UNIQUENESS OF SOLUTIONS OF IMPROPERLY
 POSED PROBLEMS FOR SINGULAR ULTRAHYPERBOLIC EQUATIONS

EUTIQUIO C. YOUNG

(Received 2 February 1972)
Communicated by G. Virsik

1. Introduction

In [1], Owen gave sufficient conditions for the uniqueness of certain mixed problems having elliptic and hyperbolic nature for the ultrahyperbolic equation. Recently, Diaz and Young [2] has obtained necessary and sufficient conditions for the uniqueness of solutions of the Dirichlet and Neumann problems involving the more general ultrahyperbolic equation

$$
\Delta u-D_{j}\left(a_{j k} D_{k} u\right)+c u=0
$$

The purpose of this paper is to present corresponding uniqueness conditions for the Dirichlet and Neumann problems for the singular ultrahyperbolic equation

$$
\begin{equation*}
L u \equiv u_{t t}+(\alpha / t) u_{t}+\Delta u-D_{j}\left(a_{j k} D_{k} u\right)+c u=0 \tag{1}
\end{equation*}
$$

for all values of the parameter $\alpha,-\infty<\alpha<\infty$. The symbol Δ denotes the Laplace operator in the variables $x_{1}, \cdots, x_{m}, D_{j}$ indicates partial differentiation with respect to the variable $y_{j}(1 \leqq j \leqq n)$, and the summation convention is adopted for repeated indices including $\left(\partial_{i} u\right)^{2}$, where ∂_{i} denotes differentiation with respect to the variable x_{i}.

The boundary value problems will be considered in the domain $Q=X^{*} \times Y$ where X^{*} is the parallelepiped defined by $0<t<T, 0<x_{i}<a_{i}(1 \leqq i \leqq m)$, and Y is a bounded domain in the space y_{1}, \cdots, y_{n}. The parallelepiped defined by $0<x_{i}<a_{i}(1 \leqq i \leqq m)$ will be denoted by X. For brevity, we write $x=\left(x_{1}, \cdots, x_{m}\right), y=\left(y_{1}, \cdots, y_{n}\right)$, and denote a point in Q by (t, x, y).

Throughout this paper, we assume that the coefficients $a_{j k}$ and c depend only on the variables y_{1}, \cdots, y_{n}, and are continuous functions of these variables with

Supported by an NSF Research Grant.
$c \geqq 0$ in Y. As in [2] and [4], we also assume that the matrix $\left(a_{j k}\right)$ is symmetric, positive definite, and that $a_{j k}, c$ and the domain Y are sufficiently regular in order to allow the application of the divergence theorem and to ensure the existence of a complete set of eigenfunctions of class $C^{2}(Y) \cap C^{1}(\bar{Y})$ for the eigenvalue problems that will be needed below. By a solution of a boundary value problem considered here we shall mean a function $u \in C^{2}(Q) \cap C^{1}(\bar{Q})$ which satisfies the differential equation and the boundary condition of the problem.

The results given here include not only those obtained in [2], but also those derived by Dunninger and Zachmanoglov [3], [4], Sigillito [5] and Young [6] in the case of the normal hyperbolic equation.

2. The Dirichlet problem

We consider first the homogeneous Dirichlet problem

$$
\begin{equation*}
L u=0 \text { in } Q, \quad u=0 \text { on } \partial Q \tag{2}
\end{equation*}
$$

Corresponding to various ranges of the parameter α, we shall prove uniqueness of solution by showing that every solution of the problem vanishes identically in Q. We begin by stating a lemma which characterizes every smooth solution of the equation (1) for $\alpha \neq 0$.

Lemma. If $\alpha \neq 0$, then every solution u of (1) belonging to C^{2} for $t>0$ and to C^{1} for $t \geqq 0$ satisfies the condition $u_{\mathrm{t}}(0, x, y)=0$.

This lemma can be proved by following, almost step for step, the method employed by Fox [7] in establishing the same property for the corresponding singular normal hyperbolic equation in the case that $\left(a_{j k}\right)$ is the identity matrix, using the domain Q.

Theorem 1. If $\alpha>0$, then every solution of the problem (2) vanishes identically in Q.

