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Boundary-layer transition is accompanied by a significant increase in skin friction
whose origin is rigorously explained using the stochastic Lagrangian formulation of
the Navier–Stokes equations. This formulation permits the exact analysis of vorticity
dynamics in individual realizations of a viscous incompressible fluid flow. The Lagrangian
reconstruction formula for vorticity is here extended for the first time to Neumann
boundary conditions (Lighthill source). We can thus express the wall vorticity, and,
therefore, the wall stress, as the expectation of a stochastic Cauchy invariant in backward
time, with contributions from (a) wall vorticity flux (Lighthill source) and (b) interior
vorticity that has been evolved by nonlinear advection, viscous diffusion, vortex stretching
and tilting. We consider the origin of stress maxima in the transitional region, examining
a sufficient number of events to represent the increased skin friction. The stochastic
Cauchy analysis is applied to each event to trace the origin of the wall vorticity.
We find that the Lighthill source, vortex tilting, diffusion and advection of the outer
vorticity make minor contributions. They are less important than spanwise stretching of
near-wall spanwise vorticity, which is the dominant source of skin-friction increase during
laminar-to-turbulent transition. Our analysis should assist more generally in understanding
drag generation and reduction strategies and flow separation in terms of near-wall vorticity
dynamics.

Key words: turbulent transition, Navier–Stokes equations

1. Introduction

The frictional drag of wall-bounded flows is significantly increased during laminar-to-
turbulence transition. For example, the friction factor in a smooth pipe increases by more
than 50 % as the flow breaks down to turbulence (Moody 1944; McKeon et al. 2004),
and the instantaneous wall stresses at the onset of boundary-layer transition can be much
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higher than in fully turbulent regions (Kleiser & Zang 1991; Durbin & Wu 2007). A better
understanding of the physical mechanisms driving enhanced skin friction may inform the
development of drag-reduction control schemes (Choi, Moin & Kim 1994; Bewley, Moin
& Temam 2001) and the interpretation of wall measurements (Wang & Zaki 2021). In this
work we adopt a stochastic Lagrangian approach and provide a precise and quantitative
analysis of the origin of the enhanced skin friction in a zero-pressure-gradient boundary
layer undergoing bypass transition.

Since the early stage of fluid mechanics research, it has been speculated that the
enhanced frictional drag is related to transitional flow structures. Based on the analysis
of pipe-flow experiments, Reynolds (1883) conjectured that ‘. . .above this point (critical
velocity) the resistance depended upon eddies which might be somewhat uncertain in
their action’. Lighthill (1963) summarized the theoretical and experimental results for
the transitional boundary layer, where he noted that turbulence ‘concentrates most of the
vorticity much closer to the wall than before, although at the same time allowing some
straggling vorticity to wander away from it farther’, emphasizing the generality of this
process for wall-bounded turbulence and noting further that ‘during transition. . ., the mean
vorticity at the wall, ω̄w (which is τw/μ, where τw is the skin friction), has risen to 8 times
the laminar value. . . .’

Direct numerical simulations and experiments provide detailed data of the transition
process that induces the increased skin friction, both in orderly and bypass breakdown
to turbulence (Kachanov 1994). Orderly transition proceeds from upstream amplification
of Tollmien–Schlichting instability waves, to secondary instability (Herbert 1988), then
breakdown of the elevated shear layers, and finally spreading of turbulence throughout the
downstream boundary layer (Sandham & Kleiser 1992). Bypass transition, which is the
focus of the present work, can take place at subcritical Reynolds numbers in the presence
of moderate levels of free-stream turbulence (Westin et al. 1994; Jacobs & Durbin 2001).
In this scenario, only low-frequency free-stream disturbances penetrate the boundary layer
due to an effect known as shear sheltering (Hunt & Durbin 1999; Zaki & Saha 2009). The
boundary-layer response comprises streamwise elongated energetic streaks, also termed
Klebanoff modes (Kendall 1991), whose amplification has been explained by vertical
displacement of mean momentum (Landahl 1980). The next stage is secondary instability
of the streaky base state (Andersson et al. 2001; Hack & Zaki 2014) and breakdown into
turbulent spots (Brandt, Schlatter & Henningson 2004; Zaki 2013). In both orderly and
bypass transition processes, the final stage features spreading turbulent patches and an
associated high wall stress.

Statistical approaches have been adopted to interpret the enhanced skin friction at
transition onset. These methods often start from the Reynolds-averaged equations, and
express the mean skin friction in terms of ensemble-averaged quantities, e.g. the laminar
value and contribution due to the Reynolds stress. By integrating the mean momentum
equation in the wall-normal direction, Fukagata, Iwamoto & Kasagi (2002) derived an
expression of the mean skin friction for fully developed turbulent flows. They concluded
that the dominant role is by the near-wall Reynolds shear stress which is related to
vortical structures in the wall layer. That work was further refined by Johnson (2019)
to differentiate the laminar and turbulent contributions in a developing boundary layer.
A different decomposition can be obtained by integrating the mean vorticity equations
(Yoon et al. 2016). In doing so, the mean skin friction is related to the advection of
vorticity, vortex stretching and the viscous diffusion effect. Ultimately, these quantitative
approaches express the mean skin friction in terms of a balance equation involving
statistical flow quantities. The time-dependent dynamics, or flow history, is not exposed
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and as a result a causal relation between skin friction and individual flow events is not
evident in these expressions.

Another perspective on drag increase at transition onset is provided by detailed
visualizations of the instantaneous flow structures and the history of their evolution.
Such visualizations can be quantitatively analysed by conditionally sampling events or
computing correlations of interest (Nolan & Zaki 2013; Marxen & Zaki 2019). Through
these approaches, various candidate mechanisms for the enhanced skin friction can
be posited. (i) Since the mean flow accelerates along the streamwise direction during
transition, there must be an average wall-normal motion that brings high-momentum fluid
towards the wall. (ii) As turbulent spots impinge onto the wall, they transport turbulent
vorticity towards the wall and could lead to a higher instantaneous skin friction. (iii)
Due to the balance between pressure gradient and wall vorticity flux, the instantaneous
pressure gradient may drive the increase of wall stress. This conjecture is supported by the
observation that the wall-stress maximum is accompanied by a strong pressure gradient in
turbulent boundary layers (Andreopoulos & Agui 1996; Ghaemi & Scarano 2013). (iv) The
mechanism of enhanced skin friction during transition may be analogous to the vigorous
sweep events in turbulent flows, which are associated with quasi-streamwise vortices and
the autonomous cycle in the near-wall layer (Jiménez & Moser 2007; Sheng, Malkiel &
Katz 2009). These interpretations intuitively relate the enhanced skin friction to other flow
events, but lack a definitive quantitative connection.

In the present work we will adopt a precise quantitative approach that relates the
enhanced wall stress to the preceding flow dynamics, or flow history. To motivate our
approach, we consider a sample visualization of wall-bounded flow in figure 1i: vortex
lines are visualized above a pair of stress maxima in a transitional boundary layer from time
t0 to tf = t0 + 2Δt (panels (ai)–(ci)). The vortex lines appear to be advected downstream
and stretched in the wall-normal direction; and it may be tempting to relate the vorticity
at the identified red point (panel (ci)) to the tips of the earlier red vortex lines. Such
interpretation is, however, valid only in inviscid flows. Due to viscosity, vortex lines are
not material lines. Instead of being advected and stretched only, the vortex lines in panel
(ai) also diffuse and affect the entire vorticity field at later times. Conversely, the vorticity
at the marked location in panel (ci) is affected by earlier vorticity at various locations that
all contribute due to diffusion.

