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Abstract
Next-generation spectro-polarimetric broadband surveys will probe cosmic magnetic fields in unprecedented detail, using the magneto-
optical effect known as Faraday rotation. However, non-parametric methods such as RMCLEAN can introduce non-observable linearly
polarised flux into a fitted model at negative wavelengths squared. This leads to Faraday rotation structures that are consistent with the
observed data, but would be impossible or difficult to measure. We construct a convex non-parametric QU-fitting algorithm to constrain
the flux at negative wavelengths squared to be zero. This allows the algorithm to recover structures that are limited in complexity to the
observable region in wavelength squared. We verify this approach on simulated broadband data sets where we show that it has a lower root
mean square error and that it can change the scientific conclusions for real observations. We advise using this prior in next-generation
broadband surveys that aim to uncover complex Faraday depth structures. We provide a public Python implementation of the algorithm at
https://github.com/Luke-Pratley/Faraday-Dreams.
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1. Introduction

Faraday rotation provides a mechanism for probing magnetic
fields in both the nearby and distant Universe on a range of phys-
ical and spatial scales (Johnston-Hollitt et al. 2015). In Faraday
rotation the angle of linearly polarised light rotates as a function of
wavelength as it passes through an ionic magnetised medium. By
using polarised sources as backlights, we can constrain magnetic
fields in a host of environments including the interstellar and
intracluster media, and potentially even the elusive cosmic web
(Johnston-Hollitt et al. 2015). Faraday rotation is thus vital to
understanding the role of magnetic fields in the Universe.

Multiple methods have been developed to characterise the
frequency dependent structure seen in spectropolarimetric obser-
vations and thereby extract information on Faraday rotation, with
the most popular approaches currently being rotation measure
(RM) synthesis (Burn 1966; Brentjens & de Bruyn 2005) and non-
linear parametric fitting (i.e. QU-fitting) (e.g. Anderson, Gaensler,
& Feain 2016). RMCLEAN is a CLEAN algorithm (Heald, Braun,
& Edmonds 2009) that is typically used to deconvolve the RM syn-
thesis signal. Recent studies that use these methods to study the
complexity of a Faraday rotated signal include Farnsworth et al.
(2011), O’Sullivan et al. (2012), Ideguchi et al. (2014), Kumazaki
et al. (2014), Sun et al. (2015), Pasetto et al. (2018), Miyashita
et al. (2018), Thomson et al. (2021). Each method is limited by the
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range and number of observed wavelengths. For previous genera-
tions of radio telescopes, observations of the emitting source have
often been limited to narrow bands. However, as next-generation
radio telescopes telescopes such as the MurchisonWidefield Array
(MWA; Wayth et al. 2018; Riseley et al. 2018; Riseley et al.
2020), the Low Frequency Array (LOFAR; van Haarlem et al.
2013; Van Eck et al. 2018), the Australian Square Kilometre Array
Pathfinder (ASKAP; Johnston et al. 2007), and MeerKAT (Jonas
2009) observe the polarised radio sky, there is a new opportunity
to constrain magnetic field models in the Universe at unprece-
dented precision. This has led to consideration of what method
works best to determine the correct RM structure from polarised
spectra. With the exception of non-linear parametric QU-fitting,
most RM acquisition methods are not built for the broadband
context. For example, until recently channel depolarisation at low
frequencies was not corrected for limiting the bands over which
polarised signals could be analysed (Pratley & Johnston-Hollitt
2020), for example, for telescopes such as the MWA. Broadband
observations and fitting methods are needed for astronomers to
have access to complex Faraday structures that are currently not
either observed or understood.

In this work, we highlight a largely ignored but critical chal-
lenge when fitting broadband spectra in Faraday depth. When
fitting a sinusoidal model along an axis in which we are using
only measuring data collected from a region along the x-axis for
which x≥ 0, the nature of the sinusoidal signal implies the model
will also be extendable to regions that have x≤ 0. In the case of
Faraday rotation where we are fitting flux densities in λ2 space,
where λ is the wavelength of light, we are performing a fit over
values collected for λ2 > 0. This implies the flux density values
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for λ2 ≤ 0, are typically not constrained in a fitted Faraday depth
model.