Proof. Let u be a solution of the problem (2). We integrate the identity

$$
\begin{aligned}
0=2 u_{t} L u= & {\left[u_{t}^{2}-\left(\partial_{i} u\right)^{2}+a_{j k} D_{j} u D_{k} u+c u^{2}\right]_{t} } \\
& +2 \partial_{i}\left(u_{t} \partial_{i} u\right)-2 D_{j}\left(a_{j k} u_{t} D_{k} u\right) \\
& +(2 \alpha / t) u_{t}^{2}
\end{aligned}
$$

over Q and use the divergence theorem to obtain

$$
\begin{gather*}
\left.\int_{X \times Y}\left(u_{i}^{2}-\left(\partial_{i} u\right)^{2}+a_{j k} D_{j} u D_{k} u+c u^{2}\right)\right|_{t=0} ^{t=T} d x d y \\
+\int_{\delta Q}\left(2 u_{t} \partial_{i} u v_{i}-2 u_{t} a_{j k} D_{k} u v_{j}^{*}\right) d S \tag{3}
\end{gather*}
$$

$$
+2 \alpha \int_{Q}\left(u_{t}^{2} / t\right) d t d x d y=0
$$

where v_{i} and $v_{j}{ }^{*}$ denote the components of the outward normal vector on ∂X and ∂Y, respectively. By the lemma and the fact that u vanishes on ∂Q, (3) reduces to

$$
\begin{equation*}
\int_{X \times Y} u_{t}^{2}(T, x, y) d x d y+2 \alpha \int_{Q}\left(u_{t}^{2} / t\right) d t d x d y=0 \tag{4}
\end{equation*}
$$

Since $\alpha>0$, this implies that $u_{t} \equiv 0$ in Q, that is, u is independent of t. But $u=0$ on $t=0$, hence $u \equiv 0$ in Q.

Theorem 2. Let $\lambda_{r}(r=1,2, \cdots)$ be the eigenvalues of the problem

$$
D_{j}\left(a_{j k} D_{k} v\right)-c v+\lambda v=0 \text { in } Y
$$

(5)

$$
v=0 \text { on } \partial Y
$$

If $\alpha \leqq 0$, then every solution of the problem (2) vanishes identically in Q if and only if

$$
\begin{equation*}
J_{(1-\alpha) / 2}\left(\mu^{\frac{1}{2}} T\right) \neq 0 \tag{6}
\end{equation*}
$$

for any real number $\mu \neq 0$ and nonzero integers p_{1}, \cdots, p_{m} such that

$$
\begin{equation*}
\mu+\sum_{i=1}^{m}\left(p_{i} \pi / a_{i}\right)^{2}=\lambda_{r} \tag{7}
\end{equation*}
$$

where $J_{a}(t)$ is the Bessel's function of the first kind of order α.
Proof. Suppose that there exist an eigenvalue λ_{s} of (5), a real number $\mu_{s} \neq 0$, and nonzero integers q_{1}, \cdots, q_{m} satisfying (7) such that

$$
\begin{equation*}
J_{(1-\alpha) / 2}\left(\mu_{s}^{\frac{1}{2}} T\right)=0 \tag{8}
\end{equation*}
$$

Let v_{s} be an eigenfunction of (5) corresponding to λ_{s}, and define

$$
\begin{equation*}
\phi(x ; q)=\prod_{i=1}^{m} \sin \left(q_{i} \pi x_{i} / a_{i}\right) \tag{9}
\end{equation*}
$$

Then it is readily verified that the function

$$
u(t, x, y)=t^{(1-\alpha) / 2} J_{(1-\alpha) / 2}\left(\mu_{s}^{\left.\frac{\dagger}{s} t\right) \phi(x ; q)} v_{s}(y)\right.
$$

is a nontrivial solution of the problem (2).
Conversely, suppose that the conditions (6) and (7) hold. Let us integrate the identity

$$
\begin{aligned}
w L u-u M w= & \left(w u_{t}-w_{t} u+\alpha u w / t\right)_{t} \\
& +\partial_{i}\left(w \partial_{i} u-u \partial_{i} w\right) \\
& -D_{j}\left[a_{j k}\left(w D_{k} u-u D_{k} w\right)\right]
\end{aligned}
$$

over $Q_{s}=X_{s}^{*} \times Y$, where X_{s}^{*} is the parallelepiped defined by $0<s \leqq t<T$, $0<x_{i}<a_{i}(1 \leqq i \leqq m)$, and M is the adjoint operator of L given by

$$
\begin{aligned}
M w= & w_{t t}-\alpha(w / t)_{t}+\Delta w \\
& -D_{j}\left(a_{j k} D_{k} w\right)+c w .
\end{aligned}
$$