An exact approach to vorticity dynamics in viscous incompressible fluids has been
provided in the recent mathematical work by Constantin & Iyer (2008, 2011), who
expressed the vorticity as the expectation of a stochastic Cauchy invariant, evaluated
along stochastic Lagrangian trajectories evolved backward in time. Their formulation
is derived by assuming a modest smoothness of the Navier–Stokes solutions (velocity
twice differentiable in space). The stochastic Lagrangian approach was implemented
numerically and validated in a turbulent channel flow (Eyink, Gupta & Zaki 2020a), and
subsequently applied to analyse the origin of vorticity in ‘sweep’ and ‘ejection’ events
(Eyink, Gupta & Zaki 2020b). To study skin friction in this framework, the wall stress
is expressed in terms of the wall vorticity, τW = νωW × n̂, where n̂ is the unit vector
normal to the wall and pointing into the fluid. Unfortunately, the original formulation by
Constantin & Iyer (2011) employs Dirichlet boundary conditions for the vorticity and is
thus inadequate to describe the origin of the wall vorticity itself. Therefore, we augment
the stochastic Lagrangian analysis with the Neumann boundary condition determined by
the local vorticity flux (Lighthill 1963), and exploit it to determine the origin of enhanced
skin friction in the transitional boundary layer.

To aid intuition, a sample illustration of the stochastic Lagrangian approach is provided
in figure 1ii. In order to discover the origin of the vorticity marked by the red dot in
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Figure 1. (ai–ci) Forward evolution of vortex lines. (cii–aii) Backward evolution of stochastic Lagrangian
trajectories that determine the origin of vorticity vector marked by the red dot in (cii). Contours show the wall
stress τxy. Results are shown for (ai) t0, (bi) t0 + Δt, (ci) t0 + 2Δt, (aii) tf − 2Δt, (bii) tf − Δt and (cii) tf .

panel (cii) at time tf , particles are released from this point. Their stochastic Lagrangian
evolution in traced in backward time (panels (bii) and (aii)), where the stochastic diffusion
represents exactly the action of viscosity. The particles spread over space rather than land
onto a single point on a vortex line earlier at earlier times. Therefore, the vorticity at time
tf depends on the vorticity at many locations sampled by the particles at time t0, unlike the
perhaps appealing but inaccurate visual interpretation of material vortex lines in figure 1i.
The stochastic Cauchy analysis provides a precise quantitative account of how the vorticity
at earlier times and positions contribute to the final value, and the dominant mechanism
that generates the target vorticity can be extracted.

The content of this paper is outlined as follows. In § 2.1 we provide a detailed
explanation of the Cauchy invariants for inviscid and viscous fluids. The stochastic
Lagrangian analysis with a Neumann boundary condition is elaborated in § 2.2, and the
numerical procedures to compute the stochastic Cauchy invariant are summarized. In
§ 2.3 we introduce the direct numerical simulation (DNS) dataset of bypass transition,
followed by an explanation about how the high wall stress events of interest are selected.
The results obtained from the stochastic Cauchy analysis are presented in § 3. We first
focus on a particular event of suddenly increased skin friction, visualize the locations of
Lagrangian particles, and evaluate the statistics of different terms in the stochastic Cauchy
invariant. Then a quantitative analysis across numerous similar events is performed. The
main conclusions drawn from our analysis are summarized in § 3.

2. Methodology

Considering a location and time of interest (x, t), our objective is to explore the origin
of the corresponding vorticity ω(x, t). The particular point of interest here is at the wall,
where the vorticity is proportional to the shear stress at the no-slip boundary.

2.1. Cauchy invariants for incompressible Euler and Navier–Stokes equations
Our study makes use of the Lagrangian formulation of vorticity dynamics by Cauchy
(1815). This is mathematically equivalent to the circulation theorem of Kelvin (1868)
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but, rather than describing the evolution of surface integrals of vorticity, it applies to
individual vorticity vectors and expresses their remarkable ‘frozen-in’ properties for ideal
incompressible Euler flows. More recently, these invariants have been extended to viscous
Navier–Stokes flows (Eyink et al. 2020a) based on a stochastic Lagrangian formulation of
the incompressible Navier–Stokes equations (Constantin & Iyer 2008, 2011) and applied to
analyse the viscous vorticity dynamics of near-wall sweep and ejection events in turbulent
channel flows (Eyink et al. 2020b). We begin here with a basic introduction to these
invariants for Euler equations and their stochastic extension to Navier–Stokes.

We start with the classical theory for an inviscid fluid described by the incompressible
Euler equations and without boundaries. Consider the Lagrangian trajectory X (a, t) of a
fluid particle whose initial position is a at time zero, which satisfies

dX (a, t)
dt

= u(X (a, t), t), X (a, 0) = a. (2.1)

It is a straightforward consequence of the Helmholtz equation that vorticity satisfies

d
dt

ω(X (a, t), t) = ω(X (a, t), t) · ∇xu(X (a, t), t). (2.2)

This result has the intuitive meaning that vorticity vectors are transported by the ideal flow
exactly as infinitesimal material line vectors l(t) with initial vectors l0 located at point a at
time zero,

l(t) = X (a + l0, t) − X (a, t) � l0 · ∇aX (a, t). (2.3)

That l(t) satisfies the same evolution equation as ω(X (a, t), t) follows from the result

d
dt

∇aX (a, t) = ∇aX (a, t) · ∇xu(X (a, t), t), (2.4)

obtained by applying the gradient ∇a to (2.1). This observation allows the Lagrangian
evolution equation (2.2) to be exactly integrated as

ω(X (a, t), t) = ω(a, 0) · ∇aX (a, t), (2.5)

which is the so-called Cauchy formula for vorticity, originally derived by Cauchy (1815)
in the Lagrangian formulation of the Euler fluid without using the Helmholtz equation. It
follows immediately that the initial vorticity ω(a, 0) can be written as

ω(a, 0) = (∇aX (a, t))−T · ω(X (a, t), t), (2.6)

where the superscript (•)−T represents inverse transpose of a matrix. The initial vorticity
is thus expressed as a formally conserved quantity of the Lagrangian flow X (a, t), the
so-called Cauchy invariant, satisfying (d/dt)ω(a, 0) = 0 for each position label a. For the
interested reader, we have included a brief discussion of the connection to geometric fluid
mechanics in Appendix C.

