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Abstract

In this study, our goal is to track internal ice layers on the Snow Radar data collected by NASA
Operation IceBridge. We examine the application of deep learning methods on radar data gath-
ered from polar regions. Artificial intelligence techniques have displayed impressive success in
many practical fields. Deep neural networks owe their success to the availability of massive
labeled data. However, in many real-world problems, even when a large dataset is available,
deep learning methods have shown less success, due to causes such as lack of a large labeled data-
set, presence of noise in the data or missing data. In our radar data, the presence of noise is one of
the main obstacles in utilizing popular deep learning methods such as transfer learning. Our
experiments show that if the neural network is trained to detect contours of objects in electro-
optical imagery, it can only track a low percentage of contours in radar data. Fine-tuning and
further training do not provide any better results. However, we show that selecting the right
model and training it on the radar imagery from the start yields far better results.

1. Introduction

Ice loss in Greenland and Antarctica has accelerated in recent decades (IMBIE-Team and
others, 2019; Shepherd and others, 2018; Rignot and others, 2019). Melting polar ice sheets
and mountain glaciers have considerable influence on sea level rise and ocean currents; poten-
tial floods in coastal regions could put millions of people around the world at risk (IPCC,
2014b). The Intergovernmental Panel on Climate Change (IPCC) estimates that sea level
could increase by 26–98 cm by the end of this century (IPCC, 2014a). This large range in pre-
dicted sea level rise can be partially attributed to an incomplete understanding of the surface
mass balance and ice dynamics in Greenland and Antarctica. Recent large-scale radar surveys
of Greenland and Antarctica, for example as a part of NASA Operation IceBridge
(Rodriguez-Morales and others, 2018), reveal internal ice layers on a continental scale.
These internal ice layers illuminate many aspects of ice sheets dynamics, including their his-
tory and their response to climate and subglacial forcing (MacGregor and others, 2016; Cavitte
and others, 2016; Koenig and others, 2016; Medley and others, 2014). The Scientific
Committee on Antarctic Research has formed an action group, AntArchitecture, to catalog
internal layers over the whole of the Antarctica ice sheet (Bingham and others, 2019) and sev-
eral other efforts have completed internal layer tracking of smaller regions of Antarctica and
across much of Greenland (Medley and others, 2014; MacGregor and others, 2015a; Koenig
and others, 2016). Due to the large size of the radar datasets, it is important to develop
fully automatic artificial intelligence (AI) techniques to detect internal layers hidden within
the ice sheets.

In this study we focus on the Snow Radar (Rodriguez-Morales and others, 2018) data col-
lected by NASA Operation IceBridge. The Snow Radar operates from 2 to 18 GHz and is able
to resolve shallow layers with fine resolution over wide areas of the ice sheet. In many areas,
these shallow layers represent annual isochrones allowing the annual snow accumulation to be
estimated to better understand the surface mass balance in these regions (Medley and others,
2014; Koenig and others, 2016). In the past two decades a number of layer tracing algorithms
have been developed for tracking internal layers. Carrer and Bruzzone (2016) provide a com-
prehensive review of these internal layer tracing algorithms. There are a few methods presented
which are fully automatic and only require parameter tuning with a training set. The
local-Viterbi-based algorithm presented by Carrer and Bruzzone (2016) is an example. Two
tracking algorithms (de Paul Onana and others, 2014; Mitchell and others, 2013a) have
been tested on the Snow Radar dataset. de Paul Onana and others (2014)’s algorithm facili-
tated the tracking of a large amount of data for Koenig and others (2016), but an improved
algorithm with more efficient and comprehensive tracking is desired since a significant
amount of time is still required for indexing layers and quality control, and many layers
that are traceable by a trained operator are not detected by the algorithm. Mitchell and others
(2013a)’s algorithm has only been used to track a small set of images. None of the algorithms
reviewed by Carrer and Bruzzone (2016) make use of deep learning. A few algorithms have
been published since Carrer and Bruzzone (2016) published their review including
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Rahnemoonfar and others (2016, 2017b); Xu and others (2018);
Rahnemoonfar and others (2019b); and Berger and others
(2019). Some of these more recently published algorithms use
deep learning (Xu and others, 2018; Kamangir and others,
2018; Rahnemoonfar and others, 2019b), but they focus on track-
ing the ice surface and ice bottom. Internal layer tracking is gen-
erally more difficult because there are many layers, the layers may
be closely spaced, and the number of layers is not known. For this
reason, algorithms designed for the surface and bottom only are
not well suited for internal layer tracking without adaptation.
Although a comprehensive intercomparison of existing algo-
rithms on a common dataset would be of value, the focus of
this present work is to introduce an internal layer tracking algo-
rithm based on deep learning. A short version of this work is pre-
sented in Yari and others (2019) and also Yari and others (2020).
A simulation result of internal ice layers based on deep learning is
presented in Rahnemoonfar and others (2020).

