
Vol. 18  No. 2 INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY 81

The Calculus of Transmission
R. Michael Massanari, MD, MS

Model building is the art of selecting those
aspects of a process that are relevant to the question

being asked.

—JH Holland1

Models are used to explain complexity in the real
world. Models are useful insofar as they provide some
understanding of reality and our collective experience.
To illustrate, professionals responsible for the control
of nosocomial infections in healthcare institutions
employ a variety of barrier techniques to prevent the
spread of transmissible pathogens. These techniques
are extrapolated from models that describe our under-
standing of the processes of transmission. The models
are based on the empirical observations of experts and
often lack explicit, objective evidence to validate the
model. Nevertheless, the models provide an under-
standing of current reality and support a belief system
that determines our behavior when confronted with
the complex circumstances surrounding transmission
of nosocomial pathogens.

Models that undergird our beliefs and behaviors
may be more or less explicit. One of the early efforts
to use explicit mathematical models to describe dis-
ease transmission was that described by Sir Ronald
Ross in 1911.2 Ross was a parasitologist and epidemi-
ologist who described the malaria life cycle. Based on

his careful studies of the life cycle of malaria in
humans and mosquitoes, Ross developed a mathe-
matical model of transmission. From that explicit
model, he deduced that malaria could be controlled
by environmental interventions that eradicate mos-
quitoes. This idea initially was met with skepticism.
When the hypothesis was put to the test, it resulted in
the control of a disease that was—and is—a major
source of human morbidity and mortality in many
parts of the world. Subsequent efforts to generate
mathematical models to illumine understanding of
disease transmission were received with mixed enthu-
siasm. Parasitologists were responsible for much of
the early work with mathematical models of transmis-
sion.3 Because of the complex transmission systems
inherent in parasite life cycles (eg, schistosomiasis),
mathematical theory often was so disconnected from
reality that epidemiologists became disenchanted
with efforts to describe diseases with theoretical
mathematical models.

Sébille, Chevret, and Valleron4 describe an
explicit mathematical model of the transmission of a
resistant nosocomial pathogen in this issue of
Infection Control and Hospital Epidemiology. Based on
assumptions derived from the medical literature
regarding probabilities of transmission and coloniza-
tion for methicillin-resistant Staphylococcus aureus
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(MRSA), the authors have generated a model of
transmission in an intensive-care unit (ICU). The pur-
pose of the model is to predict the benefits of alter-
native measures for controlling the transmission of
nosocomial pathogens. How does this model enlight-
en our understanding of transmission in the circum-
stances described? What are the strengths and weak-
nesses of the model?

For “calculus-challenged” readers, which
includes the author of this editorial, the first impulse
is to disregard the article as irrelevant, because the
mathematical theory is incomprehensible. A second,
and perhaps more risky, impulse is to assume that
any author capable of generating such intimidating
mathematical equations must have an unassailable
handle on the truth. Readers should be guided by
neither impulse. The obscure mathematical equa-
tions are indeed the least important attribute of the
manuscript. Rather, the value of the authors’ model
depends on the ability of the model to predict the
success of alternative intervention strategies when
implemented in real-world situations. The predictive
value of the model depends on how well the authors
have understood, defined, and translated reality into
mathematical theory. Therefore, the reader should
critically examine the assumptions on which the
model is constructed. The veracity of the model
depends more on the validity of the assumptions than
on the arcane mathematical equations.

The unfamiliar reader will discover that the
explicit mathematical model described by the
authors is based on a series of assumptions. The
assumptions are estimated from ranges of values
derived from the current literature. The authors cor-
rectly have examined a range of assumptions (sensi-
tivity analysis) rather than limiting the analysis to sta-
tic estimates. For example, the authors cite refer-
ences describing estimates of compliance with hand-
washing among physicians and staff, and analyze the
model over the range of estimates of the probability
of compliance. The analysis enables the authors to
estimate the impact of compliance on MRSA colo-
nization rates among staff and patients.