However, the flux contributions for λ2 ≤ 0 can change the
structures seen in the Faraday spectrum of the fitted solution.
Using both simulated and real observations, we show empirically
that it is possible to prevent introducing these structures in model
fitting by constraining the flux to be 0 for λ2 ≤ 0, such that the fit-
ted model is not determined by non-observable flux at λ2 ≤ 0. We
show that this suppresses structures that cannot be observed due
to their fitted flux originating over λ2 ≤ 0 but otherwise will con-
tribute to the Faraday spectrum.We emphasise that finding a λ2 ≤
0 constrained solution has only been made possible using recent
convex optimisation algorithms that can include non-continuous
and non-differentiable constraints and the use of RMCLEAN-like
sparsity priors, for example, the primal-dual based algorithm used
in this work Combettes et al. (2014) and the alternating direc-
tion method of multipliers (ADMM) algorithm used in Pratley &
Johnston-Hollitt (2020).

This work starts by introducing the Faraday RM synthesis mea-
surement equation in Section 2. We then discuss the aspects of
flux densities for λ2 ≤ 0 and the implications in Section 3. In
Section 4 we introduce the minimisation problem that can
reconstruct a Faraday rotation signal and not include the non-
observable flux density in the Faraday spectrum. We demonstrate
the impact of removing this flux density in signal reconstruc-
tion in Section 5. We conclude that this work is important for
Faraday analysis with non-parametric reconstruction algorithms
like CLEAN in Section 6.

2. Faraday synthesis measurement equation

The relation between the coordinates of the Faraday spectrum,
Faraday depth φ, and λ2 is given by the measurement equation

wkP(λ2
k)=

∫ ∞

−∞
wka(δλ2

k, φ)F(φ)e
2iλ2

kφdφ +wkn(λ2
k) , (1)

where P is the complex valued linear polarisation, F is the Faraday
spectrum, n is the noise,wk are weights that can be used to account
for uncertainty while assuming no noise co-variance, and for a
limited range of λ2

k values and channel widths δλ2
k; we are limited

in both φ values and Faraday resolution δφ (Burn 1966; Brentjens
& de Bruyn 2005; Pratley & Johnston-Hollitt 2020). As discussed
by Pratley & Johnston-Hollitt (2020), we can model the impact
of channel averaging by including a channel dependent sensitiv-
ity window in Faraday depth a(δλ2

k, φ), this is also known as the
δλ2-projection term and it is useful at long wavelengths. While
Pratley & Johnston-Hollitt (2020) uses channel averaging in λ2

as an example, the averaging process is always linear by defini-
tion and different window sensitivity functions are possible, for
example, Schnitzeler & Lee (2017) who considered channel aver-
aging in ν. For bandlimited functions, there is an exact Fourier
series relation between yk = P(λ2

k) and xl = F(φl) after including
additive noise nk = n(λ2

k). We can write this relation as the matrix
equation

Wy= �x+Wn , (2)

where x ∈C
N and y, n ∈C

M , and where the measurement matrix
� ∈C

M×N is defined as

�kl =wka(δλ2
k, φl)e2iλ

2
kφl , (3)

and the diagonal weighting matrix is Wkk =wk. For many cases,
like the examples in this paper, we can store � as a matrix.

3. Non-Observable Structure in Models of Broadband
Emission

In this section, we discuss non-observable contributions of flux
in the fitted model. For example, we expect that P(λ2 = 0)= 0
due to the measured flux decreasing as ν ≡ c/λ → ∞. In general,
the population of photons decreases to zero as energy increases.1
There is a more philosophical question about flux for λ2 ≤ 0. Since
imaginary iλ wavelengths do not exist, this flux corresponds to the
observed Faraday rotation if it was in the opposite sense, that is,
all magnetic fields are reversed (Burn 1966). We cannot observe
the energy for this signal unless this energy is shifted to posi-
tive λ2, for example, through helicity (Brandenburg & Stepanov
2014; Horellou & Fletcher 2014). We suggest that a reconstructed
Faraday spectrum therefore should not have contributing flux over
the λ2 ≤ 0 half of the domain.

