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Invariant means and fixed point

properties on completely

regular spaces

Marvin W. Grossman

Two theorems are presented which characterize the existence of

multiplicative left invariant means on a given algebra of

unbounded continuous functions on a topological semigroup 5 in

terms of certain common fixed point properties of actions of S

on completely regular spaces. Also a lattice formulation of a

related result of Theodore MitchelI for the case of bounded

functions is shown to be equivalent to a certain common fixed

point property on Bauer simplexes.

1. Introduction and preliminaries

Let S be a semigroup and H a translation invariant closed sub-

algebra of m(S) that contains the constants. Mitchell has shown in [73,

Theorem 1] that the existence of a multiplicative left invariant mean on H

is equivalent to the pair S, H enjoying a common fixed point property

with respect to certain actions of S on compact spaces. Given a

topological semigroup 5 and a common fixed point property on compact

spaces that S might possess, Mitchell's theorem (as well as Argabright's

geometric analogue [7]) has proved to be an important tool for finding that

function space on 5 whose extreme left amenability (left amenability) is

equivalent to the given fixed point property (see [74] and for questions of

existence [9]). In this note we obtain (using similar techniques) two

results analogous to Mitchell's theorem, in the spirit of [70, Proposition

2], for function algebras of unbounded functions. The corresponding fixed
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point properties involve actions on completely regular spaces and actions

on realcompact spaces. We also give a lattice formulation of a part of

Mitchell's result and show that it is equivalent to a certain common fixed

point property on Bauer simplexes.

Our notation and terminology is for the most part standard and we

refer the reader to [73], [7], [9], and [JO]. If X is a topological

space, then C(X) denotes all real-valued continuous functions on X (not

just the bounded ones). For the purpose of this paper, a topological space

X for which C(X) separates points, is called a separating space. We

refer to [9, p. 18] for the sense in which we use semitopological semigroup

and topological semigroup. Let S be a semitopological semigroup, H a

subset of C{S) and X a topological space. We denote an action of 5

on Z by (5, X) and employ a slightly addended version of MitchelI's

notion of an ^-representation [73] (cf. Day's concept of a slightly

continuous action [4] as well as [70, p. 113]) which takes into account the

topology of S and is equivalent to his definition when X is compact

(see the remark after Theorem 1 below). An action (S, X) is an

E-representation of S, H on X if there is an a; in X such that the

map s •* sx is continuous and Tx[C(X)) c H where Txf(s) = f(sx) .

2. Compact-open continuous means

The validity of the following lemma is indicated in [7 7, Remark 1.7,

p. l6U] . However, it seems to the author that a proof using Proposition

1.2 in [77, p. 160] (see also Remark l.h) would require, in addition, that

C(X) be complete in the compact-open topology in order that C(X) be the

projective limit of the spaces C(K) , K a compact subset of X . We

give an alternative proof that is free of this restriction.

LEMMA. Let X be a separating space. If m is a non-zero

multiplicative linear functional on C(X) that is compact-open continuous,

then there is a (unique) xQ in X such that m(f) = f[x-} for all f

in C(X) .

Proof. If X is realcompact, then every non-zero multiplicative

linear functional on C(X) is evaluation at some point [6, p. lU2]. If X

is completely regular but not realcompact, then every non-zero

multiplicative linear functional on C(X) that is not an evaluation
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functional is not compact-open continuous (see the proof of Theorem U.5 and

Theorem 5.2 in [7]). Suppose C(X) just separates points. Let X-

denote X equipped with the weak topology induced by C(X) . Then X_ is

completely regular (see, for example, [6, p. k0~]) and C(X) = C[x~) .

Consequently, if m is a non-zero compact-open continuous multiplicative

linear functional on C(X) , then it is the same on C[x^\ and therefore,

evaluation at some x_ .

REMARK. Jonathan Lew in has indicated to the author a simple non-

measure theoretic proof of the above lemma for the case X completely

regular. The following adaptation of his argument shows that the lemma is,

in fact, valid for any topological space X (of course, x_ then need not

r( x)
be unique] . Let E : X ->• R be the evaluation map and equip R

with the product topology. Then the set of non-zero multiplicative linear

functionals on C(X) coincides with Y, the closure of E(X) (E : X •*• Y

enjoys the universal property of a realcompactification, but E is not an

embedding unless X is completely regular). Fix m € Y - E(X) and for

each compact K c X , let J\, € C(Y) be such that /„ is 1 on E(K)

and fj,(m) = 0 (Y is completely regular). Let g^ = f o E and consider

the net {<3v} where K ranges over all compact subspaces of X upwardly

directed. Then {gv} converges in the compact-open topology of C(X) to

the function identically one on X but m[g^\ = fjXm) = 0 for all K

(since m f Y ). Thus, m is not compact-open continuous.

