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UNITSIN GROUP RINGS OF FREE PRODUCTS
OF PRIME CYCLIC GROUPS

MICHAEL A. DOKUCHAEV AND MARIA LUCIA SOBRAL SINGER

ABSTRACT. LetGbeafreeproduct of cyclic groupsof primeorder. Thestructure of
theunit group U (QG) of therational groupring @G isgivenintermsof free productsand
amalgamated free products of groups. Asan application, all finite subgroupsof U(QG),
up to conjugacy, are described and the Zassenhaus Conjecture for finite subgroups in
ZG is proved. A strong version of the Tits Alternative for U(QG) is obtained as a
corollary of the structural result.

1. Introduction. Let U(ZG) denote the unit group of the integral group ring ZG
of agroup G and let U;(ZG) be the group of units of augmentation 1 in ZG. Similar
notation shall be used for the rational group algebra @G. The Conjecture of Zassenhaus,
denoted (ZC3) [14], states that if G is finite and H is a finite subgroup of U1(ZG) then
H is conjugate in U(QG) to a subgroup of G. A restricted version of this conjecture,
denoted (ZC1) [14], saysthat every torsion unit of U{(ZG) is conjugatein U(QG) to an
element of G. It is known that (ZC3) holds for finite nilpotent groups [16], [17], finite
split metacyclic groups[12], [15] and some particular groups. However, (ZC3) isfalsein
general and the counterexamples show that it does not hold for finite metabelian groups
[7] and [13]. The Zassenhaus Conjecture restricted to finite p-subgroups of U((ZG)
has been established for finite nilpotent-by-nilpotent groups G [4], for finite solvable
groups G whose Sylow p-subgroups are either abelian or generalized quaternion [4] and
for Frobenius groups G which cannot be mapped homomorphically onto S [5]. More
information on the Zassenhaus Conjecture and its various versions can be found in [3],
[13], [14]. Itisinteresting to know which infinite groups satisfy (ZC3). In [11] aninfinite
nilpotent group is constructed which does not satisfy (ZC1) (comparewith [2]). Problem
39 of [14] askswhether (ZC1) holdsfor afree product of finite cyclic groups.

Torsion units in integral group rings ZG where G is a free product of abelian groups
were studied by A. I. Lichtman and S. K. Sehgal [10]. They proved that if u € U1(ZG)
has order m < oo then one of the free factors of G contains an element h of order m.
Moreover, if G is a free product of a finite number of finite abelian groups then u is
conjugateto hin alarge overing of QG (Theorem 1 of [10]). In aparticular casewhen G
is the infinite dihedral group the conjugating element can be taken even in Z[%]G, (see

[9D).
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In this paper we study the free product G = *xG,, (a € 1) of cyclic groups of prime
order |G,| = p. (the p,'s are not necessarily distinct and | may be infinite). In Section 2
by applying Gerasimov’s Theorem [6] we prove that

U(QG) = xu()((Ax * Bo) x U(QG,)).

where xyq) denotes the amalgamated free product over the multiplicative group U(Q)
of @ and A,, B, are abelian groups isomorphic to the additive groups of some infinite
dimensional vector spacesover Q (Theorem 2.3). Asaconsequencewe provethat every
nonabelian subgroup of U (QG) either contains afree noncyclic subgroup or is metabelian
(Corallary 2.4). In Section 3 we use Theorem 2.3 to prove that every finite subgroup of
U1(QG)isconjugatein U(QG) to asubgroup of U;(QG,,) for some«a € | (Theorem 3.4).
Asacorollary the Zassenhaus Conjecture (ZC3) is proved for G (Corollary 3.5).

2. The structure of the rational unit group. Let K be an associative ring with
identity and G = xyG,(a € 1) be the free product of groups G, with amalgamated
subgroup H. It is easy to verify that KG is isomorphic to the coproduct 1Tk KGg,
(o € 1) of rings KG, over KH. In particular, if G = xG,(« € 1) is the free product
of groups G,, then KG =~ [Ix KG,(a € I). Thus, Gerasimov’s Theorem on units in
coproducts of rings [6] can be used in the study of U(KG).