Even in the case where we use conjugate symmetry to deter-
mine the flux for the negative λ2, it is determined by the flux
for positive λ2. The negative λ2 flux will be a factor for dis-
tinguishing and constraining Galactic magnetic field models for
each line of sight component, for example, such modelling may
be accomplished by the Interstellar MAGnetic field INference
Engine (IMAGINE; Boulanger et al. 2018), which will perform
a full Bayesian analysis of currently available polarimetric data.
There are physical Faraday spectra, as suggested by Brandenburg
& Stepanov (2014), which will not be consistent with conjugate
symmetry in λ2 ≤ 0. This emphasises that every model Faraday
spectrum should be filtered to contain only λ2 > 0 flux before
comparing with observation. This leaves many models that are
equivalent only after observable information is considered.

Restricting to λ2 > 0 has implications for the analysis of the
Faraday spectra, which we will briefly cover. The linear polarisa-
tion P is related to the total intensity I through

P(ν)= I(ν)p(ν) , (4)

where p(ν) is the complex fractional linear polarisation, and |p| ≤
1.2 It follows that, after a change of variables, we have the relation

P(λ2)= I(λ2)p(λ2) , (5)

and it follows from the convolution theorem that

F(φ)= (K � f )(φ) . (6)

In the above we have assumed an ideal Fourier relation with

I(λ2)=
∫ ∞

−∞
K(φ)e2iλ2φ dφ . (7)

The Faraday depth coordinate φ forK represents a pseudo Faraday
depth component that is purely due to the spectral structure and
structure of I(λ2) that mimics Faraday rotation modes3 and f is
the Faraday rotation spectrum of p. We define spectral structure as
structure of the spectrum in |P(λ2)|, which is typically determined
by I(λ2). This spectral structure over broad bandwidths creates an
intrinsic broadening of the RM component φ0, though we expect

1For example X-ray sources with large ν often have only 100s of photons, making the
source difficult to detect in linear polarisation.

2This is not always true for interferometric images.
3A smooth curve is well approximated as a slowly oscillating sine or cosine wave.
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for many cases the resolution limit determined by the limited λ2

coverage is far too coarse to observe this.4
We now introduce the Heaviside step function as�(λ2)= 0 for

λ2 ≤ 0 and �(λ2)= 1 otherwise. The value at �(0)= 1 typically
has no impact on its integration. The positive λ2 linear polarisation
signal reads

Pλ2>0(λ2)= �(λ2)I(λ2)p(λ2) , (8)

with Pλ2≤0(λ2)= P(λ2)− Pλ2>0(λ2). We then have the relation

Fλ2>0(φ)= π

2i
H[F](φ)+ 1

2
F(φ) , (9)

where H[F] is the Hilbert transform of F(φ), defined as

H[F](φ)= 1
π

∫ ∞

−∞

F(φ′)
φ − φ′ dφ

′ , (10)

which in some cases has a closed form expression.We calculate the
fractional polarisation without any spectral structure from total
intensity I as

pλ2>0(λ2)= �(λ2)p(λ2) , (11)

and

fλ2>0(φ)= π

2i
H[f ](φ)+ 1

2
f (φ) . (12)

The Hilbert transform is also encountered in all sky interfero-
metric imaging, and there is a natural analogy between the two
contexts. In Equation (27) of Pratley et al. (2019), the Hilbert
transform could be used in the uvw-domain to restrict an all sky
signal to be above the horizon. This is analogous to restricting a
spectro-polarmetric signal to positive λ2. However, unlike interfer-
ometric imaging where we can usemultiple observations to get full
sky coverage, we cannot build a telescope to observe and constrain
negative λ2.

