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Nanostructured multicomponent films of transition metal-based carbonitrides quaternary were found to 

have a much wider industry-specific applications due to their outstanding properties compared to the 

traditional binary or ternary hard coatings [1, 2]. For example, the novel quaternary Si-B-C-N system 

exhibits an extraordinary high-temperature oxidation resistance and stability [3-5], while it maintains its 

amorphous structure at high temperatures [6]. Recently, multifunctional Zr-B-C-N films have been 

fabricated by pulsed reactive magnetron sputtering that can be used as hard protective coatings with 

high oxidation and corrosion resistance at elevated temperatures [7]. These are high-quality, defect-free 

films with smooth surfaces (average roughness Ra≤4 nm) and good adhesion to substrates. 

 

In this work, we have employed high-resolution transmission electron microscopy, electron diffraction, 

X-ray photoelectron spectroscopy and nano indentation to systematically study the microstructures and 

mechanical properties of Zr-B-C-N films. Four films with a chemical composition of Zr61B27C6N3, 

Zr41B30C8N20, Zr26B26C6N42 and Zr24B19C6N49 were deposited on p-type Si (100) by pulsed reactive 

magnetron sputtering of Zr, B, and C from a single B4C–Zr target in the nitrogen-argon gas mixtures 

with a nitrogen fraction of 0%, 5%, 10% and 15%. The B4C–Zr target was prepared using a B4C plate 

overlapped by Zr stripes covering 45% in the target erosion area. During the deposition, the substrate 

temperature was adjusted to 450 °C by an infrared heater on the substrates at a floating potential. The 

base pressure was 3×10
–3

 Pa and the total pressure of argon–nitrogen gas mixtures was 0.5 Pa. 

 

The Zr61B27C6N3 film is a composite material involving an amorphous structure surrounding face-

centered cubic (fcc) B-rich Zr(B,C,N) nano-columnar structures in which the B-rich Zr(B,C,N) 

crystalline has a [111] preferred orientation (Fig. 1(a)). The Zr41B30C8N20 film consists of nano-needle 

structures which have a length of about 40 nm and a width of about10 nm (Fig. 1(b)). This film was 

found to possess the highest hardness (36.4 GPa) and modulus (316.8 GPa). The nano-needles have a 

fcc structure and are composed of ZrN and/or Zr(B,N) nano-domain structures (~2 nm) that are semi-

coherently joined by ZrN monolayer interfaces (Fig. 2). The Zr26B26C6N42 film deposited with 10% N2 

fraction in the gas mixture is composed of refined crystalline ZrN nano-needle structures (~2 nm) 

embedded in an amorphous matrix (Fig. 1(c)). The Zr24B19C6N49 film has a pure amorphous-like 

structure (Fig. 1(d)). These results helped us to develop a better understanding of the relationship 

between the microstructure and the mechanical properties of the Zr-B-C-N films. The highest hardness 

obtained for the Zr41B30C8N20 film is attributed to the particular microstructure that involves Hall-Petch 

strengthening effects from the ZrN and/or Zr(B,N) nanograins, and interface layer strengthening from 

the semi-coherent Zr-N monolayer boundary. The results showed that an amorphous structure can be 

introduced into the films by changing the N/Zr ratio via varying the N2 fraction in the N2/Ar gas 

mixture. Formation of such an amorphous structure has a negative impact on the mechanical properties 

of the films. 
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Figure 1. Cross-section TEM image and SAED pattern (inset) of the film (a) Zr61B27C6N3, (b) 

Zr41B30C8N20, (c) Zr26B26C6N42 and (d)Zr24B19C6N49. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. (a) HRTEM image of a nano needle in the Zr41B30C8N20 film showing nano domains 

separated by monolayer interfaces; (b) schematic illustration of atomic structure of the monolayer 

interface. 
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