An element of KG of theform 1+ xvy wherex,y € KG,, yx =0, v € KGiscaled
a KG,-transvection. Let I'(KG,) be the subgroup of U(KG) generated by U(KG,)
and all the KG,-transvections of KG. A ring R with the identity element 1 is called 1-
commutativeif xy = 1impliesyx = 1 (x,y € R). Thefollowing statement isanimmediate
consequence of Gerasimov’s Theorem.

STATEMENT 2.1. Let G = xG,(a € |) and K be a division ring. If each KG,, is
1-commutative then
U(KG) = *U(K)F(KGa)v (O( € I)*

where U (K) denotes the multiplicative group of K.

It is easy to seethat the subgroup T(KG,) generated by all the KG,-transvections of
KGisnorma inI'(KG,).

Suppose now that K = @ and that each |G,| = p, isaprime (« € 1). Thep,'s are
not necessarily distinct and | may beinfinite. Let She the disjoint union of the G,, \ {1},
(o € 1). Wesay that theproductg= g1 - - - gn, (gi € S isreducedif eithern=1o0rn > 2
and no adjacent factors belong to the same G,,. In this case nis called the length of g and
shall be denoted by £(g).

Let 3 be afixed index and Gs = (c). Take any ordering on each G, \ {1}, (o # 3).
Setct < c/ifandonlyifi< 3, (0<17<p—1p=pg).

Now take an ordering on | such that 3 < « for every « € |, (a # 8) and assume that
theidentity element 1 € G haslength 0. This determines an orderingin S.

Suppose now that every element of G is given as a reduced product and order them
first by their length and then Iexicographically from left to right.
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For av € KG theleading term, lead(v), of v is the maximum of {g : g € supp()},
that islead(v) > g for every g of the support of v.

Let C; bethe Q-subspaceof QG generated by all reduced productsc'gs - - - gn, (9, € S
n>1 gy & Gy 0<1<p—2) andlet D; be the Q-subspace of QG generated by all
reduced productsgs - - - gaC', (9, € SN>1,01 £G4, 0 <1 < p—2).

Set¢=1+c+---+c”! and consider the following maps: ¢:C; — U(QG) and
Y: Dy — U(QG) defined by p(v) = 1+ (1 — c)ve, and ¢(v) = 1+ &v(1 — ). Itiseasily
seen that ¢ and ¢ are homomorphisms from the additive groups C; and Dg respectively
into T(@G[f)

LEMMA 2.2. Set A; = Imy and Bs = Imy. Then T(QG;) = (As,Bs) and ¢: Cy —
A, ¢: Dg — By areisomor phisims.
PrOOF. Itiseasily seenthatif xy = Ofor somex.y € QG then one of these elements

belongsto (1 — c)QG; and the other to Q€. Hence T(QGg) is generated by all elements
of theform 1+ (1 — c)v€, 1 + & (1 — c), v € QG. Then it follows from the equality

l—0ocPt=—@A—-0c)@+c+---+cP?)

that T(QGg) is generated by Im ¢ and Im ). This proves the first statement. It remains
to be shown that Ker ¢ = Ker ) = {0}.

Let0O# v € Csgandlead(v) = ¢'Q1---Gn, (N > 1,0 < 1 < p— 2) be written as a
reduced product.

Letc’h; - - - he # lead(r) beareduced product from the support of v. Observethat since
B < aforevery o € 1, (o« # 3), we have that k < n. (Note that this observation will be
usedin (8)). Theneitherk < nork=nandj <:ork=n,3=1andhy---hy < 0g1--- On.

Itiseasy to seethat in all casesc'*lg; - - - gy > ¢/**hy - - - hy and, consequently,

lead((1—c)v) =c™gs- - G

(1) lead(p(v)) = c**g1 - - - g€ " = ¢(lead(v) )t
Thus, ¢(v) # 1 and Ker ¢ = {0}.