The advancement of AI techniques in recent years has had a
great impact on our approaches to data analysis. Deep learning,
in particular, has shown great success in many areas of practical
interest such as classification (Krizhevsky and others, 2012a;
Szegedy and others, 2015a; Sheppard and Rahnemoonfar,
2017), object recognition (Girshick and others, 2014; Hariharan
and others, 2014), counting (Rahnemoonfar and Sheppard,
2017a, 2017; Rahnemoonfar and others, 2019a) and semantic seg-
mentation (Farabet and others, 2013; Mostajabi and others, 2015;
Rahnemoonfar and others, 2018; Rahnemoonfar and Dobbs,
2019). Despite their progress, these algorithms are limited mainly
to optical imagery. Non-optical sensors such as radars present a
great challenge due to coherent noise in the data. The goal of
this work is to test the capability of a deep neural network to
track ice-sheet internal layers. We experiment with a deep learn-
ing architecture and training strategies that have shown great suc-
cess in other areas of computer vision.

2. Related works

Several semi-automated and automated methods exist for surface
and bottom tracking in radar images (Crandall and others, 2012;
Lee and others, 2014, Mitchell and others; Mitchell and others
2013a; 2013b, Rahnemoonfar and others; Rahnemoonfar and
others; Rahnemoonfar and others 2016; 2017a; 2017b). As men-
tioned above, tracking internal layers is a significantly different
and generally more difficult task because of the large number of
layers in close proximity and the number of layers is unknown.
Panton (2014) describes a semi-automatic method for tracing
internal layers in radio echograms based on the Viterbi algorithm.
The algorithm was tested on a relatively short 423 line-km radar
depth sounder dataset and showed promising results, but still
relied on the use of manually labeled seed points. MacGregor
and others (2015b) transform the images so that the layers are
flattened by using an internal layer slope field. The flattened layers
are then tracked with a simple snake algorithm that tracks the
peak power column to column. The simple algorithm works
well when the layers are contiguous (no gaps in the layer) and
flat, but still requires some user input to seed the snake algorithm.
Two methods are used to generate the slope fields. One is a phase
coherent method that uses a matched filter for specular layer scat-
tering to estimate the layer slopes. Although this algorithm works
well for specular (coherent) layers, some layers, including those
typically detected by the Snow Radar, are not coherent scatterers
and therefore an algorithm relying on phase coherence from col-
umn to column is not likely to work well. MacGregor and others
(2015b) also use a method that works on incoherent scatterers
based on Sime and others (2011) which uses filtering, threshold-
ing and feature extraction to estimate layer slopes from the slopes

of the features. Using this process of flattening and the simple
snake algorithm, the task took a couple years to complete and
although many layers were tracked in the imagery that was ana-
lyzed, there are still untraced layers due to time limitations. de
Paul Onana and others (2014) describe an algorithm that relies
on surface flattening, filtering for horizontal features and auto-
mated peak finding to seed layers. The method is largely auto-
mated, but still required a manual step to index layers. The
algorithm is generally not able to track all human-detectable
layers and especially struggles with layers with larger slopes rela-
tive to the surface. Carrer and Bruzzone (2016) present a locally
applied Viterbi algorithm which works well with ice sounder
data collected on the Mars north polar ice cap. This method is
fully automated after an initial training phase. To the best of
our knowledge, there are no internal layer tracking algorithms
that utilize deep learning techniques.

Most traditional approaches to edge and contour detection
problems fundamentally make use of image spatial derivative
operators. Since the derivative operators possess high-pass charac-
teristics of the image, they can effectively enhance edges in an
image and make them more pronounced. The downfall of the
derivative operator, however, is that it is susceptible to noise.
Now in order to reduce the sensitivity of derivative operators to
noise, one can employ regularization filters, such as a Gaussian
filter. Traditional edge detectors, such as Canny (1986) and
Marr and Hildreth (1980), are prime examples of edge detectors
that combine regularization with derivative operators.