By the divergence theorem, we have

$$
\begin{align*}
& \int_{Q_{s}}[w L u-u M w] d t d x d y \\
&=\int_{\partial Q_{s}}\left[\left(w u_{t}-w_{t} u+\alpha u w / t\right) v_{t}+\left(w \partial_{i} u-u \partial_{i} w\right) v_{i}\right. \tag{10}\\
&-\left.a_{j k}\left(w D_{k} u-u D_{k} w\right) v_{j}^{*}\right] d S
\end{align*}
$$

Now let u be a solution of (2) and for any choice of $\lambda_{r}, u \neq 0$, and nonzero integers p_{1}, \cdots, p_{m} satisfying (6) and (7), let

$$
w(t, x, y)=t^{(1+\alpha) / 2} J_{(1-\alpha) / 2}\left(\mu^{\frac{1}{2}} t\right) \phi(x ; p) v_{r}(y)
$$

where ϕ is defined in (9) and v_{r} is an eigenfunction associated with λ_{r}. Since $L u=0$ and

$$
M w=-t^{(1+\alpha) / 2} J_{(1-\alpha) / 2}\left(\mu^{\frac{1}{2}} t\right) \phi(x ; p)\left[D_{j}\left(a_{j k} D_{k} v_{r}\right)-c v_{r}+\lambda_{r} v_{r}\right]=0
$$

the left hand side of (10) vanishes. Moreover, since $u=0$ on ∂Q and $w=0$ on $X^{*} \times \partial Y$ and $\partial X \times Y$, equation (10) becomes

$$
\begin{equation*}
\left.\int_{X \times Y}\left(w u_{t}-w_{t} u+\alpha u w / t\right)\right|_{t=s} ^{t=T} d x d y=0 \tag{11}
\end{equation*}
$$

We now let s approach zero. Since both w_{t} and w / t are bounded at $t=0$, and u vanishes there, we obtain in the limit

$$
\begin{equation*}
T^{(1+\alpha) / 2} J_{(1-\alpha) / 2}\left(\mu^{\frac{1}{2}} T\right) \int_{X \times Y} u_{t}(T, x, y) \phi(x ; p) v_{r}(y) d x d y=0 \tag{12}
\end{equation*}
$$

In view of (6) and the completneness of the sets of eigenfunctions $\left\{\prod_{i=1}^{m} \sin \left(p_{i} \pi x_{i} / a_{i}\right)\right\}$ and $\left\{v_{r}\right\}$ in X and Y, respectively, (12) implies that $u_{t}(T, x, y)=0$. With this additional information, we can now show that $u \equiv 0$ in Q.

Let us integrate the identity

$$
\begin{align*}
0= & \left(2 t u_{t}+u\right) L u=\left[t\left(u_{t}^{2}-\left(\partial_{i} u\right)^{2}+a_{j k} D_{j} u D_{k} u+c u^{2}\right)+u\left(u_{t}+\frac{1}{2} \alpha u / t\right]_{t}\right. \\
& +\partial_{i}\left[\left(2 t u_{t}+u\right) \partial_{i} u\right]-D_{j}\left[a_{j k}\left(2 t u_{t}+u\right) D_{k} u\right]+2(\alpha-1) u_{t}^{2}+\frac{1}{2} \alpha u^{2} / t^{2} \tag{13}
\end{align*}
$$

over Q_{s} and pass to the limit as $s \rightarrow 0$. Since $u=0$ on $\partial Q, u_{t}=0$ on $t=0$ and $t=T$, all surface integrals arising from the integration vanish in the limit, so that we are left with the convergent integral

$$
\int_{Q}\left[2(\alpha-1) u_{t}^{2}+\frac{1}{2} \alpha u^{2} / t^{2}\right] d t d x d y=0
$$

Since $\alpha \leqq 0$, this yields the result that $u \equiv 0$ in Q.