Let 0 # v € Dg and for areduced product g = h; - - - he¢? from the support of v, set
w(@) =hg---h. Let

91+ Gn = max{w(g) : g € supp(v)}
and
Q1 OnC' = max{g € supp(r) : w(@) =1 Gn}-

If hy - - - hee? isany other reduced product from supp(v), then either hy - - - he < g1--- On

ork=n,hy---he=¢1---gy and 5 < 1. In both cases we have that h; - - - ho'™t <
g1 - - - OnC'*L, therefore,

lead(v(1— ) = g1+ gnC™.,
2 Iead(w(y)) = Iead(ey(j_ — C)) =g, .- ghcth.
ThusKer ¢ = {0}. .
Now we shall prove the main result of this section.
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THEOREM 2.3. Let G = xG,, (o € I) where |G, | = py iSaprime.Then
U(QG) = *u(o)((Ax #Ba) x U(@Gy)), (x€l)

where A, *B, = T(QG,) isthegroup generated by all QG,-transvectionsof QG, A, and
B, are abelian groups isomorphic to the additive groups of some infinite dimensional
vector spaces over Q (seeLemma 2.2).

ProOF. Fix 3 € |. We shall use the notation and the ordering introduced above.
By Statement 2.1 and Lemma 2.2 it suffices to prove that T(QG;) N U(QGg) = {1}
and T(QGg) = A; * Bg. We shall do this by calculating the leading term of an arbitrary
element of T(QGp).

We shall say that two QGg-transvections t; and t, have the same type if t1.t, € Ay
or t, t € Bg. A product of QGg-transvectionsu = t; - - - t, shall be called reduced if no
adjacent factors have the sametype. It is easy to see that an arbitrary reduced product u
of transvectionsis a sum of the identity and elements of the form

(3 0#w=[(1—col]*era(l — )vat- - tvan-1(1 — cfvantlCrona(l —€)]2,

wherevg, vo, ... ,Von € Cg, V1, V3y0uns Von+1 € D(}, and €1.€2 € {0. 1}.

We shall proceed by finding the leading term of v(1 — c)%/; wherei < j,i < 2n+1,i
isodd andj iseven. Write an arbitrary element g € G asg = giw(g)g, wheregs. gz € (c)
and w(g) does not begin or end in a nonidentity element of (c). Set ty = max{w(g) : g €
supp(vk) }, 0 < k < 2n+1. If kisodd write v = tx + Ik, wherex, € Q(c) and for every

g € supp(ry), w(g) < tx. For anevenk, 0 <k < 2nwrite

m
@ Ve =R+ 2 X +
=

every g € supp(ry).
Fixanoddi, 1 <i<2n+1,andanevenj,j < 2nsuchthati <j. Let

wherex(V, ..., XM € a(e), Y =t () = £(ty), (2 < s < m)and ((w(g)) < ((t) for

m
c = maX{g rg e Jsupp(xi(l — c)zxj(s’)}
=1

and
fi = max{t : ¢ € supp(x (1 — 9}

wheret® is defined in (4). We claim that ¢! # 1 and that

(5) lead[vi(1 — ¢)?v;] = tic'f;.
In particular,
(6) ((lead[vi(1 - ©)*vj]) = £(t) + 1+ €(4) > 3.
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Let ¢ be aprimitive p = ps-th root of unity and 7: @(c) — Q(¢) be the map determined
by 7(c) = ¢. It follows from the definitions of C; and D that ¢~ does not belong to the
supports of x; and X, (1 <'s < m), hence m(x)n(X?) # 0, (1 < s < m) and therefore
m(x(1— %) #0(1 < s < m). Conseguently (1 — ¢)*® #0, (1 < s < m) andas
(1— )2 is not a unit in @(c) we see that x(1 — ¢)>x¥ ¢ Q. Thus supp(x (1 — ¢)*x¥)
contains a nonidentity element of (c) for every s, (1 < s < m). In particular, ¢' # 1.

Let g1¢3g, be an arbitrary element from supp(vi(1 — ¢)?v;), where gy = w(hy), g =
w(hy) for some hy € supp(v;) and hy € supp(v;). It follows from the definitions of t; and
fi that g1 <t and £(g2) < £(f;).

If g1 < t; then clearly gic®g> < tic'fj. Solet g1 = t;. If £(gz) < £(f;) then

0(01€%g2) < £(gr) + 1+ 0(02) < £(t) + 1+ £(F) = £(tic')

and therefore again
0102 = tic*g, < tic';.