Traditional edge detection techniques are based on hand-
crafted feature engineering and cannot be applied to a large-scale
dataset. In recent years, there have been several deep learning
techniques for contour detection in optical imagery (Shen and
others, 2015; Bertasius and others, 2015; Xie and Tu, 2015; Liu
and Lew, 2016; Liu and others, 2017). The pioneering deep learn-
ing techniques use fully connected layers so they are limited to
images with fixed sizes. However, recent deep learning techniques
focus more on fully convolutional networks and multi-scale fea-
tures to extract both local and global information from the
image. There are two main types of network structures to generate
multi-scale features. The primary option is to resize the original
image and pass it to the network and then combine the results.
The more intelligent way is to extract multi-scale features through
the hidden layers in a deep neural network; Holistically nested
Edge Detection (HED) (Xie and Tu, 2015), Relaxed Deep
Supervision (RDS) (Liu and Lew, 2016) and Richer
Convolutional Features (RCF) (Liu and others, 2017) are among
the second approach. The early layers in the deep neural network
extract the local and detailed information while the last layers
extract the global information. Since our radar data are noisy,
we have implemented a multi-scale edge detection technique
which can extract both local and global information and at the
same time address the noise issue.

3. Dataset

We analyze Snow Radar (Rodriguez-Morales and others, 2018)
images produced by the Center for Remote Sensing of Ice
Sheets for NASA Operation IceBridge. The Snow Radar is a pro-
filing instrument which produces vertical sounding images of
snow layers over ice sheets and ice caps. The radar signal is sen-
sitive to shallow annual snow density changes that occur in the
top few tens of meters of ice due to the seasonal transitions
from summer to winter; this density change results in a snow per-
mittivity change at the interface that scatters the radar signal
which is measured by the radar’s receiver. For training our net-
work we used the output of semi-supervised layer tracking from
de Paul Onana and others (2014). The layers were quality
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controlled by a human analyst for Koenig and others (2016). This
included correcting layers, adding missing layers and deleting
layers which were in error or too difficult to interpret with suffi-
cient confidence as annual layers. While the tracking is largely
comprehensive, there are some layers that are not tracked. In
some cases, layers were removed if they were thought to be caused
by something other than the annual layer indicating the transition
from summer to fall. In other cases, layers that could be tracked
by the analyst may not have been due to perceived value in track-
ing the layer, difficulty to track the layer in question, and time
constraints to complete the work. In total, we use 93700 line-km
of images collected over Greenland during the 2012 field season
that were tracked by Koenig and others (2016). The images we
use have the same preprocessing steps applied as described in
Koenig and others (2016) which includes filtering, decimation
and surface flattening. The filtering operates on incoherent
power detected data, helps to denoise the data and is analagous
to multilooking. The 2012 field season includes coverage of
most of Greenland and the dataset is well representative of
Snow Radar image variability.

In one of our experiments we used synthetic data for training.
The synthetic dataset models the layers as the superposition of
many point targets. The scattered signal from each point target
is represented by a weighted sinc function. The weight for each
sinc function is a complex Gaussian random variable. The thick-
ness of each layer represents the separation between interfaces and
is generated by a smoothed Gaussian random process. The mean
thickness or separation decreases slightly with depth and starts at
75 pixels for the first layer. The standard deviation of the random
process is 10% of the mean thickness. The depth of a layer results
from the summation of the thickness of the layer and all layers
above it. For each column of the image, the scattered signal for
each layer is created by summing the contribution of 100 point
targets spread slightly in range. The spreading in range is gener-
ated from the summation of a Gaussian distribution and an expo-
nential distribution to simulate the spread of the scatterers over
several range bins as well as the backscatter fall-off from each
layer as a function of cross-track incidence angle. The mean signal
power of each layer follows an exponential decay with depth so
that deeper layers have weaker signals on average. The images
are power detected, filtered and surface flattened similar to the
real radar data. The various parameters used to generate the
data are chosen manually to create images that are similar to
the Snow Radar data, but no effort is made to precisely match
the Snow Radar image statistics. The synthetic images represent
a first-order attempt and although they share some resemblance
to the Snow Radar images, they are easily distinguished from
them.