Because of the time reversibility of the Euler fluid equations, the Cauchy formula
(2.5) and the Cauchy invariants (2.6) are valid also backward in time, providing an exact
reconstruction of the vorticity ω(x, t) from its value ω(a, s) at an earlier time s < t. Here
it is useful to generalize the prior discussion and introduce Lagrangian particle positions
X s

t (a) at time t which are ‘labelled’ by positions a at time s rather than at time 0.
The superscript thus refers to the labelling time, and the subscript denotes the specific
time when the particle location is considered. These particles positions evolve according
to the same (2.1) but now satisfy X s

s(a) = a. By introducing the ‘back-to-labels’ map
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Figure 2. (a) Lagrangian trajectory in inviscid fluid. The vorticity ω(x, t) originates from an earlier vorticity
vector ω(a, s) through stretching and tilting. (b) Stochastic Lagrangian trajectories in viscous fluid. Earlier
vorticity vectors ω(Ãs

t , s) sampled by the stochastic trajectories are transported to ωs(x, t) and ensemble
averaged to obtain the target vorticity ω(x, t).

x �→ a = As
t (x), which is inverse to a �→ x = X s

t (a), the Cauchy formula (2.5) can then
be expressed as

ω(x, t) = Ds
t (x) · ω(As

t (x), s), Ds
t (x) = (∇aX s

t )
T = (∇xAs

t )
−T, (2.7a,b)

where Ds
t is the so-called ‘deformation matrix’ quantifying the vorticity stretching and

tilting from s to t. It is furthermore useful to observe that As
t = X t

s, since evolving the
particle backward in time from t to an earlier time s via the flow X t

s exactly recovers its
label a at time s. Thus, the back-to-labels map As

t satisfies the same advection equation
(2.1) as does X s

t (a), but now in the time variable s,

dAs
t (x)

ds
= u(As

t (x), s), s < t; At
t(x) = x. (2.8)

Because As
t = X t

s, the formula (2.7a,b) formally expresses the vorticity ω(x, t) as a
Cauchy invariant of the backward-in-time evolution, independent of the choice of s < t.
This interpretation of (2.7a,b) is shown schematically in figure 2(a), where ω(x, t) is
invariant along the backward Lagrangian trajectory (blue curve): no matter the stretching
or tilting along the path or the choice of initial time s, the vorticity ω(x, t) is always equal
to (∇xAs

t )
−Tω(As

t (x), s).
Physical fluids always involve viscosity however, so that the remarkable Lagrangian

properties enjoyed by vorticity in inviscid flows do not seemingly apply to most real-world
flows, except approximately in flow regimes and space–time regions where viscous effects
are negligible. Recently, it was pointed out by Eyink et al. (2020a) that the Cauchy
invariant (2.7a,b) holds in a probabilistic sense for viscous incompressible fluids, based
on a stochastic representation of incompressible Navier–Stokes solutions derived by
Constantin & Iyer (2008). In this formulation, viscous diffusion and nonlinear advection of
vorticity are simultaneously represented by the stochastic Lagrangian particle trajectories
Ãs

t (x), which satisfy backward in time a Langevin equation with a noise term proportional
to the square root of viscosity,

d̂Ãs
t (x) = u(Ãs

t (x), s) ds +
√

2ν d̂W̃ (s), s < t; Ãt
t(x) = x. (2.9)

Here u is any solution to the incompressible Navier–Stokes equations, ν is the kinematic
viscosity, d̂ denotes the backward Itō differential and W̃ (s) is a vector Brownian motion.
Note that the backward Itō differential is just the time reverse of the more widely known
forward Itō differential (see Constantin & Iyer (2011), § 4). Samples of backward-in-time
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stochastic Lagrangian trajectories starting from (x, t) are shown in figure 2(b). Due
to stochasticity, the Lagrangian particles significantly diverge once leaving the starting
location x, and the trajectories are not smooth, especially if compared against figure 2(a).
Constantin & Iyer (2008) proved that an expectation E over the ensemble of Brownian
motions yields the solution ω(x, t) of the viscous Helmholtz equation as

ω(x, t) = E[D̃s
t (x) · ω(Ãs

t (x), s)] := E[ω̃s(x, t)], (2.10)

where D̃s
t (x) = (∇xÃs

t )
−T. The interpretation of (2.10) is provided in figure 2(b). Starting

from (x, t), the stochastic Lagrangian trajectories (coloured curves) are integrated
backward in time until s. The vorticity vectors sampled by the Lagrangian particles
(coloured arrows annotated with ω(Ãs

t (x), s)) constitute the origin of the target vorticity
ω(x, t) (black arrow). Quantitatively, the earlier vorticities are transported by the
deformation matrix D̃s

t to obtain the stochastic Cauchy invariant ω̃s(x, t), whose ensemble
average is equivalent to the vorticity of interest ω(x, t). Since the Navier–Stokes equations
are time irreversible, it is natural that such stochastic invariants exist only backward in time
and the formula (2.10) yields a causal representation of the vorticity ω(x, t) in terms of its
values ω(a, s) at each earlier time s < t. This formula thus represents exactly how vortex
lines move, or more precisely evolve, in a viscous fluid, through the combination of both
nonlinear advection and viscous diffusion.

In wall-bounded flows, the treatment of the stochastic trajectories when they reach the
wall is equivalent to the choice of the boundary conditions for the viscous Helmholtz
equations. Constantin & Iyer (2011) proved that stopping the trajectories at the wall
is equivalent to the Dirichlet boundary condition of the vorticity. Unfortunately, this
formulation is inadequate for the purposes of our current investigation, because the
problem is precisely to understand the evolution of the wall stress τW = νωW × n̂ and,
thus, ωW cannot be taken as given. In this context it is appropriate instead to adopt
Neumann boundary conditions, where the wall vorticity flux is prescribed. The derivation
of a stochastic Lagrangian representation for the Navier–Stokes vorticity with such
boundary conditions is one of the main results of the present paper and is accomplished in
the following section.

2.2. Stochastic Cauchy invariant with Neumann boundary condition
Here we adopt a Neumann boundary condition determined by vorticity source density at
the wall, which is equivalent to reflecting the stochastic Lagrangian trajectories every time
when they reach the wall (Drivas & Eyink 2017). At no-slip boundaries most terms in the
momentum equation vanish, except the pressure gradient and the viscous diffusion terms.
Therefore, in the case of a flat wall considered here, the diffusion of vorticity, or so-called
Lighthill source (Lighthill 1963; Panton 1984), has tangential components balanced by the
pressure gradient

σ := − νn̂ · ∇ω|w = −n̂ × ∇p|w, (2.11)

where n̂ is the wall-normal unit vector pointing into the fluid. The stochastic trajectory
(2.9) is augmented with a reflecting boundary condition,

d̂Ãs
t (x) = u(Ãs

t (x), s) ds +
√

2ν d̂W̃ (s) − νn̂(Ãs
t (x), s)d̂�s

t (x), s < t, (2.12)

enforced by the backward boundary local time density �s
t (x), formally defined as

�s
t (x) =

∫ s

t
dr

∫
w

dS(z)δ3(z − Ãs
t (x)), s < t, (2.13)
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Ãts(x)

ε

�t
s(x) = lim

ε→0

T (ε)

ε

Wall

y

Figure 3. Schematic of the stochastic Lagrangian trajectory with Neumann boundary condition, and the
physical interpretation of the boundary local time density. Given a distance from the wall ε, T (ε) denotes
the time spent by the particle within ε.

where δ(•) is the Dirac delta function, and
∫

w dS(z) represents surface integration over the
wall (Lions & Sznitman 1984; Burdzy, Chen & Sylvester 2004; Drivas & Eyink 2017). By
definition, �s

t (x) has the dimension of time divided by length. The physical interpretation
of �s

t (x) is provided in figure 3. A reflected stochastic Lagrangian trajectory governed by
(2.12) is shown on the left. Given a distance from the wall ε, the backward time that the
particle spent within y ∈ [0, ε] is T (ε) (defined to be negative). Due to stochasticity of
the trajectory, as ε → 0, the ratio T (ε)/ε converges to a finite value, the boundary local
time density �s

t (x). Therefore, �s
t (x) remains non-positive and unchanged when the particle

does not reach the wall. If reflection occurs, �s
t (x) decreases, and the last term in (2.12)

quantifies the reflected distance from the wall.
We prove in Appendix B that the expectation of the stochastic Cauchy invariant

supplemented with a term from the Lighthill source is conserved in backward time s < t,