3. The Neumann problem

We consider next the homogeneous Neumann problem

$$
\begin{equation*}
L u=0 \text { in } Q, \partial u / \partial n=0 \text { on } \partial Q, \tag{14}
\end{equation*}
$$

where $\partial u / \partial n$ denotes the conormal derivative

$$
\partial u / \partial n=a_{j k} D_{k} u v_{j}^{*}
$$

on the part $X^{*} \times \partial Y$ of ∂Q.
Theorem 3. Let $\lambda_{r}(r=1,2, \cdots)$ be the nonzero eigenvalues of the problem

$$
\begin{align*}
D_{j}\left(a_{j k} D_{k} v\right)-c v+\lambda v & =0 \text { in } Y \tag{15}\\
\partial v / \partial n & =0 \text { on } \partial Y
\end{align*}
$$

Then every solution u of the problem (14) vanishes identically (or $u=$ const. if $c \equiv 0$) for $\alpha \geqq 0$ if and only if

$$
\begin{equation*}
J_{(1+\alpha) / 2}\left(\mu^{\frac{1}{2}} T\right) \neq 0 \tag{16}
\end{equation*}
$$

for any real number $\mu \neq 0$ and integers p_{1}, \cdots, p_{m} satisfying (7).
Proof. The condition (16) is actually necessary for any value of the parameter α. In fact, if there exist a nonzero eigenvalue λ_{s} of (15), a real number $\mu_{s} \neq 0$, and integers q_{1}, \cdots, q_{m} satisfying (7) such that

$$
\begin{equation*}
J_{(1+\alpha) / 2}\left(\mu_{s}^{\frac{1}{2}} T\right)=0 \tag{17}
\end{equation*}
$$

then the function

$$
\begin{equation*}
u(t, x, y)=t^{(1-\alpha) / 2} J_{(\alpha-1) / 2}\left(\mu_{s}^{\frac{1}{2}} t\right) \psi(x ; q) v_{s}(y) \tag{18}
\end{equation*}
$$

constitutes a nontrivial solution of the problem (14) for any value of α. Here

$$
\begin{equation*}
\psi(x ; q)=\prod_{i=1}^{m} \cos \left(q_{i} \pi x_{i} / a_{i}\right) \tag{19}
\end{equation*}
$$

and v_{s} is an eigenfunction corresponding to λ_{s}. Indeed, by (15) it is easily shown that (18) satisfies $L u=0, \partial u / \partial n=0$ on $X^{*} \times \partial Y$, and $\partial_{i} u=0$ on $x_{i}=0, x_{i}=a$ ($1 \leqq i \leqq m$). Moreover, since

$$
u_{t}=-\mu_{s}^{\frac{1}{4}} t^{(1-\alpha) / 2} J_{(1+\alpha)!2}\left(\mu_{s}^{\frac{1}{2}} t\right) \psi(x ; q) v_{s}(y)=O(t)
$$

it follows that $u_{t}(0, x, y)=0$ and by (17) $u_{t}(T, x, y)=0$. Thus (18) is a nontrivial solution of the problem (14).

On the other hand, let $\alpha \geqq 0$ and assume that the condition (16) holds. Let λ_{r} be a nonzero eigenvalue of (15) with the corresponding eigenfunction v_{r}. For any choice of real number $\mu \neq 0$ and integers p_{1}, \cdots, p_{m} satisfying (7) and (16), let

$$
\begin{equation*}
w(t, x, y)=t^{(1+\alpha) / 2} J_{(\alpha-1) / 2}\left(\mu^{\frac{1}{2}} t\right) \psi(x ; p) v_{r}(y) \tag{20}
\end{equation*}
$$

where ψ is given by (19). By direct differentiation, it is readily verified that $M w=0$ in $Q, \partial w / \partial n=0$ on ∂Q except on $t=0$ and $t=T$. Hence, if u is a solution of (14), substitution of (20) for w in (10) leads again to the integral (11). Since

$$
\begin{aligned}
w_{t}= & {\left[\alpha t^{(\alpha-1) / 2} J_{(\alpha-1) / 2}\left(\mu^{\frac{1}{2}} t\right)\right.} \\
& \left.-\mu^{\frac{1}{2}} t^{(1+\alpha) / 2} J_{(\alpha+1) / 2}\left(\mu^{\frac{1}{2}} t\right)\right] \psi(x ; p) v_{r}(y)
\end{aligned}
$$

it follows that

$$
\begin{aligned}
-w_{t}+\alpha w / t & =\mu^{\frac{1}{2}} t^{(1+\alpha) / 2} J_{(\alpha+1) / 2}\left(\mu^{\frac{1}{2}} t\right) \psi(x ; p) v_{r}(y) \\
& =O\left(t^{\alpha+1}\right)
\end{aligned}
$$