4. Convolutional neural networks

Convolutional neural networks (CNN) are a class of deep neural
networks that mainly focus on analyzing imagery. CNN comprise
various convolutional and pooling (subsampling) layers that can
be compared to the visual system of humans. Generally, image
data are fed into the network that constitutes an input layer
and produces a vector of reasonably distinct features associated
to object classes. From input to output layers there are many hid-
den layers including convolution layers, pooling layers and fully
connected layers.

To provide understanding of the activities at each layer in a
neural network, some explanation of the various processes is pro-
vided below.

Convolution: The main building block of a CNN is a convo-
lutional layer. The parameters of this layer include a set of learn-
able filters (or kernels), which have a small receptive field, but

spread through the full depth of the input. Every filter is con-
volved along the width and height of the input volume and pro-
duces a two-dimensional feature vector of that filter. All the
feature vectors generated through different filters are stacked
together along the depth dimension to form an output volume
of the convolution layer (Bustince and others, 2009). The input
to the layer is represented as a tensor and is used in the convolu-
tion operation along with the filter kernel. In order to control the
number of parameters in convolutional layers, the parameters are
shared.

Activation: Activation functions are used to normalize out-
puts of a neural network. A common activation is the Rectified
Linear Unit, also known as ReLU. This function simply calculates
the maximum of zero and the output of the neuron. A variation of
this activation function is known as the Leaky ReLU. Here, the
function calculates the maximum of the output of the neuron
and a small constant value multiplied to the output.

Pooling: The pooling layer is a form of non-linear down-
sampling applied to reduce the size of the feature vectors gener-
ated through convolution. The idea is to reduce the number of
parameters and the computation required and therefore to control
overfitting. Several non-linear functions are available to perform
pooling such as max pooling, min pooling and average pooling.
Max pooling reports the maximum output within a rectangular
neighborhood. Average pooling reports the average output of a
rectangular neighborhood.The most common approach to apply
pooling is between successive convolution layers.

Fully connected layer: After a series of convolutional and
pooling layers, finally the abstract-level reasoning is performed
using a fully connected layer. In this layer, neurons have full con-
nections to all the activation outputs in the previous layer, similar
to classical neural networks. There can be many fully connected
layers before the final output layer.

Regularization: A common way to prevent over-fitting for a
network is to employ the concept of dropout. In this method,
neurons are randomly ignored in a layer. This essentially makes
the network into an ensemble of many possible subnets.
Following this method, there is less chance that one neuron will
ever be relied upon too heavily.

Classification: For every possible class the network is trained
to identify, there will be an output neuron. In order for these out-
puts to follow a probability distribution, a softmax function is
applied after the final output of the network. When softmax is
used, all the probabilities will add up to one.

Several deep neural network architectures such as AlexNet
(Krizhevsky and others, 2012b), VGG-net (Simonyan and
Zisserman, 2015) GoogLeNet (Szegedy and others, 2015b) and
Resnet (He and others, 2016) have made such significant contri-
butions to the field that they have become widely known stan-
dards. AlexNet was the pioneering deep neural network
architecture that won the ImageNet Large Scale Visual
Recognition Challenge (Deng and others, 2009) in 2012.
VGGNet won the challenge in 2014 along with GoogLeNet.
The VGGNet architecture is depicted in Figure 1. As you can
see in this figure, the building blocks of VGGNet includes the
convolution, pooling and fully connected layers that were
explained previously.

5. Methodology

In this research, we employ a multi-scale learning model to trace
snow boundary layers for real radar data. Multi-scale deep learn-
ing models are characterized by their use of the so-called side-
output. Figure 2 provides an example of a multi-scale learning
model where several side-outputs at different scales are extracted.
Each side-output layer is associated with a classifier and an
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objective function. The ensemble of the side-outputs generates a
fuse prediction at the final stage and is associated with another
objective function. Therefore, the model is equipped with several
objective functions and learning components at different scales.
In terms of the architecture, we base our construct on an existing
architecture to take advantage of pre-trained parameters. This
approach is particularly helpful for transfer learning
purposes.The multi-scale architecture introduced in (Xie and
Tu, 2015) takes the VGGNet (Fig. 1) as its parent architecture.
Each of the first five blocks of the VGGNet follows the same
architecture. It consists of a consecutive number of convolutional
layers and activations, followed by a max-polling layer. The max-
pooling layer will rescale the image based on the size of the max-
pooling feature map. For a two by two max-pooling size, the size
of the image will reduce to half the original size in each
dimension.