ω(x, t) = E[ω̃s(x, t)] = E[D̃s
t (x) · ω(Ãs

t (x), s) + L̃s
t (x)], (2.14)

where matrix D̃s
t (x) is given by the solution of the final-value problem

d
ds

D̃s
t (x) = −D̃s

t (x)(∇xu(Ãs
t (x), s))T D̃t

t(x) = I, (2.15)

and where the source term is

L̃s
t (x) =

∫ t

s
D̃r

t (x) · σ (Ãr
t (x), r)d̂�r

t (x). (2.16)

The two terms in (2.14) quantify the contributions to ω(x, t) of interior vorticity
deformation and of the wall vorticity flux, respectively. Thus, the Lighthill source (2.11) is
sampled every time the particle hits the boundary and is reflected.

Although we focus in this work on a developing boundary layer over a flat wall, our
method of solving stochastic differential equations with reflecting boundary conditions
applies to flow domains with curved walls. Details can be found in the paper of Lions &
Sznitman (1984), which treated any domain Ω whose boundary is a smooth manifold. In
fact, their analysis covered a more general class of ‘admissible’ open domains Ω which
includes those whose boundary is piecewise smooth with components intersecting at
convex interior angles. The construction of Lions & Sznitman (1984) established globally
in time both the existence and uniqueness of the reflected diffusion process and the
boundary local time density for all such domains. Their result already covers a large
number of flows of physical interest, including those in which the wall is mathematically
smooth but ‘hydraulically rough’, e.g. when the height of the wall is given by a sinusoidal
profile. Our analysis thus carries over to a large class of flow domains.
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Origin of enhanced skin friction at the onset of transition

Algorithm 1: Stochastic Cauchy analysis with Neumann boundary condition.
Step 1: Initialization;

• Set the number of Lagrangian particles Np;
• For all the particles, set Ãt

t = x, D̃t
t = I , and L̃t

t = 0;
Step 2: Wall contribution;

• Given Ãsk−1
t for each particle, evaluate ν	�k, and skip this step if ν	�k = 0;

• If ν	�k < 0 (particle is reflected from the wall), compute the Lighthill source
and update the wall contribution (2.19);

Step 3: Interior contribution;
• Update the deformation matrix (2.18) and particle location (2.17) at time sk;
• Evaluate the vorticity vector at location Ãsk

t ;
Step 4: Stochastic Cauchy invariant;

• Compute the expectation of the stochastic Cauchy invariant ω̃s(x, t) (2.14)
over all the particles;

• Repeat Steps 2-4 until the earliest time of interest is reached.

The stochastic Cauchy invariant (2.14) can be numerically evaluated using a
Monte-Carlo scheme and Euler–Maruyama method for time discretization. At discrete
times s = sk := t − k(Δs), k = 1, 2, 3, . . ., the particle locations Ãsk

t , the deformation
matrix D̃sk

t and the wall contribution L̃sk
t are obtained through backward integration,

Ãsk
t (x) = Ãsk−1

t (x) − u(Ãsk−1
t (x), sk−1)Δs +

√
2νΔsÑk − νΔ�kŷ, (2.17)

D̃sk
t = D̃sk−1

t · [I + (∇xu)T|
(Ã

sk−1
t ,sk−1)

Δs], (2.18)

L̃sk
t = L̃sk−1

t − D̃sk−1
t · σ (Ãsk

t , sk−1)Δ�k. (2.19)

In (2.17), Ñk is a three-dimensional normal random vector with mean zero and covariance
matrix I , independently sampled for each step k = 1, 2, 3 · · · . The increment of the
boundary local time density is denoted as Δ�k = �

sk
t − �

sk−1
t and details about its

evaluation are provided in Appendix A. Given a fully resolved Navier–Stokes solution
u(x, t), ((2.17)–(2.19)) can be exploited to evaluate the stochastic Cauchy invariant (2.14)
in backward time. The numerical procedures are summarized in algorithm 1. In all the
examined cases, the number of particles employed for Monte-Carlo evaluation of the
expectation is always Np = 104.

2.3. Computational set-up and events of interest
Our study is performed using the transitional boundary-layer dataset of the Johns
Hopkins Turbulence Databases (JHTDB) (Wu et al. 2019). The computational domain
and flow configuration are shown in figure 4. The dataset was produced from DNS of
incompressible flow over a flat plate with an elliptical leading edge. The streamwise,
wall-normal and spanwise coordinates are denoted by x, y and z, and corresponding
velocity components are u, v and w. The reference length scale is half-thickness of the
plate, L, and the reference velocity is the incoming free-stream speed U∞. At the upstream
curved boundary of the domain, the inflow is a superposition of the uniform velocity U∞
and homogeneous isotropic turbulence. The free-stream turbulence decays as it is advected
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Cf

y
x

z –3 0 0 2.8
yωz

U∞

Figure 4. (Top) Computational grid for DNS of transitional boundary layer. (Middle) Visualization of flow
structure: high-speed (u′ = 0.1, white) and low-speed streaks (u′ = −0.1, dark grey); vortical structures
identified using λ2 criterion (red to green, λ2 = −0.02). Only half of the domain is shown in the spanwise
direction. Mean (dashed line) and sample instantaneous (solid line) skin friction are shown on the side.
(Bottom) Turbulent spot and the associated wall vorticity.

towards the leading edge where its intensity reaches Tu = 3 %. The free-stream forcing of
the boundary layer leads to the formation of amplifying streaks and sporadic breakdown
into turbulent spots (figure 4). As spots spread towards the wall and laterally, the wall
friction in the footprint of the turbulence increases appreciably (solid line in the middle
panel of figure 4 and the contours in the bottom panel). Accompanying the intermittent
generation of turbulent spots, mean skin friction (dashed line) also increases to a turbulent
level.

To generate the database flow, the incompressible Navier–Stokes equations were solved
on a curvilinear grid (see figure 4) using a fractional-step method (Rosenfeld, Kwak
& Vinokur 1991). A second-order volume-flux formulation was adopted for the spatial
discretization. The advection terms were treated explicitly by the Adams–Bashforth
scheme, and the Crank–Nicolson scheme was adopted for the diffusion terms. The
pressure Poisson equation was solved using Fourier transform in the spanwise direction
and multi-grid inversion for every spanwise wavenumber. The algorithm has been applied
in numerous studies of transitional and turbulent flows (Zaki 2013; Lee, Sung & Zaki
2017). The domain size and the number of grid points are summarized in table 1, and
more details about the numerical method and flow statistics can be found at JHTDB.

