken
manifold—the torus found consists of two pieces of each type in Fig. 4.1, and they occur
in the following fundamental domains: domain 0 contains pieces 2, 3, and 6; domain 1
contains pieces 4 and 8; domain 2 contains piece 7; domain 3 contains pieces 4 and 8;
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domain 4 contains pieces 2, 3, and 6; domain 5 contains piece 5; domain 6 contains
piece 1; domain 7 contains piece 7; domain 8 contains piece 1; domain 9 contains piece
9. In particular, no domain contains intersecting pieces (except for intersections along
the cone locus which we have observed are inessential), thus the torus is homotopic to
an incompressible surface. So, this manifold is Haken (irreducibility comes from Lemma
1.2). Hempel asserts that its fundamental group is isomorphic to that of the union of a
trefoil complement and the twisted /-bundle over the Klein bottle glued along their
boundary, thus (since Haken manifolds of the same homotopy type are homeomorphic
[15]) this manifold is homeomorphic to the union of two Seifert-fibred spaces glued
along an incompressible torus. In [10], conditions are derived which predict that if this
manifold decomposes into two Seifert-fibred spaces that they must have E3 geometry
and H2 x IR geometry and this is indeed the case for these two.

The second manifold, M2 is atoroidal and irreducible, and thus is believed (but not
asserted) to be hyperbolic.

Note also that these methods apply to any link in S3 which is the singular set of a
Euclidean orbifold, the only real differences being in the details of the construction of
the associated 2-manifold and flat graph as well as differences in the elemental strip
condition. There are 9 such links [1] (not counting the figure eight knot) and these will
be treated in a subsequent paper [9]. In some sense, the results obtained for the other
links are stonger than for the figure eight knot since most of the other links have 2-fold
branching rather than 3-fold branching in their orbifold structure (thus, the require-
ments on the branching indices are less restrictive).
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