Therefore, as s is allowed to approach zero in (11), we obtain in the limit

$$
\mu^{\frac{1}{2}} T^{(1+z) / 2} J_{(\alpha+1) / 2}\left(\mu^{\frac{1}{2}} T\right) \int_{X \times Y} u(T, x, y) \psi(x ; p) v_{r}(y) d x d y=0
$$

By the hypothesis (16) and the completeness of the sets of eigenfunctions $\left\{\prod_{i=1}^{m} \cos \left(p_{i} \pi x_{i} / a_{i}\right)\right\}$ and $\left\{v_{r}\right\}$ in X and Y, respectively, we conclude that $u(T, x, y)=0$ if $c>0$ and $u(T, x, y)=$ const. if $c \equiv 0$. Notice that in the case $c \equiv 0$, the problem (15) has the eigenfunction $v=1$ corresponding to the eigenvalue $\lambda=0$.

Let us consider the case $c>0$. It remains to be shown that $u \equiv 0$ in Q. For this purpose, we note that the identity (13) no longer applies. We integrate instead the identity

$$
\begin{aligned}
{\left[2 t^{\alpha+1} u_{t}+(\alpha+1) t^{\alpha} u\right] L u=} & {\left[t^{\alpha+1}\left(u_{t}^{2}-\left(\partial_{i} u\right)^{2}+a_{j k} D_{j} u D_{k} u+c u^{2}\right)\right.} \\
& \left.+(\alpha+1) t^{\alpha} u u_{t}\right]_{t}+\partial_{i}\left[t^{\alpha}\left(2 t u_{t}+(\alpha+1) u\right) \partial_{i} u\right]
\end{aligned}
$$

$$
-D_{j}\left[t^{\alpha} a_{j k}\left(2 t u_{t}+(\alpha+1) u\right) D_{k} u\right]-2 t^{\alpha} u_{t}^{2}
$$

over Q and apply the divergence theorem. Because u is a solution of (14) and $u=0$ at $t=T$, it is clear that all surface integrals arising from the integration vanish. Thus we have

$$
-2 \int_{\boldsymbol{Q}} t^{\alpha} u_{t}^{2} d t d x d y=0
$$

from which the conclusion that $u \equiv 0$ in Q follows.
If $c \equiv 0$, then the above argument gives $u=$ const. in Q.

4. Concluding remarks

By using the same technique, it is possible to prove uniqueness theorems for equation (1) subject to mixed boundary conditions of the type considered in [2] with respect to the variables x, y and with either the condition $u=0$ or $u_{t}=0$ on $t=0$ and $t=T$.

References

[1] O. G. Owens, 'Uniqueness of solutions of ultrahyperbolic partial differential equations', Amer. J. Math. 69 (1947), 184-188.
[2] J. B. Diaz and E. C. Young, 'Uniqueness of solutions of certain boundary value problems for ultrahyperbolic equations', Proc. Amer. Math. Soc. 29 (1971), 569-574.
[3] D. R. Dunninger and E. C. Zachmanoglou, 'The condition for uniqueness of solutions of the Dirichlet problem for the wave equation in coordinate rectangles', J. Math. Anal. Appl. 20 (1967), 17-21.
[4] D. R. Dunninger and E. C. Zachmanoglou, 'The condition for uniqueness of the Dirichlet problem for hyperbolic equations in cylindrical domains', J. Math. Mech. 18 (1969), 763-766.
[5] V. G. Sigillito, 'On the uniqueness of solutions of certain improperly posed problems', Proc. Amer. Math. Soc. 24 (1970), 828-831.
[6] E. C. Young, 'Uniqueness theorems for certain improperly posed problems', Bull. Amer. Math. Soc. 77 (1971), 253-256.
[7] D. W. Fox, 'The solution and Huygen's principle for a singular Cauchy problem', J. Math. Mech. 8 (1959), 197-220.

Florida State University
Tallahassee, Florida, U.S.A.