If 5 is a semigroup and H a set of functions on S , then we say

an s. € S is an U-vight zero if for all s £ S and h € H ,

h[ssA = h[sJ\ (that is, evaluation on H at 8 is a left invariant

mean when H is left translation invariant).

THEOREM 1. If S is a semitopological semigroup and H is a left

translation invariant subalgebra of C(S) that contains the constants,

then each of the conditions below implies the next one. If, in addition,

S is a topological semigroup, H is right translation invariant and

compact-open closed in C(S) , then all four statements are equivalent.
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(1) 5 possesses an H-right zero.

(2) B admits a compact-open continuous multiplicative left invariant

mean.

(3) S, B has the common fixed point property on separating spaces

with respect to E-representations.

(It) S, B has the common fixed point property on completely regular

spaces with respect to E-representations.

Proof. (1) ->• (2). If s. is an #-right zero, then the evaluation

functional on H at s is certainly compact-open continuous.

(2) -*• (3). This implication is proved exactly as in the proof of

Proposition 1 in [70] making use of the above lemma.

(3) •* CO. Condition (3) is formally stronger than (k).

CO •* (l). Suppose S and H have the additional properties of the

theorem and that CO holds. Consider the canonical map E : S -* B* (the

dual of B where B has the compact-open topology) where E(s) is the

evaluation functional on H at s . If we equip Y = E(S) with the

restriction of the u*-topology, then Y is completely regular (/ is

uniformizable). For each h in H , let n £ C(Y) be defined by

£(u) = ]i(h) for all p f J . Then H = {h \ h € H) is a subalgebra of

C(y) that contains the constants and separates points. Since B is

compact-open closed in C(S) , it is easy to check that H is compact-open

closed in C{Y) (since E is continuous). By the Stone-Weierstrass

theorem (see, for example, [5, p. 282] for the compact-open setting),

H = C{Y) . If we consider the canonical action (5, Y) where

S'V(h) = \i(h ) for all h (. B , then it follows exactly as in [13, p. 120]

(from the right translation invariance of B ) that (5, Y) is an

^-representation (in fact, an ^-representation) of the pair S, B on Y .

Consequently, there is a common fixed point u. for the action {S, Y) .

Any s. such that ^ ^ Q ) = PQ is an ff-right zero.

REMARKS. Condition (l) implies directly a slightly stronger version

of (3). For if S satisfies (l) and (5, Y) is an action of S on Y

such that there is a yQ with TyQ[c{Y)) cB , then C(Y) separating
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implies that s yn is a common fixed point whenever s is an //-right

zero. We also note that for completely regular Y , the condition

Ty (C(7)) c H implies that the map s -*• sy is continuous (since the

topology induced by C(Y) coincides with the given topology).

The following corollary gives completely regular analogues of

Proposition it.l and Corollary k.2 in [9]. Some of the implications in the

corollary follow from the proof of Theorem 1 rather than directly from the

statement of Theorem 1. For the implication (3) •* (2) see the remark after

the above lemma.

COROLLARY 1. The following implications hold for the conditions

listed below. If S is a semitopological semigroup, then each condition

implies the next one and (2) and (3) are equivalent. If S is semi-

topological and left multiplication is slightly continuous, then {2), (3),

and (h) are equivalent. If S is a separating semitopological semigroup,

then (1), (2), and (3) are equivalent. If S is a topological semigroup,

then {2), (3)., {k), and (5) are equivalent.

(1) S lias a right zero.

(2) S has a C{S)-right zero.

(3) C(S) admits a compact-open continuous multiplicative left

invariant mean.

(k) S has the common fixed point property on completely regular

spaces with respect to slightly continuous actions.

(5) S has the common fixed point property on completely regular

spaces with respect to separately continuous actions.

REMARK. In [9, Corollary h .h~\ it was shown that for discrete S of

non-measurable cardinal, S has a right zero if and only if R (all

real-valued functions on 5 ) has a multiplicative left invariant mean.

The above shows, in particular, that for arbitrary discrete S , S has a

c

right zero if and only if R has a pointwise continuous multiplicative

left invariant mean.