In order to evaluate the stochastic Cauchy invariant ((2.14), (2.17)–(2.19)) along
stochastic Lagrangian trajectories, we adopt the JHTDB web service interface to obtain
the velocity and its derivatives at instantaneous particle locations. The piecewise cubic
Hermite interpolation (PCHIPInt) is adopted in time. Since the DNS was performed using
second-order methods, we choose the fourth-order Lagrangian interpolation (Lag4) for
the getVelocity subroutine, and the fourth-order finite-difference scheme (FD4Lag4) for
getVelocityGradient and getVelocityHessian subroutines.
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Origin of enhanced skin friction at the onset of transition

DNS domain Analysis subdomain

Domain Size Grid points Grid resolution Flow statistics

(Lx, Ly, Lz)/L (Nx, Ny, Nz) (Δx, Δymin, Δz)/L ΔtU∞/L δ99 Reθ

(1050, 40, 240) (4097, 257, 2049) (0.29, 0.0036, 0.12) 0.25 2.7–7.4 209–650

Table 1. Domain size and the number of grid points for DNS within the curved domain. Grid resolution and
flow statistics are reported for the transitional region 200 < x < 500. Here Reθ = U∞θ/ν, where θ is the
momentum thickness.

In order to extract events that represent the enhanced skin friction, we search for local
maxima of streamwise wall shear stress τxy = ν∂yu = −νωz within the transitional region
200 < x < 500. The grid resolution and flow statistics for the analysis subdomain are
shown in table 1. For each local maximum of wall stress, we keep track of its temporal
evolution ωm(t) and select the time when

|ωm(t)| ≤ max
x

{|〈ωz〉| + ω′
z,rms}, and |ωm(t + Δt)| > max

x
{|〈ωz〉| + ω′

z,rms}.
(2.20a,b)

Here 〈ωz〉 and ω′
z,rms are the mean and root-mean-square fluctuation of the wall vorticity,

averaged over time and the spanwise direction. The maximum value in (2.20a,b) is 2.79
at x = 429, and the criterion ensures that the instantaneous wall stress at the selected
location is much higher than the turbulent mean stress. After excluding events that are
already inside a developed turbulent spot, we obtain 48 events in total representing the
instant when spots just hit the wall. At later times, as a larger portion of the spot spreads
along the wall, an increasing area of wall stress around each selected maximum reaches
the turbulent level (bottom panel in figure 4) and finally merges into the fully turbulent
boundary layer downstream. Detailed information about the location and time of these
events are available in table 1 of the supplementary material (SM) which are available at
https://doi.org/10.1017/jfm.2022.296.

The flow field around a sample event is visualized in figure 5. The stress maximum
is located at (x, y, z) = (203.5, 0, 220.0) and t = 916.25, and the corresponding vorticity
vector is (ωx, ωy, ωz) = (0.78, 0, −2.8). The isosurfaces of ωz in figure 5(a) resemble the
‘inclined shear layers’ commonly observed in fully turbulent flows (Jimenez et al. 1988).
As speculated by Thomas & Bull (1983), ‘this shear layer appears to be responsible for
the characteristic variations of wall shear.’ The vortex lines in figure 5(a) are lifted above
the stress minimum, and depressed towards the stress maximum at the wall (panel (b));
the pattern is reminiscent of ejection and sweep events in fully developed wall turbulence
(Sheng et al. 2009), which have been attributed to streamwise vortical structures in the
buffer layer (Kravchenko, Choi & Moin 1993; Orlandi & Jiménez 1994). In addition,
fluctuations in the wall pressure gradient are appreciable during transition (figure 6ii),
and, hence, the Lighthill source at early times may be important. In fact, the contribution
of the Lighthill source to the extreme events in turbulence has been controversial: although
the stress maximum is mostly associated with a strong pressure gradient at the wall
(Ghaemi & Scarano 2013), Thomas & Bull (1983) claimed that the pressure pattern is
not the direct cause of the bursting process, after analysing the phase relation between the
pressure and wall shear stress. In transitional flows, whether the Lighthill source leads to
the instantaneous high wall stress remains unexplored. In the next section we quantify the
contribution from each of these mechanisms using a stochastic Cauchy analysis.
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Figure 5. (a) Three-dimensional view and (b) end view of the flow field around the stress maximum (marked
by red asterisk in (b)). Black and red curves: vortex lines initiated at y = 0.5; grey isosurface: ωz = −1.5;
bottom plane: contour plot of spanwise wall vorticity.
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Figure 6. Instantaneous particle locations at (a–c) δs = s − t = 0, −10, −20. The bottom plane shows (i)
spanwise wall vorticity and (ii) spanwise vorticity source. Grey isosurface: ωz = −1.5. Particles in (c) are
separated into (magenta) near-wall cluster and (yellow) outer cluster.

3. Results

We first perform a detailed analysis for the event shown in figure 5, and then summarize
the main results from 48 events. A population of 104 stochastic Lagrangian particles are
released from the stress maximum; the instantaneous locations of 300 particles are shown
in figure 6. Once leaving the stress maximum, the particle cloud spreads immediately
in all three directions due to viscous diffusion, and travels upstream due to advection
by the flow velocity backward in time (figure 6a,b). Note that near-wall particles are
advected with a lower speed than the upstream propagation of the wall-stress maximum
itself (panels (ai)–(ci)). Therefore, the vorticity near that maximum at earlier times cannot
be the primary origin of the analysed vorticity ω(x, t). At δs = s − t = −20 (panel (c)),
two clusters of particles can be identified: one stays near the wall (magenta), and the
other (yellow) is brought towards the edge of the boundary layer by an upward velocity
in reverse time. This pattern is consistent with the candidate mechanisms discussed in the
introduction. In forward time, the mean vertical velocity is negative at transition onset. In
addition, turbulent spots are initiated in the outer part of the boundary layer and impinge
onto the wall in a ‘top–down’ fashion.. As a result, the local vertical velocity near the
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Origin of enhanced skin friction at the onset of transition

release location at the wall can be positive in backward time and transport particles away
from the wall.

The classification of near-wall and outer particles is performed using k-means clustering
(MacQueen 1967) based on the displacement from the release location, normalized by
standard deviation of particle locations,

αi = Ãs
t,i(x) − xi

(Ãs
t,i(x) − E[Ãs

t,i(x)])rms
, i = 1, 2, 3. (3.1)

The x–y locations of all the 104 particles at δs = −20 and the classification results are
reported in figure 1 of the SM. The contribution of each cluster to the enhanced wall
stress will be quantified later. Note that most particles do not coincide with the strong ωz
region (grey isosurface in panel (ci)), which indicates that the advection of vorticity is not
a dominant mechanism for the increased stress. The spanwise Lighthill source at the wall,

σz = ∂p
∂x

= −ν
∂ωz

∂y
, (3.2)

is plotted in figure 6ii. Although the mean pressure gradient is zero in the simulation, the
instantaneous pressure gradient at the wall fluctuates appreciably between large positive
and negative values. Most of the Lighthill source is concentrated within successive ‘band’
structures with alternating signs (panels (aii), (bii)), which are similar to the bipolar
patterns commonly identified in fully turbulent flows (Andreopoulos & Agui 1996; Eyink
et al. 2020b). As the particles are released from the wall and strongly reflected during the
initial transient, the unfavourable positive σz region downstream of the stress maximum in
panel ((aii)) is sampled frequently. The favourable negative σz is less likely to contribute
since a decreasing number of particles will revisit the wall in backward time (panels (bii)
and (cii)). In total, the Lighthill source is a minor, and in fact opposing, contributor to the
high wall stress in this particular event.