Thus we may suppose that ((gz) = ((f;). Then g, = t¥ for some's, (1 <'s < m) and
consequently ¢ € supp(x(1 — ¢)>¥). Thusc' > c* and since ' > ¢ implies

9162 = it < ticlf

we may supposethat a = . But then ¢' € supp(xi(1 — ¢)>x¥) and by the definition of f
we get that f; > go. Finally, as g, < f; implies

0:1¢%g = tid'ge < tiC',

we conclude that tc'f; isindeed the leading term of vi(1 — c)?v;, proving our claim.
Now we obtain from (3) that

lead(w) = (lead[(1 — cjvo]) *[c*~* lead[v1(1 — )*w2]c” -
) [c®~Hlead[van-1(1 — €)*van]c” ] (lead[vana(1 — €)]) .

Clearly this product is reduced if all the leading terms are given as reduced products. In
particular, lead(w) # G; and consequently, T(QGs) N U(QG;) = {1}.

Applying (1) and (2) to v; and v; respectively, and keeping in mind the observation
made in the proof of Lemma 2.2, we obtain

((lead[(1 — O)j]) = 1+ ((w(lead))) = 1+ ((t) > 2.
® ((lead[vi(1 —©)]) = 1+ ((t) > 2.

Comparing (5) and (6) we seethat

©  ¢(lead[vi(l — 9]) > max{¢(lead[(L — c);]). £(lead[i(1 - c)]) }.
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Note that (8) holds for arbitrary even j, (0 < j < 2n) and for arbitrary odd i, (1 <i <
2n +1). Observethat (7), (8) and (5) imply that

(10) ((lead(w)) > 3

for al wasin (3).

Now supposethat 1. 0 # w’ is obtained from w by dropping some consecutivefactors
¢ri(1—c), (1 —c)y;€. Thenwe can write w = WiWows, W = Wiws wherew, hasthe form
(3) with lessv’sinvolved. We shall prove that

(11) ((lead(w)) > ¢(lead(W')).

Suppose first that one of wy or ws is 1. It is enough to treat the case w; = 1, since
the other oneis similar. So let w; = 1; then w = wows, W = ws. If w, endsin € then ws
beginswith € and by (7)

((lead(w)) = ¢(lead(ws)) + ¢ (lead(ws)) — 1.

It follows from (10) that ¢(lead(wz)) > 3 and therefore ((lead(w)) > ¢(lead(ws)). Let
W, be ending in 1 — c. Then ws beginswith 1 — ¢ and we can write w, = W,Eri(1 — )
and ws = (1 — C)vys18ws. Call

A = [K(Iead(wj’)) if w # 1,
1 otherwise.
It follows from (7) and (6) that

((lead(w)) = Xz + £(t) + ((tsr) + 1+ As.

By (7) and (8) we have
((lead(W)) = £(tsr) + 1+ A3

Consequently, ¢(lead(w)) > ((lead(w)).

Now suppose that wy # 1 and ws # 1. If w, begins with € then w; endsin &, and
therefore w3 beginswith € and w, endsin €. By (7) we get

((lead(w)) = ¢(lead(wy)) — 1+ ((lead(ws)) — 1+ ¢(lead(ws))
E(Iead(vx/)) = Z(Iead(wl)) + é(lead(w3)) -1,
hence
((lead(w)) > ¢(lead(w')).

If w, beginswith 1 — c thenw; endsin 1 — ¢, ws beginswith 1 — ¢ and w, endsin
1 —c. Writew; = wyeri(1 — ¢), Wo = (1 — C)rieaw)trs(l — €), Wa = (1 — C)vgrabws.
Applying (7) and (6) we obtain

((lead(w)) = Ay + £(t) + 1+ L(tn) + Az + £(ts) + 1+ L(tsra) + Aa,
((lead(w)) = A1+ £(t) + C(tsra) + 1+ Aa.
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and clearly ¢(lead(w)) > ¢(lead(w’)) which completesthe proof of (11).
Now let
u=(1+(1—ok)”]