Following the HED model of Xie and Tu (2015), we extract the
side-outputs right before the max-pooling layers and drop the

final fully connected layers of the VGGNet. This way, we end
up with five side-outputs which we will fuse at the end to produce
the final prediction. As mentioned previously, in addition to our
final objective function, we have five other objective functions
associated with each side-output. Moreover, the fuse weights are
part of the learnable parameters; therefore, the model tries to
get the best way of fusing the side-outputs as well. Another advan-
tage of this approach is that it facilitates using the various sized
input images.

In mathematical terms, we denote the original data in our
training dataset by X = {Xn:n = 1N}, where N is the size of the
dataset; we also denote the corresponding boundary data by
Y = {Yn:n = 1N}. The HED model pulls out M side-outputs by
Y (m)
n for m = 1M, and a final output of the weighted-fusion

layer, denoted by Ỹn. The model includes M image-level loss
functions at each side-output layer, denoted by ℓm for side-output
m, and a loss function at the fusion layer, denoted by ℓf . We
denote all parameters of the classifier associated with the mth side-

Fig. 1. The architecture of VGGNet. The orange layers show convolution layers, the red layers are pooling layers, and violet layers are fully connected layers.

Fig. 2. The architecture of a multi-scale convolutional neural network. The orange layers show convolution layers, the red layers are pooling layers, and the blue
layer is the fused layer.
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output by um. Then the loss function ℓm is defined as a class-
balanced cross-entropy function as in Eqn (1):

ℓm = ℓm(u0, um) =− b
∑
j[Y+

log (Pr(y j = 1|X; u0, um))

− (1− b)
∑
j[Y−

log (Pr(y j = 0|X; u0, um))

(1)

where u0 represents all other standard network layer parameters,
Y−and Y+ are the edge and non-edge labels respectively and
b = |Y−|/|Y|. The loss function for the final fusion layer is defined by

ℓf (u, w) = CE(Y , Ỹ), (2)

whereCE is a cross-entropy loss function thatmeasures dissimilarities
of the fused prediction and the ground truth label;
u = (u0, u1, , um), and w = (w1, , wm) represents the fusion
weights. Putting everything together, the goal is to minimize the fol-
lowing objective function via standard (back-propagation) stochastic
gradient descent:

(u, w)∗ = argmin ℓf +
∑M
m=1

ℓm

( )
(3)

We use a mini-batch gradient descent that computes the gradient of
the cost function with respect to the parameters u for the entire train-
ing dataset: u = u− h∇uL(u, xI , yI). Herewe used the symbol u for
all parameters. This minimization approach is based on Nesterov
accelerated gradient technique as discussed in Sutskever and others
(2013):

vt = mvt−1 + h∇uL(ut−1 − mvt−1), ut = ut−1 − vt (4)

where m [ [0, 1] is the momentum and h . 0 is the learning rate,
see Sutskever and others (2013).

Input images are not resized for training or testing. Since we
get the side-outputs right before applying the max pooling, the
size of the first output matches with the original input size. But
after applying the max pooling, the second side-output is half
the size of the first side-output; likewise, each subsequent side-
output is going to be half the size of the previous side-output.
Therefore, each side-output is generated at a different scale.

In the training process, we have used the following parameters
g = 0.1, learning rate h = 10−6 and the momentum m = 0.9.
We have also used weight decay rate of 2× 10−4.

6. Experimental results

In this section we report our experimental results on our dataset.
We refer to our real dataset of ice radar imagery, as ICE2012,
which consists of 2360 training images and 260 test images. We
refer to our synthetic dataset as SYNT_ICE, which consists of
one thousand synthetic images, and use it for the training
phase only. For pre-training and transfer learning models, we
use the benchmark BSDS500 dataset (Martin and others, 2001).
We present the results of three main experiments that we carried
out.

(1) BSDS: We trained our model on augmented BSDS500.
(2) SYNT: We trained the model on the synthetic ice dataset

(SYNT_ICE).
(3) ICE: We trained the model on ICE2012.