Since the spanwise vorticity gives rise to streamwise stress and is generally the dominant
component of the wall vorticity vector, we focus on the origin of ωz. Expanding the
expression of the stochastic Cauchy invariant (2.14) yields

ωz(x, t) = E[ω̃sz(x, t)] = E[D̃zx(s)ωx(s) + D̃zy(s)ωy(s) + D̃zz(s)ωz(s) + L̃z(s)], (3.3)

where the dependence of D̃, ω, L̃ on target location and time (x, t) has been omitted
for simplicity. The expectation of the stochastic Cauchy invariant is well conserved in
backward time (blue curve in figure 7a), except for a slight transient due primarily to
artefacts of space–time interpolation (Eyink et al. 2020a), which confirms the theoretical
analysis in § 2.2. This conservation is non-trivial because the contribution to vorticity by
one particle can be significantly larger than the expectation and must be cancelled by
other particles such that the final Cauchy invariant is preserved. The contribution from the
Lighthill source (green in panel (a)) gradually increases to positive values, opposite in sign
to ωz(t), due to particles sampling the wall region with σz > 0. It then drops slightly within
a short time, and remains almost a constant when δs < −10, which is the consequence of
the aforementioned bipolar pattern in figure 6(ii). The positive sign of the Lighthill source
is compensated by the interior deformation with a more negative value than ωz(t) (red in
panel (a)). In addition, the magnitude of E[L̃z] is less than 20 % of |ωz(t)|, which indicates
that the wall contribution is not only of the wrong sign but clearly subordinate to the
interior deformation.
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Figure 7. (a) Temporal evolution of (blue) stochastic Cauchy invariant, (green) the contribution from Lighthill
source and (red) interior deformation. (b,c) Scatter plot of (black) (ωx, D̃zx), (grey) (ωy, D̃zy) and (magenta
for near-wall cluster, yellow for outer cluster) (ωz, D̃zz) at δs = −20. Blue lines: D̃ziωi(s) = ωz(t), i = 1, 2, 3.
(d) Partial probability distribution functions (PDF’s) of D̃zzωz(s) for (magenta) near-wall and (yellow) outer
particles. The partial PDF’s are the PDF’s multiplied by the fraction of particles f in each cluster. Blue line
marks D̃zzωz(s) = ωz(t).

The interior deformation at δs = −20 is further decomposed into tilting and stretching
effects, presented in figures 7(b) and 7(c), respectively. Each black dot in figure 7(b)
denotes the (D̃zx(s), ωx(s)) of one Lagrangian particle, where D̃zx quantifies the rotation
of local streamwise vorticity ωx(s) towards the spanwise direction. Similarly, the grey
dot corresponds to tilting of wall-normal vorticity, (D̃zy(s), ωy(s)). Most of the vorticity
vectors ω(s), especially their wall-normal component, are strongly tilted from δs = −20 to
δs = 0, with D̃zx, D̃zy > 1. Nevertheless, the importance of the tilting effect is determined
by the product D̃ziωi(s). The two blue curves in figure 7(b) mark D̃ziωi(s) = ωz(t), and
any dots falling between these curves contribute less than the expectation of the stochastic
Cauchy invariant, or equivalently, the target vorticity ωz(t). Since the majority of the points
in figure 7(b) are located far from the blue curves, the tilting mechanism is insignificant
to the generation of target vorticity. Precisely, the contribution from tilting of streamwise
or wall-normal vorticity is E[D̃zxωx(s)]/ωz(t) = 1.6 % and E[D̃zyωy(s)]/ωz(t) = −2.7 %.
Therefore, spanwise stretching of the spanwise vorticity must be the dominant process
inducing the enhanced wall stress, which is supported by the scatterplot of (ωz(s), D̃zz)
(panel (c)) with numerous particles distributed on both sides of the blue curve marking
D̃zzωz(s) = ωz(t).
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Origin of enhanced skin friction at the onset of transition

The two clusters of points in figure 7(c) are reminiscent of the near-wall and outer
clouds in figure 6(c). Indeed, the left cluster consists primarily of near-wall particles
(magenta), and the right cluster approximately coincides with the outer particles (yellow).
Quantitatively, the spanwise stretching term in the stochastic Cauchy invariant (3.3) can
be expanded into two parts,

E[D̃zzωz(s)] = fnwEnw[D̃zzωz(s)] + foutEout[D̃zzωz(s)], (3.4)

where fnw = Nnw/Np and fout = 1 − fnw = 1 − Nnw/Np are the fractions of near-wall and
outer particles, and E(•) is the conditional expectation over either cluster. Based on (3.4),
the dominance of the stretching of near-wall vorticity involves two effects: (i) D̃zzωz(s)
of most near-wall particles concentrate around the target value ωz(t), as shown by the
conditional probability density function (PDF) in panel d (magenta curve), whereas the
outer cluster peaks near zero (yellow curve); (ii) most particles belong to the near-wall
cluster (fnw = 86 %), as shown by the significantly larger area under the magenta curve in
panel d. As a result, the enhanced skin friction is predominantly accounted for by the
stretching of near-wall vorticity, fnwEnw[D̃zzωz(s)]/ωz(t) = 110 %. While instantaneous
visualization of the flow field may show an instability growing into a spot that impinges
onto the wall (c.f. figure 4), the key effect that leads to skin-friction increase is not
due to the impinging turbulence transporting high vorticity towards the wall, image
vorticity or the Lighthill sources. Instead, hidden in these events is significant stretching
of instantaneous near-wall vorticity as it advects and diffuses, and realizes the high-stress
point observed on the wall.

In order to examine the robustness of the above conclusions against the location of time
of the analysed high wall stress, the same quantitative analysis is performed for all the
48 events obtained using the criteria in § 2.3. Specifically, (i) the stochastic Lagrangian
trajectories are integrated until δs = −20; (ii) k-means clustering is implemented using
the normalized displacement from the starting point (see SM and movie 1 for more details
about the clustering results); (iii) the expectation of different terms in the stochastic
Cauchy invariant ((3.3), (3.4)) are evaluated, and the results are provided in table 1 of
the SM. The relative contribution of the Lighthill source and the stretching of near-wall
vorticity are summarized in figure 8. The Lighthill source could produce either a positive
or negative contribution to the wall vorticity (green histogram), although the absolute
quantity is less than 40 % for all the cases. By comparison, about 45 %–120 % of the
enhanced skin friction originates from stretching of the near-wall vorticity (magenta
histogram). The case with the lowest contribution from stretching has the highest
contribution of the Lighthill source. These results confirmed the discussion from the
particular event that we analysed in detail. Spanwise stretching of the near-wall vorticity
is the dominant source to the enhanced skin friction at the onset of transition.

Remarkably, these conclusions were essentially anticipated by Lighthill (1963), whose
remarks deserve to be quoted here in full.

‘The main effect of a solid surface on turbulent vorticity close to it is to correlate inflow towards
the surface with lateral stretching. Note that only the stretching of vortex lines can explain how
during transition the mean wall vorticity increases as illustrated in Fig.II.21; and only a tendency,
for vortex lines to stretch as they approach the surface and relax as they move away from it, can
explain how the gradient of mean vorticity. . . is maintained in spite of viscous diffusion down
it. . .

It is relevant to both these points that Fig.II.21 relates to uniform external flow, which implies zero
mean rate of production of vorticity at the surface; but, even in an accelerating flow, the rate of
production UU′ is too small to explain either.’
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Figure 8. Histogram of the relative contribution from (green) the Lighthill source, E[L̃z(s)]/ωz(t), and
(magenta) stretching of near-wall vorticity, fnwEnw[D̃zzωz(s)]/ωz(t) for 48 events representing the enhanced
skin friction.