A commonmodel for Faraday rotation with many components
is the Burn slab 	[φa ,φb](φ), where 	[φa ,φb](φ)= 1 for φ ∈ [φa, φb]
and 	[φa ,φb](φ)= 0 otherwise (Burn 1966). The Faraday spectrum
after removing non-observable structure from λ2 ≤ 0 for f (φ)=
	[φa ,φb](φ) is

fλ2>0(φ)= 1
2i

ln
∣∣∣∣φ − φa

φ − φb

∣∣∣∣ + 1
2
	[φa ,φb](φ) . (13)

We can remove non-observable structure from λ2 ≤ 0 from a
Faraday thin component f (φ)= δ(φ − φ0) centred at φ0 to read

fλ2>0(φ)= 1
2i(φ − φ0)

+ 1
2
δ(φ − φ0) . (14)

We can repeat the same calculations for spectral structure due to
total intensity to find similar functional forms (see Figure 1).

New broadband surveys like Polarisation Sky Survey of the
Universe’s Magnetism (POSSUM; Gaensler et al. 2010), Very
Large Array Sky Survey (VLASS; Lacy et al. 2020), and QU
Observations at Cm wavelength with Km baselines using ATCA
(QUOCKA5) have the opportunity to measure and fit more com-
plex Faraday structure in Faraday depth. However, the fitted

4Brentjens & de Bruyn (2005) suggests working with p(λ2) rather than P(λ2) to
remove spectral curvature, but be aware that p(λ2)= P(λ2)/I(λ2) has non-Gaussian dis-
tributed uncertainty. In principal if individual Faraday components have different spectral
curvature this process could require more attention to detail.

5https://research.csiro.au/quocka/.

Figure 1. Real and imaginary parts for a Burn slab with the interval±10 rad m-2 (left)
and for a Faraday thin screen located at 0 rad m-2 (right) in Faraday depth for fλ2>0(φ).
These models only contain flux over positive λ2.

complex Faraday structures should only include flux from posi-
tive λ2. In the next section we discuss how this can be done from a
fitting perspective.

4. Non-parametric QU-fitting

Recent advancements in convex optimisation allow us to recon-
struct non-parametric Faraday depth signals from broadband
spectro-polarimetric measurements (Li et al. 2011; Andrecut, Stil,
& Taylor 2012; Pratley & Johnston-Hollitt 2020; Cooray et al.
2021). To do this, we can solve a well defined minimisation prob-
lem in the same sense that QU-fitting does. While QU-fitting is a
parametric model fitting method, here we use a non-parametric
model to fit Q and U in the Faraday dispersion spectrum with
a penalty to avoid using too many components. Therefore, the
method used in this work is a QU-fitting algorithm that fits
CLEAN components (Heald et al. 2009), that is, non-parametric
QU-fitting. Both QU-fitting and CLEAN-style non-parametric
methods are deconvolution methods and have the ability to super
resolve structure. However, CLEAN does not have an explicit
objective function that it will minimise. Moreover, a fitting process
will make each solution consistent with the observed RM synthesis
signal within some error once it has been convolved to a limit-
ing resolution. However, as we show in Section 5, the flux from
λ2 ≤ 0 can create structures that cannot always be removed by res-
olution limiting. In this work, we use a forward-backward based
primal-dual algorithm (Combettes et al. 2014) to solve the min-
imisation problem through a series of smaller problems without
directly inverting any linear operators involved. Specifically, the
primal-dual algorithm minimises both a primal problem and a
dual problem at the same time. This allows each of the individ-
ual functions in the objective function to be split and minimised
separately at each iteration. We use a forward-backward algo-
rithm to minimise each individual function. One further detail of
this approach is that we avoid calculating any matrix inverse or
the need to perform sub-iterations, which can be computation-
ally expensive. There are many other approaches that can solve
the same minimisation problem, see Komodakis & Pesquet (2015)
for more details. This allows us to solve the mathematical minimi-
sation problems below, described as non-parametric QU-fitting
problems.