Figure 3 shows the qualitative results for the three experiments
on a sample image. Figure 3a shows the input image to our net-
work. In the first experiment, we trained our network on the
BSDS500 benchmark dataset and its augmentation. The para-
meters of the CNN blocks of the model were transferred over

Fig. 3. (a) The original image. (b) The test result of our model trained on augmented BSDS500. (c) The test result of our model trained on synthetic data.
(d) The result of the model trained on ICE2012. (e) The ground truth.

Fig. 4. A test result of the ICE experiment: (a) the original image, (b) the prediction result, (c) the non-maximal suppression result, (d) the ground truth.
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from the VGGNet trained on the ImageNet dataset. We used the
same hyper parameters as used in Xie and Tu (2015) and trained
it for 10 epochs. In the testing phase, we applied the trained
model on our test dataset. Figure 3b shows the result of this
experiment on one of the test images. As one can see in this
experiment, we can only detect the top layer (surface) and hardly
any internal layers are detected.We did some further experiments
with transfer learning techniques, but all of them failed to con-
verge; therefore, we have not included their results in this
paper. For instance, we transferred VGG16 parameters and con-
tinued training the model on our own dataset, ICE2012. In
another experiment, we transferred VGGNet parameters, contin-
ued training on BSDS500 with augmentation, and continued
training it further on ICE2012. Both experiments failed to con-
verge. In fact both algorithms diverged in very early stages.

The second experiment produced a better result. We trained
the model on a synthetic dataset of 1000 images (SYNT_ICE).
Figure 3c shows the result of this experiment on one of the test
images. The synthetic data generation process is explained in
the Dataset section. As mentioned before, the simulator has not
been tuned to match the actual Snow Radar data properties and

statistics, but these preliminary results suggest that if we can gen-
erate synthetic data with a noise and signal generator better
matched to the Snow Radar data, we may be able to achieve
good results.The third experiment is conducted on our real data-
set, ICE2012, with a random initialization. We notice a consider-
able improvement in our results. Figure 3d shows the result of this
experiment on one of the test images. Figure 3e shows the anno-
tated ground truth contours side by side of the results of our three
experiments.

Figure 4 shows another sample of our results. In this figure, in
addition to the predicted results by our network (Fig. 4b), we have
also shown the post-processing results after non-maximal sup-
pression (Fig. 4c). Non-maximal suppression (NMS) (Dollár
and Zitnick, 2014) results in thinned edge maps. As we can see
in Figure 4, the original image has five different layers, but only
the three top layers are annotated in the ground truth image.
With our training strategy, our model has been able to detect
all five layers.

As it was pointed out in the previous sections, HED model
produces side-outputs in different scales. Figure 5 shows all side
outputs of the model and the final fusion for two images. It is

Fig. 5. From left to right: the first image is the first side-output which is the same size as the original image; the second image is the second side-output which is
half the size of the first side-output; likewise the third side-output is half the size of the second side-output and so on. The utmost right image is the fusion of the
five side-outputs.

Fig. 6. A test result of the ICE experiment: (a) original image with sharp fluctuations in the layer boundaries, (b) the prediction result, (c) the non-maximal
suppression result, (d) the ground-truth.
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apparent that the first side-outputs contain more details of the
image while the later side outputs project the general structure
of the image. The noise is more apparent in the first side-output
while the last side-output is more enhanced.

Figure 6 provides a sample result of an image with more fluc-
tuations in the layer boundaries. Compared to the ground truth
labels, our method can detect all layers including layers that are
difficult to track manually.

Figure 7 shows another example of how well the model works
in the case of images that contain many internal layers. In this fig-
ure, the original image contains many layers. Towards the bottom
of the image, the ground-truth labeled data miss tracking a couple
of layers but our model (Figs b and c) is able to detect them.
However, our model does fail to predict the very last bottom layer.