Our exact and quantitative analysis corroborates these arguments. In particular, high
magnitudes of wall vorticity are produced mainly by spanwise stretching of near-wall
spanwise vorticity. We find also that the wall vorticity source makes a relatively smaller
contribution. This is in part because the mean pressure gradient of the flow is zero, so
that the vorticity source is positive and negative with equal likelihood, and in part because
the associated flux from the wall is too low to compete with lateral stretching. Even if
the mean pressure gradient were not zero, as in a boundary layer with a downstream drop
of total pressure, p + 1

2 U2, Lighthill in the passage quoted above argued that the average
vorticity source will be too small to account for the greatly magnified vorticity at the
wall. This argument is not conclusive, however, because the fluctuating pressure gradients
may be much larger than the mean value. For example, in a fully turbulent channel flow
at Reτ = 1000, Eyink et al. (2020a) found that the fluctuating pressure gradients scale in
wall units as ∼ u3

τ /ν and are larger than the mean gradient by a factor of order Reτ . Similar
scaling is observed in the transitional flow studied here but we find, nevertheless, that the
largest magnitude fluctuations of the wall vorticity source are still too small to account for
the enhanced skin friction.

The vorticity-stretching mechanism highlighted by the stochastic Lagrangian analysis
is complementary to previous studies based on conventional approaches (Kravchenko
et al. 1993; Orlandi & Jiménez 1994; Fukagata et al. 2002). Near-wall structures and
their dynamics are all manifest in laminar-to-turbulence transition, including, for example,
streak instabilities, Reynolds stresses, sweeping events and instantaneous wall pressure
gradients. All together they provide the flow field that stretches the near-wall vorticity as it
evolves from the laminar to the transitional regions of the flow, and generates the maxima
in the wall stress. Vortex stretching above stress maxima and compression associated with
stress minima lead to the formation of secondary streamwise vortices (Robinson 1991).
This iterative interaction eventually evolves into the ‘cascade process’ of fully developed
turbulence (Lighthill 1963).

4. Discussion and conclusions

We have explored the origin of enhanced wall friction in a transitional boundary layer, by
expressing the wall stress as the expectation of a stochastic Cauchy invariant. We proved
mathematically that the expectation with Neumann boundary condition is conserved
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in backward time. A Monte-Carlo scheme was adopted for numerically evaluating the
invariant, and the particle trajectories were integrated by applying the Euler–Maruyama
method. Our analysis was performed using the transitional boundary-layer dataset of the
Johns Hopkins Turbulence Databases. We extracted 48 events of wall-stress maxima,
which represent the suddenly increased skin friction at transition onset.

The invariant consists of contributions from the deformation of the interior vorticity
vector and the wall vorticity flux (the Lighthill source). The effects of vortex tilting,
stretching and the Lighthill source on the generation of wall vorticity were quantified
and compared. Tilting of the streamwise or wall-normal vorticity has a small but not
entirely negligible contribution. The Lightill source can exert a favourable or adverse
influence on the wall stress, although the relative contribution is less than 40 % for all the
examined events. Due to the upward wall-normal motion in backward time, the Lagrangian
particles are separated into near-wall and outer clusters. Among all the 48 examined events,
spanwise stretching of the interior vorticity vector, especially the near-wall vorticity, is the
dominant source of the enhanced skin friction, which confirmed and refined the conjecture
by Lighthill (1963).

It is worth remarking that our generalization of the stochastic Cauchy invariant to
Neumann boundary conditions requires that the vorticity source be given by the expression
in (2.11), σ = −ν(n̂ · ∇)ω|W , which was first proposed for general curved walls by Panton
(1984). This necessity follows from the proof in Appendix B. An alternative expression
proposed by Lyman (1990), σ = νn̂ × (∇ × ω)|W , does not yield the correct result here,
although it is the unique expression to describe local creation of circulation at the boundary
(Eyink 2008). The original work by Lighthill (1963) considered explicitly only the case
of a two-dimensional flat wall, where the tangential components of the two definitions
agree. However, Lighthill assumed that the vorticity source has a non-vanishing normal
component, which is only true of Panton’s expression. There has been some controversy
in the past over which definition of the vorticity source is ‘correct’, with Wu & Wu
(1996) claiming, for example, that Lyman’s version is inappropriate and that only Panton’s
expression should be used. We agree with the recent resolution by Terrington, Hourigan
& Thompson (2021), which is that the two expressions measure slightly different things
in general. Quoting directly from Terrington et al. (2021), ‘Lyman’s definition describes
the transfer of circulation due to the tangential viscous acceleration of the fluid, while
Lighthill’s definition considers only the terms that can lead to a local change in vorticity’.
This statement is consistent with our finding that the Lighthill–Panton vorticity source
is the uniquely correct choice to be used as the Neumann boundary condition for the
stochastic Cauchy invariant. On the other hand, Lyman’s vorticity source is continuously
extended into the interior of the flow by the anti-symmetric vorticity flux Σij of Huggins
(1994), and is thus related generally to pressure gradients and to energy dissipation by
the Josephson–Anderson relation (Eyink 2008, 2021). The generalizations to curvilinear
walls of Lighthill’s wall vorticity source by Panton (1984) and by Lyman (1990) have each
their own proper domains of applicability, which overlap, and one must be aware in any
particular application which of the two definitions is appropriate.

An equivalence can be shown between the stochastic Cauchy analysis and an adjoint
vorticity equation, assuming a frozen forward velocity field and in the absence of walls.
Such equivalence remains open in the presence of boundaries.

Our stochastic Cauchy analysis developed in this paper may assist in understanding
various physical phenomena in transitional and turbulent wall-bounded flows. In addition
to the strengthening of wall vorticity, the reciprocal effect could also be studied from the
weakening of vorticity during ejection into the interior, proposed by Lighthill (1963) to
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explain the strong concentration of vorticity near the wall in turbulent flow. Although
only bypass transition is considered in the present work, the enhanced skin friction
during orderly transition may be attributed to vorticity stretching as well, since the last
stage of transition is also accompanied by the formation and growth of turbulent spots.
Favourable or adverse pressure gradients might contribute to the wall vorticity during
transition through the Lighthill source, but their influence is probably subordinate to
vorticity stretching, as speculated by Lighthill (1963). The interaction between transition
and flow separation can also be interpreted from our conclusions. Since vorticity is brought
towards the wall and stretched during transition, achieving a zero-stress condition and
flow separation becomes more difficult. Therefore, control strategies that strengthen the
near-wall stretching would efficiently suppress separation. In addition, by exploring the
near-wall vorticity dynamics, the mechanism of existing drag-reduction approaches might
be interpreted in a more comprehensive framework.

Supplementary material and movie. Supplementary material and movie are available at https://doi.org/
10.1017/jfm.2022.296.

Acknowledgements. Computational resources were provided by the Maryland Advanced Research
Computing Center (MARCC).

Declaration of interests. The authors report no conflict of interest.

Funding. The authors acknowledge the financial support from the Simons Foundation and from the Office of
Naval Research (grant N00014-20-1-2715).

Author ORCIDs.
Gregory L. Eyink https://orcid.org/0000-0002-8656-7512;
Tamer A. Zaki https://orcid.org/0000-0002-1979-7748.