In the case of Faraday thin screens, it is natural to assume that
the Faraday spectrum is a sum of a few delta functions. This prior
is implicitly the basis of RMCLEAN style algorithms (Heald et al.
2009). We use Bayes’ theorem to relate the likelihood P(y|x) and
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Figure 2. Reconstructions of simulated synchrotron spectra (ν/ν1)5/2[1− e−( ν
ν1
)

δ+4
2 ], where δ is the power law slope for the energy spectrumof cosmic-ray electrons, using a CLEAN

style prior in Faraday depth, with and without the prior of Pλ2≤0(λ2)= 0. Rows 1, 2, 3, and 4 have breaking frequencies ν1 = 800, 2 000, 5 000, 2 000 MHz respectively with a spectral
index of α ≡ −(δ − 1)/2= −0.8. Rows 1–3 have no rotation measure, and row 4 has a component at 100 rad m-2. Column 1 shows Q(λ2) and U(λ2) for the reconstructed model
both with and without the prior, and the ground truth. Column 2 compares the fit over the observed ν range. Column 3 compares the absolute values of the ground truth and
reconstructed Faraday depth signals. Significant spectral structure can introduce structure in λ2 ≤ 0 for the fitted signal that can never be observed. Critically, the λ2 ≤ 0 flux can
significantly change the fitted model in Faraday depth, that is, rows 2 & 4 where there are multiple peaks in the Faraday spectrum. Constraining Pλ2≤0(λ2)= 0 for the fitted model
removes these structures. We have also verified that this effect can be replicated for simulated spectral structure observed over frequencies 50 MHz≤ ν < 1 GHz. We also note
that the shape of the ground truth Faraday spectrum K(φ) is determined by synchrotron emission (see Equation (6)).

prior P(x) to the posterior
P(x|y)∝P(y|x)P(x) . (15)

The solution to maximum a posteriori estimation is xMAP, where
xMAP = argmin

x∈C

[− logP(y|x)− logP(x)
]
. (16)

The likelihood and prior are then used to directly determine a
minimisation problem. We assume that the additive noise vec-
tor Wn in Equation (2) follows a Gaussian distribution for both
of its real and imaginary parts. The log likelihood function for a
Gaussian is proportional to the squared euclidean norm that is
seen in least squares minimisation. By working directly with the
real and imaginary components we avoid a Rician bias when fit-
ting the signal. We use the Laplace distribution as a sparsity prior
which results in a the sum of absolute values as a penalty for the
number of parameters. This gives rise to a well defined CLEAN
style minimisation problem

xMAP = argmin
x∈CN

[
γ ‖x‖�1 + ‖�x−Wy‖2�2

2σ 2

]
, (17)

where the �p-norm is defined as ‖a‖�p = (
∑

k |ak|p)1/p. This prob-
lem is unconstrained with γ as a parameter to be determined,
and σ is the root mean-squared (RMS) uncertainty on the mea-
surements. This is the convex optimisation problem solved by
Li et al. (2011) and Andrecut et al. (2012). When the noise vec-
tor has uncorrelated components and an RMS uncertainty σk
for component nk, the weights are diagonal and should be cho-
sen to be Wkk = σ/σk. We then choose σ = 1√∑M

k=1 1/σ 2
k

to ensure

that
∑M

k=1 |Wkk|2 =M, and any further normalisation is in the
definition of the Fourier relation and measurement equation.

The CLEAN style prior can be recast as a constrained
�1-regularisation problem

xConst. = argmin
x∈CN

[‖x‖�1 + ιBε(Wy)(�x)
]
, (18)

where we are constraining our solution to lie close to the measure-
ments y using an indicator function defined as ιU (a)= 0 when a ∈
U and ιU (a)= +∞ otherwise. The �2-ball set Bε(y) is defined as
Bε(Wy)= {z:‖z −Wy‖�2 ≤ ε} and ε is a tolerance related to σ . The
constrained formulation is closely related to the unconstrained
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problem and was previously used by Pratley & Johnston-Hollitt
(2020).We can addmore indicator functions or penalties as a prior
to put further restrictions on the set of solutions.