A careful review of the assumptions in the
model reveals several interesting observations. First,
we often presume that the complex dynamics of
transmission of pathogens have been studied exhaus-
tively. When confronted with the requirement to pro-
duce objective measurements for the multiple steps
in the transmission process, we discover how little
actually is known about these complex processes.
Second, it is obvious that some assumptions do not
reflect reality. For example, to assume that the num-
ber of staff members and patients in the ICU are con-

stant over time would be incorrect. However, it is nec-
essary to simplify some assumptions to generate the
model. Although one might account for this dynamic
fluctuation in the population within the theoretical
model, it would add significant complexity and prob-
ably contribute little to the understanding of variation
in colonization rates. These assumptions do not
diminish the veracity of the model.

On the other hand, some assumptions that the
authors made in constructing the model call to ques-
tion how effectively the model reflects reality. The
model describing transmission of pathogens in the
ICU was constructed with colonization as the out-
come of interest (dependent variable). The hypothe-
sis derived from the model suggests that the most
effective intervention for controlling colonization is
to restrict admissions of colonized patients to the
ICU. The model makes no attempt to account for the
benefits of admission to the ICU. Furthermore,
there is an implicit assumption that a relatively high
proportion of colonized patients will develop infec-
tion, resulting in additional morbidity and perhaps
mortality. In the absence of this assumption, colo-
nization itself would be an insufficient reason to deny
access to the potential benefits of care in the ICU.
The model also assumes that rapid microbiologic
screening tools are available and that the tools are
characterized by high levels of sensitivity, specificity,
and predictive value. Without such tools, it would be
impossible to identify rapidly colonized patients
requiring urgent admission to the ICU. The reader
must evaluate these assumptions critically and
decide how far the model strays from reality and to
what degree the assumptions limit its applicability.

Do these assumptions nullify the utility of the
model of transmission proposed by the authors? Not
necessarily, for the model simply suggests that,
under the stated assumptions and based on the
three alternative strategies for controlling the prob-
lem, restricting admissions to the ICU provides the
most effective strategy for controlling the problem.
The model has generated a testable hypothesis.
Using models to generate hypotheses regarding
transmission can provide useful and unexpected
results. Koopman and colleagues5,6 have developed
dynamic, nonlinear transmission models for human
immunodeficiency virus (HIV) infection that have
generated unanticipated hypotheses regarding the
efficacy of HIV vaccines. The models suggest that
vaccines that reduce the transmissibility of HIV—
while providing no measurable protection for the
infected host—would reduce disease significantly
within a population. The explicit model of transmis-
sion generated by Koopman has contributed to a
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change in paradigms regarding the assessment of
the effectiveness of HIV vaccines. 

Ross2 was successful in incorporating mathe-
matical models in the study of malaria because he
understood the dynamics of transmission, construct-
ed a relatively simple model that accurately
described transmission, deduced from the model an
hypothesis regarding control of transmission, and
tested the hypothesis in the field. Sébille, Chevret,
and Valleron4 have generated an explicit mathemati-
cal model that more or less describes transmission
of nosocomial pathogens in a closed hospital envi-
ronment and have deduced an hypothesis regarding
interventions to control transmission. The appropri-
ate next step is to test the hypothesis. This will pro-
vide the ultimate test of the authors’ ability to link
reality with theory.

Where I take issue with the authors is their sug-
gestion that mathematical modeling “. . . should be
encouraged as a valuable tool to study the effective-
ness of measures . . . when field epidemiology or inter-
vention studies are not feasible. . . .” The mathematical
model serves a purpose in generating hypotheses.
However, a model is only a theoretical construct of
complex real-world phenomena; therefore, the model
should not be used to examine effectiveness. The
effectiveness of the intervention must be examined in

the context of real-world, dynamic situations.
The calculus of transmission may offer interest-

ing and unexpected insights into our understanding
of the complexities of infectious disease transmis-
sion. Historically, the development of complex math-
ematical models was hampered by the intractable
analyses. Modern computers have mitigated this
obstacle. The success and utility of mathematical
models will depend on the skills of the investigators
in comprehending reality and translating that reality
into theoretical models. 
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