Appendix A. Numerical evaluation of the boundary local time

Recall the discrete equation for the particle location in backward time,

Ãsk
t (x) = Ãsk−1

t (x) − u(Ãsk−1
t (x), sk−1)Δs +

√
2νΔsÑk − νΔ�kŷ. (A1)

In this appendix we elaborate how to evaluate the increment of the boundary local time
density Δ�k = �

sk
t − �

sk−1
t in the last term of (A1). For simplicity, we adopt a short-hand

notation for Ãs
t (x),

Ã(s) := Ãs
t (x), (A2)

and (A1) is rewritten as

Ã(sk) = Ã(sk−1) + ΔÃ(sk; sk−1) − νΔ�kŷ, (A3)

where at any time s ∈ [sk, sk−1], the term ΔÃ(s; sk−1) is given by the Euler–Maruyama
scheme,

ΔÃ(s; sk−1) = u(Ã(sk−1), sk−1)(s − sk−1) +
√

2ν(W̃ (s) − W̃ (sk−1)). (A4)

The last term in (A3) is given by the Skorohod equation (Zambotti 2017, chapter 2),

νΔ�k = − max{0, max
sk≤s≤sk−1

{−ŷ · (Ã(sk−1) + ΔÃ(s; sk−1))}}, (A5)

which is non-zero only if the lowest possible location of the particle within s ∈ [sk, sk−1]
is beneath the wall.
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To produce the random variable νΔ�k with the correct statistical distribution, we can use
the algorithm of Lépingle (1995). First, the displacement without the wall is evaluated,

ΔÃ(sk) = −u(Ã(sk−1), sk−1)Δs +
√

2νΔsÑk, (A6)

where Ñk is a standard normal random vector. The wall-normal component of (A6),
ΔÃy(sk), is used to evaluate the most negative displacement in y (with � denoting equality
in distribution),

S̃k−1 = max
sk≤s≤sk−1

{−ΔÃy(s; sk−1)} � 1
2
{−ΔÃy(sk) +

√
2νṼk−1 + ΔÃ2

y(sk)}. (A7)

The exponential random variable Ṽk−1 = −2Δs ln Ũk−1 is obtained from a uniform
random variable Ũk−1. Finally, the reflected displacement from the wall is computed,

νΔ�k = − max{0, S̃k−1 − Ãy(sk−1)}, (A8)

which is substituted into (A3) to evaluate the particle location at time sk.

Appendix B. Conservation of the stochastic Cauchy invariant with Neumann
boundary conditions

In this appendix we prove that the following stochastic process is a backward martingale:

ω̃s(x, t) = D̃s
t (x) · ω(Ãs

t (x), s) +
∫ t

s
D̃r

t (x) · σ (Ãr
t (x), r)d̂�r

t (x), s < t. (B1)

Therefore, the expectation of the stochastic Cauchy invariant (2.14) is conserved in
backward time s < t.

Recall the evolution equation for the stochastic Lagrangian trajectory (2.12),

d̂Ãs
t (x) = u(Ãs

t (x), s) ds +
√

2ν d̂W̃ (s) − νn̂(Ãs
t (x), s)d̂�s

t (x), (B2)

the Lighthill source (2.11),
σ = −νn̂ · ∇ω|W , (B3)

and the evolution equation (2.15) for D̃s
t (x),

dD̃s
t (x) = −D̃s

t (x) · (∇u)T(Ãs
t (x), s) ds. (B4)

Differentiating (B1) with respect to s and applying the product rule give

d̂ω̃s(x, t) = D̃s
t (x) · [d̂ω(Ãs

t (x), s) − ((ω · ∇)u)(Ãs
t (x), s) ds − σ (Ãs

t (x), s)d̂�s
t (x)]. (B5)

From the backward Itō formula, one further obtains an expression for the first term in (B5),

d̂ω(Ãs
t (x), s) = (∂sω + (u · ∇)ω − νΔω) ds − ν(n · ∇)ωd̂�s

t (x) +
√

2ν(d̂W̃ (s) · ∇)ω

= ((ω · ∇)u)(Ãs
t (x), s) ds + σ (Ãs

t (x), s)d̂�s
t (x) +

√
2ν(d̂W̃ (s) · ∇)ω.

(B6)

The second equality in (B6) is derived based on the vorticity transport equation and the
expression of the Lighthill source (B3). Combining equations (B5) and (B6) yields

d̂ω̃s(x, t) =
√

2νD̃s
t (x) · (d̂W̃ (s) · ∇)ω(Ãs

t (x), s), (B7)

which shows that ω̃s(x, t) is a backward Itō integral and is thus a backward martingale, or
a ‘statistically conserved’ quantity in backward time s < t.
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Appendix C. Connection of the Cauchy invariant to geometric fluid mechanics

In this appendix we briefly comment on the connection of the Cauchy invariant
formulation (§ 2.1) and geometric fluid mechanics. While this connection is not essential
for the contribution in the main text, it is included here for the interested reader.

The Cauchy invariant is reproduced here,

ω(a, 0) = (∇aX (a, t))−T · ω(X (a, t), t), (2.6)

which, as a function of the Lagrangian flow map X (a, t), is a time-invariant quantity.
Although these invariants might appear rather trivial, they have deep geometric meaning
and fully express the remarkable Lagrangian properties of vorticity for ideal fluid flows.
As discussed at length by Besse & Frisch (2017), the evolution equation (2.2),

d
dt

ω(X (a, t), t) = ω(X (a, t), t) · ∇xu(X (a, t), t), (2.2)

implies that vorticity is ‘Lie-transported’ as a differential 2-form by the vector field of fluid
velocities. In fact, this mathematical statement is equivalent to the fact noted in the main
text that vorticity vectors are transported by the flow in the same manner as infinitesimal
material line vectors. The related Cauchy formula, reproduced here,

ω(X (a, t), t) = ω(a, 0) · ∇aX (a, t), (2.5)

in this geometric language then appears as the exact solution of the Lie-transport equation
as the ‘push-forward’ of the vorticity 2-form by the Lagrangian flow map X (·, t) (Besse &
Frisch 2017). Furthermore, the appearance of the infinitely many Lagrangian conservation
laws corresponding to the Cauchy invariants is explained in the Hamiltonian formulation
of the Euler equations as a consequence of an infinite-dimensional symmetry group
of the action associated to relabelling of fluid particles (Salmon 1988). An equivalent
understanding arises from the geometric vision of the incompressible Euler equations
by Arnold, as the equations for geodesic flow on the infinite-dimensional Lie group of
volume-preserving diffeomormisms or SDiff (Arnold & Khesin 2008). In this context, the
volume-preserving diffeomorphisms are the Lagrangian flow maps X (·, t) which satisfy
det(∇aX (a, t)) = 1. Although long neglected, the Cauchy invariants in recent years have
experienced a renaissance, being applied in mathematical fluid mechanics to establish
the time analyticity of Lagrangian particle trajectories (Zheligovsky & Frisch 2014;
Constantin, Vicol & Wu 2015), also to prove local existence and uniqueness of solutions
to free-surface Euler equations (Kukavica, Tuffaha & Vicol 2017), and in computational
fluid dynamics have yielded a novel scheme for accurate numerical solution of the Euler
equations (Podvigina, Zheligovsky & Frisch 2016).
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