As discussed in Section 3, since no flux can be observed for λ2 ≤
0 there is no way to constrain the fit over this range. Ignoring P(0),
there are special cases where the non-observable flux from λ2 ≤ 0
can be determined from observations of flux from λ2 > 0. One
special case is when F(φ) is a Hermitian function which results in
the relation P∗(− |λ2|)= P(|λ2|). However, in general, the poten-
tial to introduce structure over the range λ2 ≤ 0 is an unavoidable
problem because every fitted RM component (e.g. the basis func-
tion e2iλ2φ) will parameterise the entire λ2 domain. Furthermore,
constraining flux to be zero for λ2 ≤ 0 limits the support of P(λ2),
this requires the fitted signal to need more RM components and
would not be promoted by a sparsity prior alone.

We can solve for the solution presented in Equations (8) and
(9) to ensure that P(λ2)→ 0 as λ2 → 0 and P(λ2)= 0 for λ2 ≤ 0,
which is discussed in Section 3, so that a solution will have a
Faraday spectrum that can in-principle be constrained against
future observations. To do this we suggest the modification

xConst. = argmin
x∈CN

[‖x‖�1 + ιBε(Wy)(�x)+ ιC(Fx)
]
, (19)

where F ∈C
N×N is a Fourier transform from φ-space to λ2-space,

and C ⊂C
N is the set where z is zero for λ2 ≤ 0 for all z ∈ C. While

solving Equation (19), we use Equation (8) to project onto the set
of solutions that satisfy P(λ2)= Pλ2>0(λ2) within the primal-dual
algorithm (Combettes et al. 2014). Furthermore, we can modify
the constraining C to be resolution limited in Faraday depth, for
example, solutions that have zero flux beyond the largest observed
wavelength.; however, the impact of this appears negligible when
tested by the authors.

5. The simulated and observed impact of λ2 ≤ 0

We demonstrate that the prior for λ2 ≤ 0 can make a difference
in the recovered result. One way to affect the resultant spectrum
is to retain total intensity spectral structure. For a Faraday thin
screen with Faraday rotation component φ0, we can write F(φ)=
pK(φ − φ0); here we show that the choice of prior implicitly fits a
model over λ2 ≤ 0.

As a demonstration, we simulate observations of the polari-
sation signals P(λ2)= I(λ2) and P(λ2)= I(λ2)e2iλ2100, where I is
spectral structure for a synchrotron spectrum defined by Equation
(5.90) of Condon & Ransom (2016). We simulate M = 128
observed frequency channels that are equally spaced between 1.3
and 9.7 GHz. We then band-limit the signal by the longest wave-
length in λ2-space and use a Fourier Transform to create xtrue in
Faraday depth. In interferometeric imaging, the potential recon-
structed resolution is higher for large signal-to-noise ratios when
using a CLEAN style prior. However, because the flux of our mod-
els is not a flat spectrum the total flux can increase or decrease
withmore Faraday resolution, we don’t expect to accurately super-
resolve the model. We follow the Nyquist resolution formula
δφ ≤ π

2λ2
max
; with λ2

max = 0.0532 we choose the resolution which is
approximately twice the Nyquist sampling rate δφ = 15 rad m-2.6

6There is a factor of π difference in the analogous resolution formula used in interfer-
ometry, this is due to the difference in chosen Fourier kernels, for example, e2iφλ2 rather
than e−2iπφλ2 .

Figure 3. TheNRMSE for the reconstructed Faraday spectra seen in the rows of Figure 2
(models 1–4 represent rows 1–4) for different ISNR. The error bars are centred at
the mean value over 10 noise realisations and have the length given by the standard
deviation.