[(L+&a-1(1— )@+ (L - rad) (L +Evanm(l — )~

n
=1

be an arbitrary reduced product of transvections. Assume that ¢;, v; are asin (3). Then
U=w+YweyW + 1 where eachw € Jis obtained from w by dropping some factors
tri(l—c), (1 — ot

Fix aw’ € J. Then there exists a sequence of elementsw’ = wj, ... . W, = w such that
eachwj, (1 < k < s— 1) is obtained from w,, by dropping some consecutive factors
eri(l—c), 1 -yt

It follows from (11) that ¢(lead(w)) > ¢(lead(W, )) > --- > ¢(lead(w')). Thus,
lead(u) = lead(w) and since ¢ (Iead(w)) > 3, u# 1. We concludethat T(QG;) isthe free
product of A, and B and as 3 € | isarbitrary, the theorem is proved. ]

As acorollary we obtain a strong version of the Tits Alternative for U(QG).

COROLLARY 2.4. Let G beasin Theorem2.3. Then every subgroup of U(QG) either
contains a free noncyclic subgroup or is solvable of derived length at most 2.

PrROOF. Let H be a subgroup of U(@G) which does not contain a noncyclic free
subgroup. As
U(@G) = xu(e)(T(@G,) x U(QGy)). (x € 1)

and U(Q) is central in U(QG), applying the Kurosh Subgroup Theorem [8, p. 17] to
the factor group U(QG)/U(Q) we conclude that, modulo U(Q), H is either infinite
cyclic, or a free product of two cyclic groups of order 2, or is conjugate to a subgroup
of T(QG,) x U(QG,) for some «a. In the first case H is obviously abelian, and in
the second it is metabelian. In the third case we may suppose that H is a subgroup of
T(QG,) x U(QG,).

Now T(QG,) = A, * B, where A, and B,, are torsion-free abelian groups. Since

HNT(QG,) C A, *x By

applying again the Kurosh Subgroup Theorem we seethat H N T(QG,,) is abelian. But
H/(H N T(QG,)) is isomorphic to a subgroup of U(QG,) and therefore is abelian.
Hence H is either abelian or metabelian. ]

3. The Zassenhausconjecture. Let G beagroup, G(i) = {g € G: o(g) =i}, and
Cq be the conjugacy classof g € G. For u = S geg U(9)g € QG set TO(U) = Ygea() U(Q)
and ©i(g) = Yhec, U(h). We recall aresult on generalized traces TO):

LEMMA 3.1 (SEE [1, LEMMA 2.4]). Let G beagroupand p aprime. If u € U1(ZG)
is a torsion unit of order p” then T®)(u) = 1 (mod p) and T®)(u) = 0 (mod p) for all
i<n.
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LEMMA 3.2. Suppose that u,w € QG and x 'ux = w where x € U(QG). Then
0(g) = W(g) for all g € G.

PrROOF. Let [QG, QG] be the Q@-submodule of QG, generated by al gh — hg (g, h, €
G). Theny = xtux — u = x"1(ux) — (ux)x ! € [Q@G. QG], and therefore §(g) = O for all
g € G. Theresult follows. m

The next result is an adaptation of [14, Lemma 37.13] to the case of an infinite group
G.

LEMMA 3.3. Let Gbeagroup,t = 1+ xvy wherex, v,y € QG, yx = 0 and let tw
(w € U(QG)) bea torsion unit of order n such that

(1+xQGy) N (w) ={1}.
If w commutes with x and y, then the element
Z= 1+t Y Y

wheret¥ = wtw, isinvertiblein QG, and z-1twz = w.

PROOF. Sincew commuteswith x and y we seethat e 1+xQQGy, forall j. Therefore
we get from (tw)" = 1 that
(12) AER L W AN

We have that
2= 1+ (L +xy) + (L+xy)(L+xMy) + -+ (L+xwy)(L+xM) - L+ y)
= n+xvy

for somer € QG. Thus, z ! = (1 — ixy) € QG.
Now by (12) we get

twz = t2%0 = t(L+ Y + Y T
= (CH Y+ VY 4+t Y W = 2w

Hence, z 1twz = w as desired. "

Let G bethefree product G = xG,, (o € 1) of cyclic groupsof prime order |G, | = p,
(the p,'s are not necessarily distinct and | may be infinite). For o € | fix a generator
c = ¢, of G, and set
_ %é— c ifp>2

w, ,
*lec otherwise,

wherep=p,andé=1+c+--- +c” L Itiseasy to seethat w2 = c%.