6.1. Quantitative results

To evaluate our results quantitatively, we have used three different
metrics; The Optimal Dataset Scale (ODS) or best F-measure on
the dataset for a fixed scale, the Optimal Image Scale (OIS) or
aggregate F-measure on the dataset for the best scale in each
image, and the Average Precision (AP) on the full recall range
(equivalently, the area under the precision-recall curve)
(Arbelaez and others, 2011). Table 1 shows the quantitative results
for all three experiments with the three aforementioned metrics
(ODS, OIS, AP) for all side-outputs as well as the fuse layer.
The first column in Table 1 presents the results for transfer learn-
ing in which the model is trained on the BSDS500 dataset, and
tested on the real test data. The second column shows the result
of the model trained on the synthetic ice data (SYNT_ICE),

and tested on the real test data. The final column shows the result
of training the model on real data and evaluated on the real test
data. As we can see in Table 1, the third experiment (ICE)
shows the most accurate results compared to the other two experi-
ments (BSDS and SYNT). Also the fusion of all side-outputs
(Fuse) presents the most accurate result compared to each indi-
vidual side-output.

Table 2 shows the result of the three experiments in compari-
son to a traditional edge detection technique (Canny) using the
three different metrics. We can see in this table that the deep
learning results, especially the ICE experiments, show more accur-
ate results compared to the traditional edge detection technique
(Canny). We also used the precision-recall curve where the
green line shows the value for F-measure. Figure 8 shows the
precision-recall curve for all side-outputs for our ICE experiment.
We can see in this figure that the Fuse result depicts a closer curve
to the labeled data (green point).

Figure 9 shows the precision-recall curve for all three experi-
ments in addition to the traditional edge detection technique.
Here also the ICE experiment presents a closer curve to the
labeled data.

7. Conclusion and discussion

In this work, we have studied a multi-scale deep learning model
and various approaches to implement it for detecting ice layers
in radar imagery. It is important to note that most of the well-
known deep learning approaches work very well on optical
images, but can not produce acceptable results for non-optical
sensors especially in the presence of noise. The fact that deep
learning models are not robust with respect to noise is discussed
in various works (Heaven, 2019). In our experiments we have
shown that transfer learning approaches do not work well for
radar images, while training from scratch yields far better results.
However, the latter requires annotated data provided by the
domain experts. One way to avoid this would be to generate syn-
thetic data. Although the synthetic data used for training in this

Fig. 7. Another sample where the image contains a high number of layer boundaries. The model is trained and tested on ICE2012; (a) is the original image; (b) is the
prediction of the deep neural network; (c) is the post-processing results after the non-maximal suppression (NMS) and finally (d) is the ground-truth result.

Table 1. Evaluation results for the test dataset. The ICE column illustrates the
result of our experiment where we trained and tested the model on the real
dataset of ice images. ODS is the Optimal Dataset Scale, OIS is the Optimal
Image Scale and AP is the Average Precision. This experiment provided the
best results shown in bold fonts. The SYNT column: trained on the synthetic
images dataset and tested on the real test data. The BSDS column: trained
the model on the BSDS500 dataset and tested on the real ice images

BSDS SYNT ICE

ODS OIS AP ODS OIS AP ODS OIS AP

Side 1 0.130 0.111 0.073 0.175 0.173 0.123 0.320 0.465 0.261
Side 2 0.162 0.186 0.082 0.415 0.503 0.234 0.763 0.779 0.760
Side 3 0.199 0.202 0.075 0.614 0.628 0.491 0.796 0.824 0.786
Side 4 0.170 0.196 0.055 0.385 0.382 0.206 0.732 0.769 0.645
Side 5 0.276 0.295 0.138 0.448 0.496 0.364 0.512 0.572 0.399
Fuse 0.139 0.164 0.040 0.292 0.379 0.217 0.815 0.854 0.815

Table 2. Comparison between a traditional edge detection method such as
Canny, with the deep learning method trained in different ways

Methods ODS OIS AP

Canny 0.229 0.240 0.072
BSDS 0.139 0.164 0.040
SYNT 0.292 0.379 0.217
ICE 0.815 0.854 0.815

Journal of Glaciology 45

https://doi.org/10.1017/jog.2020.80 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2020.80


work only loosely match the actual snow radar, the results indi-
cate that synthetic data could be successfully used for training.
Future work should explore training with synthetic data which
matches the noise and signal statistics of the actual snow radar
data. In the future, we plan to combine AI and physical models
to expand the simulated dataset and therefore better train our

network. We also plan to develop advanced noise removal tech-
nique based on deep learning. Calculating the actual thickness
of ice layers from the neural network is also another direction
of our research.
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