We add Gaussian noise to the Stokes Q and U linear polarisations
individually where P =Q+ iU, following the formula for the RMS

σ = ‖�xtrue‖�2

10− ISNR
20√

2M
, (20)

where ISNR is the input signal-to-noise ratio. This allows us to
calculate ε =

√
2M + √

4Mσ for ISNR = 30 dB.
Figure 2 shows comparisons of the reconstructions with and

without constraining Pλ2≤0(λ2)= 0. When there is sufficient spec-
tral structure, there is a multi-peaked structure due to flux from
λ2 ≤ 0 in the solution even when there is no Faraday rotation
in the signal. We also show that this is true for non-zero RM
values. In cases where there are no multi-peaks introduced into
the Faraday spectrum, there is less unconstrained flux for λ2 ≤ 0.
We show that adding the Pλ2≤0(λ2)= 0 constraint can remove
structure introduced in model fitting over the range λ2 ≤ 0. This
suggests that phase information from λ2 ≤ 0 is a major con-
tribution in this case. We calculate the normalised root mean-
squared error (NRMSE) between each reconstructed and ground
truth Faraday spectrum using the formula NRMSE= ‖xtrue −
xConst.‖�2/‖xtrue‖�2 . For the reconstructions and ground truths
shown in column 3 of Figure 2, the NRMSE for rows 1–4 for
FModel

λ2>0 (φ) and FModel(φ) are shown in Figure 3. The NRMSE is
lower when constraining the flux to be zero for λ2 ≤ 0, and it is
comparable when the breaking frequency is not observed.

The wavelength squared range shown in Figure 2 is between
the values of λ2 = ± π

2δφ which is ±0.104 m2 when the Fast Fourier
Transform (FFT) grid has a resolution of δφ = 15 rad m−2. This
is the spacing of the periodic boundary conditions imposed by
the Fourier series calculated using the FFT. It is important to
show the full periodic range for two reasons. The first reason is
that this transform can be inverted using an FFT, which means
that no information is lost between the two signals. The second
reason is that it is important to see that the signal wraps around
at the boundaries, this phenomena is also known as aliasing.
Figure 2 shows that Pλ2≥0(λ2) tends towards zero for large λ2 for
this reason, for example, the structure of flux at large negative λ2

will impact the structure of flux at large positive λ2. The largest
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Figure 4. Reconstructions of observed spectra using a CLEAN style prior in Faraday depth with and without the prior of Pλ2≤0(λ2)= 0, for the sources lmc_c15 (top row) and
cena_c1972 (bottom row) from Anderson et al. (2016). Columns (left to right) aremeasurements and fittedmodels in λ2 coordinates, the fitted Faraday spectra, and the convolved
Faraday spectra (where the convolutions are applied to each of the complex and absolute valued spectra).

λ2 coordinate in the model and the ground truth is (0.104 m2) is
twice the largest coordinate in the observed signal (0.0532 m2),
both of the fitted models show deviations from the ground truth
spectra above 0.0532 m2.

Figure 4 demonstrates the effect and solution for two real
observations from Anderson et al. (2016). The sources lmc_c15
and cena_c1972 were observed between 1 and 10 GHz using the
Australia Telescope Compact Array. The results from Anderson
et al. (2016) show that the single component QU fit seen for
cena_c1972 is consistent with the peak after the λ2 ≤ 0 correction;
the three componentQU fit for lmc_c15 is consistent to fitting two
peaks to one component and a single peak to the other component
after the λ2 ≤ 0 correction. Using non-parametric QU-fitting we
find a smooth curve with one peak per component (lmc_c15: 114
± 24.5 and −50.8 ± 25.0 rad m-2; cena_c1972: −75.3 ± 28.1 rad
m-2), while fitting the spectral structure. These Faraday RM results
provided in Figure 4 are calculated by absolute flux weighting
for the mean and standard deviation of Faraday depth coordi-
nates φ with polarised flux above 0.1× F(φpeak). Specifically, we
define the region of integration for a single component as S=
{φ:0.1× |F(φpeak)| < |F(φ)|} and calculate the flux weighted mean
〈RM〉 and standard deviation σRM as