THEOREM 3.4. A finite subgroup of U1(QG) is conjugate in U(QG) to a subgroup
of (w,) for some« € 1.
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PROOF. LetH # {1} beafinite subgroup of U;(QG). By Theorem 2.3,
U(@G) = +y(g)(T(@G.) x U(@Gy,)), (a€l),

and T(QG,) = A, * B, where A, and B,, are the torsion-free abelian groups defined in
Section 2.

Applying the Kurosh Subgroup Theorem to the factor group U(QG)/U(Q) [8] or a
subgroup theorem for amalgamated free products we get that H is conjugatein U(QG)
(and therefore in U1(QG)) to a subgroup of T(QG,) x U(QG,) for some « € 1). Thus,
replacing H by its conjugate we may assumethat

H C T(QG,) x U(QG,).
Since every element of T(QG,) has augmentation 1, wereally have
H C T(QG,) x U1(QG,).

Let u be a nonidentity element of H. Then u = tw wheret € T(QG,) and w €
U1(QG,). Moreover, since T(QG,,) istorsion-free, w is atorsion unit of the same order
asu.

Takeap-th primitive root of unity ¢ and consider theisomorphism ¢: @(c) — Q®Q(()
defined by ¢(c) = (1,¢) and linearly extended. Since the torsion units of Q(() are of
the form: ¢k or —¢¥, we see that ¢(w) = (1.¢X) or (W) = (1, —CX). If p > 2 then
o N1 =0 = %é —C=W,. Thus,inany casew € (w,).

Let v # 1 be another element of H. Similarly we canwrite v = fw wheref € T(QG,)
and 1 #w € (w,). Replacing u or v by an appropriate power of it we may suppose that
v=fw1 Then

uv = twfw ™t € T(QG,) N H.

As T(QG,) is torsion-free T(QG,) NH = {1} and hencev = u2. It follows that H is
cyclic whose order divides 2p, and we may supposethat H = (u).

We shall now show that uis conjugateto win U (QG) and thiswill complete the proof
of the theorem.

Using thefact that T(QG,,) = A, * By, writet asareduced productt; - - - t, of elements
from A, and B,. Since the order of u = t; - - - t,w divides 2p we have (t; - - - t;w)® = 1
which implies that

ty (Wt - W D)Wt WD) - (WP oW PPD) =

Notethat wA,Wwt C A, andwB,w! C B,, becausew commuteswith c. Asthe product
ty - - -ty isreduced and T(QG,) = A, * B,, we havethat nis odd and that

Wt WL =ty pWhoW = - =t WEe W = 1
2 2

Thus,
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U= (tate o tog ogWitsd 5.

and u is conjugate by transvectionsto t(,.1 ,W. Since T(AG,)NH = {1} it followsfrom
Lemma 3.3 that t(,.1)/,W is conjugatein U(QG) tow. n

The theorem implies the Zassenhaus Conjecture (ZC3) for G:

COROLLARY 3.5. Let G beasin Theorem3.4. Then every nonidentity finite subgroup
of U1(ZG) is conjugatein U(QG) to one of the G, (« € 1).

PrROOF. LetH # {1} beafinitesubgroupof U;(QG). By Theorem 3.4 x Hx C (w,,),
for somex € U(QG) andsome o € . ThusH iscyclic; its order divides 2p, if p,, isodd
and is equal to 2 otherwise. Obviously, in the last case x 'Hx = G,,, SO we may assume
that p, > 2.

Suppose that H contains an element u of order 2 and set w = x~1ux. It follows from
Lemma 3.1 that there exists an element g € G of order 2 such that Ti(g) # 0. Hence by
Lemma 3.2, W(g) # 0 whichisimpossibleasw € QG,, where G, has order p, > 2. We
concludethat the order of H is p,, and that x *Hx = G,. n
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S&o Paulo.
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