ON THE BOREL-CANTELLI PROBLEM

BY
JONATHAN SHUSTER(${ }^{1}$)

1. Introduction. Let (Ω, \mathscr{F}, P) be a probability space, and $A_{1}, A_{2} \ldots$ be a sequence of members of \mathscr{F}. The classical Borel-Cantelli problem is to determine the probability that infinitely many events A_{k} occur. The classical results may be found in Feller [2, p. 188]; while related work may be found in Spitzer [3, p. 317], and Dawson and Sankoff [1]. The latter works are generalizations of the BorelCantelli lemmas, taken in different directions.

In this paper, necessary and sufficient conditions will be given for infinitely many events A_{k} to occur, with probability 1 . A lower bound for the probability that only finitely many A_{k} occur, is developed. In addition, necessary and sufficient conditions that only finitely many A_{k} occur, with probability 1 , are given.

2. The main results.

Theorem 1. (a) If for every set $A \in \mathscr{F}$, such that $P(A)>0$,

$$
\sum_{k=1}^{\infty} P\left(A \cap A_{k}\right)=+\infty, \text { then } P\left(\bigcap_{r=1}^{\infty} \bigcup_{k=r}^{\infty} A_{k}\right)=1
$$

(b) If there exists a set $A \in \mathscr{F}$, such that

$$
\sum_{k=1}^{\infty} P\left(A \cap A_{k}\right)<+\infty, \text { then } P\left(\bigcap_{r=1}^{\infty} \bigcup_{k=r}^{\infty} A_{k}\right) \leq 1-P(A) .
$$

Proof of (a). Let $\quad B_{r}=\bigcap_{k=r}^{\infty} \quad A_{k}^{c}$, where $\quad E^{c}=\Omega-E, \quad r=1, \quad 2, \ldots$ Since $B_{r} \subset A_{k}^{c}, k=r, r+1, \ldots$,

$$
\sum_{k=1}^{\infty} P\left(B_{r} \cap A_{k}\right)=\sum_{k=1}^{r-1} P\left(B_{r} \cap A_{k}\right)<r, \quad r=1,2, \ldots
$$

Hence, by the hypothesis of (a), $P\left(B_{r}\right)=0, r=1,2, \ldots$; that is,

$$
P\left(\bigcup_{r=1}^{\infty} B_{r}\right)=P\left(\bigcup_{r=1}^{\infty} \bigcap_{k=r}^{\infty} A_{k}^{c}\right)=0
$$

The conclusion of (a) follows from DeMorgan's rules.
Proof of (b). Let A be a set such that the sum (b) converges. Let $I_{k}(\omega)$ be the indicator function of the set $A \cap A_{k}, k=1,2, \ldots$, and $T=\sum_{k=1}^{\infty} I_{k}$. Clearly, $E(T)=\sum_{k=1}^{\infty} P\left(A \cap A_{k}\right)<\infty$. Therefore, $\left\{\omega \in A: \omega\right.$ is in infinitely many $\left.A_{k}\right\}$ is an
(1) Work supported by National Research Council of Canada.
event of measure zero, since otherwise $E(T)=+\infty$. That is, for almost every $\omega \in A$, only finitely many events A_{k} occur.

This completes the proof.
The following notation is required in the balance of the paper. Let $\widetilde{B}_{0}, \widetilde{B}_{1}, \ldots$. be the events that exactly $0,1, \ldots A_{k}$'s occur. Note that:

$$
\tilde{B}_{0}=\bigcap_{k=1}^{\infty} A_{k}^{c}, \quad \text { and } \quad \tilde{B}_{r}=\bigcup_{\left[j_{1}, \ldots, j_{r}\right]}\left[A_{j_{1}} \cap A_{j_{2}} \cap \cdots \cap A_{j_{r}} \cap\left(\bigcap_{k \neq j_{i}} A_{k}^{c}\right)\right]
$$

and are therefore measurable. (j_{i} 's all different, $j_{i}=1,2, \ldots$).
Let $C_{n}=\bigcup_{r=0}^{n} \widetilde{B}_{r}, n=0,1, \ldots$
The following lemma will be used in Theorem 2.
Lemma.

$$
\sum_{k=1}^{\infty} P\left(C_{n} \cap A_{k}\right) \leq n, \quad n=0,1, \ldots
$$

Proof. Let $J_{n, k}$ be the indicator function of $C_{n} \cap A_{k}$. Consider $\left\{J_{n, k}(\omega)\right.$: $k=1,2, \ldots\}$, for each $\omega \in \Omega$. From the definition of the set C_{n}, at most n of the $J_{n, k}$ can be 1 for any ω. Therefore, one obtains:

$$
\sum_{k=1}^{\infty} J_{n, k}(\omega) \leq n .
$$

Upon taking expectations on both sides, the required conclusion is reached.
Theorem 2. In order that only finitely many events A_{k}, occur with probability one, it is necessary and sufficient that for every $\epsilon>0$, there exists a measurable set D_{ϵ}, such that:

$$
\begin{equation*}
P\left(D_{\epsilon}\right)>1-\epsilon \text { and (ii) } \sum_{k=1}^{\infty} P\left(D_{\epsilon} \cap A_{k}\right)<\infty . \tag{i}
\end{equation*}
$$

Proof. If only finitely many A_{k} occur with probability one, the events C_{n}, defined above, satisfy:

$$
C_{n} \nearrow E, \quad \text { with } P(E)=1 .
$$

By virtue of the fact that the measure is continuous from below, the above lemma shows the conditions are necessary. The sufficiency is an immediate consequence of Theorem 1(b).

This completes the proof.
3. Conclusions. (i) If a set $A \in \mathscr{F}$, can be found such that $\sum P\left(A \cap A_{k}\right)$ converges, then only finitely many A_{k} occur with a probability not less than $P(A)$.
(ii) Combining the results of Theorems 1 and 2, applying the second to a conditional probability space, the following equation holds:

$$
P\left(\bigcap_{r=1}^{\infty} \bigcup_{k=r}^{\infty} A_{k}\right)=1-\sup \left\{P(A): A \in \mathscr{F}, \quad \sum_{k=1}^{\infty} P\left(A \cap A_{k}\right)<\infty\right\} .
$$

(iii) The above theorems point out what can go wrong, if one tried to reverse the argument of the classical lemmas. In addition, the divergence argument does not depend on the independence of the A_{k} 's.

Acknowledgement. The author wishes to thank Professors V. Seshadri, D. Dawson, M. Csörgo, and R. Vermes for their helpful discussion. Secondly, he wishes to express his gratitude to the referee for his helpful comments and suggestions.

References

1. D. Dawson and D. Sankoff, An inequality for probabilities, Proc. Amer. Math. Soc. (3) 18 (1967), 504-507.
2. W. Feller, An introduction to probability theory and its applications, Wiley, New York, I (second edition), 1957.
3. F. Spitzer, Principles of random walk, Van Nostrand, Princeton, N.J., 1964.

McGill University,
Montreal, Quebec
University of Florida,
Gainsville, Florida