〈RM〉 =
∑

φ∈S |F(φ)|φ∑
φ∈S |F(φ)| , (21)

and

σ 2
RM =

∑
φ∈S |F(φ)|(φ − 〈RM〉)2∑

φ∈S |F(φ)| . (22)

Figure 5. The magnitude and residuals for the fitted signals from Figure 4 are shown
for observations of sources lmc_c15 (top row) and cena_c1972 (bottom row). Themag-
nitude of the fitted linear polarisation intensities and corresponding observations in ν

coordinates as a logarithmic scale in the left column. The residuals for the fitted signals
QRes = QMeasured − QModel and URes = UMeasured − UModel in linear scale in right column. We
find that constraining Pλ2≤0(λ2)= 0 provides a similar magnitude for the residuals, this
follows because they are solutions to Equations (18) and (19).

Figure 4 shows that the signals with and without non-
observable structure provide similar fits to the observed spectra
for λ2 > 0 in the presence of curvature. However, the structure for
λ2 ≤ 0 is not constrained by the observation and imposes multiple
peaks in the reconstructed signal. Figure 5 shows that both con-
straining and unconstraining the λ2 ≤ 0 interval to zero does not
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greatly change the residuals in each fit, which is expected from the
fidelity constraint.

In many contexts, double peaked structures can be removed
by resolution limiting the signal, but this does not remove the
double peaked structures for these examples. Resolution limiting
the polarisation magnitude |F(φ)| will remove these structures,
this suggests that the phase is partially responsible for the double
peaks (a similar phase issue has been discussed in Farnsworth et al.
2011). However, smoothing the magnitude is a non-linear process
and we do not suggest it as a method.

The reconstructions were performed using a MacBook Pro
(2019) with 4 cores (2.4 GHz) and 16 GB of RAM. 50 000 itera-
tions took approximately 15 seconds which we consider an upper
bound on reconstruction time for each line of sight. However, con-
vergence can typically be reached in 100–1 000 s of iterations
which takes approximately a second or less. Each iteration applies
� and �† which can be applied as either a direct matrix multipli-
cation or using a Non-Uniform Fast Fourier transform (NUFFT).
To enforce the constraint on flux in λ2 space we need to perform
an FFT and its inverse for each iteration.We can use the 15 s upper
bound and estimate 4 200 h of serial computation to reconstruct
1 000 000 independent lines of sight (e.g. which we could expect
in a full POSSUM catalogue; Gaensler et al. 2010). Using a single
high performance workstation with 64 cores in parallel this can be
reduced to approximately an hour of computation. We provide a
public Python implementation of the algorithm used in this work
at https://github.com/Luke-Pratley/Faraday-Dreams.

We have shown that structures caused by fitted flux over λ2 ≤ 0
provides us with a smooth spectrum with a single peak for each
Faraday screen. Without this constraint, we would arrive at a
different scientific conclusion on the number of Faraday compo-
nents.We have also found consistent results for the other observed
broadband sources of Anderson et al. (2016).

6. Conclusions

We have shown that non-observable structures can be introduced
into fitted models of Faraday rotation spectra when the flux for
λ2 ≤ 0 is not constrained. We show that by setting the prior flux
to zero over this range, we can remove the structures introduced
from the unconstrained λ2 ≤ 0 region. We demonstrate the effect
of this constraint using non-parametric QU-fitting on both sim-
ulations and real data. Without an explicit prior or constraint
on λ2 ≤ 0 there can always be some contribution to the recon-
structed Faraday rotation signal that is not possible to compare
against future observations. This constraint will be needed when
interpreting Faraday structures from next-generation broadband
radio telescopes where it can impact the scientific conclusion.
Current RMCLEAN algorithms do not have the ability to restrict
the recovered flux only for λ2 > 0. This will be needed in the con-
text of interferometric observations of extended sources where
fractional polarisation can be non-physical, for example, the inter-
stellar medium (Gaensler et al. 2011). This work shows how
developments in convex optimisation and polarimetric theory

over the last 10 yr can be leveraged for improved Faraday depth
fidelity in broadband observations.
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