The proof of (2) •* (3) in the corollary below is a slight modification

of the proof of (Pi) -*• (Fl) of Theorem 1 in [J4] making use of (2) -*• (k) of
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Theorem 1 above. (See [70, p. I l l ] for the definition of LCC(S) .)

COROLLARY 2. If S is a topological semigroup, then each of the

following conditions implies the next.

(1) 5 has a LCC(S)-right zero.

(2) LCC(S) admits a compact-open continuous multiplicative left

invariant mean.

(3) S has the common fixed point property on completely regular

spaces with respect to jointly continuous actions.

REMARK. I t is of interest to note here a result of Granirer and Lau

[S]. Namely, if S is a sub semigroup of a locally compact group and

LUC(S) (see, for example, [74] or [S] for the definition) admits a

multiplicative left invariant mean, then S = {e} .

3 . R e l a t e d r e s u l t s

The theorem s ta ted below is a realcompact analogue of Theorems 1 and 2

in [73] . The implication (1) -»• (2) is implici t in the proof of Proposition

U.I in [ 9 ] . One ver i f i es the implication (3) •*• ( l ) (respectively,

(h) -*• (1)) exactly as in the proof of (h) -*• ( l ) of Theorem 1 above choosing

y to be the closure of the se t of evaluation functionals on g

( respec t ive ly , a l l mul t ip l ica t ive means on H ) in the product topology (y

i s then realcompact [6 , p . 119]) •

THEOREM 2. If S is a semitopological semigroup and H is a left

translation invariant subalgebra of C{S) that contains the constants,

then statement (1) implies statement (2) [and of course, (2) implies (3)

and (3) implies (h)). If, in addition, S is a topological semigroup, H

is right translation invariant and compact-open closed in C(S) , then ( l ) ,

(2), and (3) are equivalent.

(1) H admits a multiplicative left invariant mean.

(2) S, H has the conrnon fixed point property on realcompact spaces

with respect to E-representations.

(3) S, H has the common fixed point property on realcompact spaces

with respect to D-representations.

Furthermore, if U is also left M-introverted [that is, for every
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h € E and multiplicative mean m on E , m[h ) as a function of s
s

lies in E ), then (l), (2), and (3) are equivalent to

(h) S, E has the common fixed point property on realcompaet

spaces with respect to A-representations.

The following theorem is essentially a lattice reformulation of a part

of Mitchell's Theorem [73, Theorem 1]. One proof of the equivalence of

conditions (l) and (3) below follows exactly as in [73] relying on

Kakutani's Theorem on abstract M-spaces. (in the proof of (3) •*• (l) of

Theorem 1 in [7 3] one can apply directly (as was done in the proof of

Theorem 1 above) the Stone-Weierstrass Theorem in algebra form rather than

Kakutani's Theorem.) We give an alternative proof which passes through a

geometric fixed point property (condition (2) below) and uses the theory of

Bauer simplexes [2] (a compact Choquet simplex whose set of extreme points

is closed). A{K) denotes the space of all real continuous affine

functions on the compact convex K and ex K the set of extreme points of

K . It should be noted that a space of bounded real functions on a set X

can be a vector lattice with respect to the pointwise ordering without

being a sublattice of m{X) (for example, the space of real continuous

functions on the closed unit disc that are harmonic inside) [2].

We recall that a compact convex set K is a Bauer simplex if and only

if A{K) is a vector lattice [2, p. 120]. The proof of (l) -»• (2) below

relies on the fact (see [2], [76]) that if A(K) is a vector lattice, then

the lattice preserving means on A{K) are precisely the evaluation

functionals at extreme points. An immediate proof of this fact can be

obtained by considering the canonical map E : K -*• Y where Y is the

space of means on A(K) in the w*-topology and E(x) is the evaluation

functional at x . It is well-known that E is a surjective affine

homeomorphism (for example, since barycenters exist [2, p. 122]) and since

ex Y is precisely the set of lattice preserving means on A(K) (see the

proof of (2) •+ (1) below) we are finished.

THEOREM 3. Let S be a semigroup and E a uniformly closed left

translation invariant linear subspace of m(S) that contains the

constants. Suppose E is a lattice with respect to the pointwise

ordering; for all s € S , the left translation operator I : E -*• E is

https://doi.org/10.1017/S0004972700023200 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700023200


210 Marvin W. Grossman

lattice preserving and there exists a lattice preserving mean \iQ on H

such that yQ [h ) as a function of s lies in H for every h in H .

Then iihe following conditions are equivalent:

(1) H admits a lattice preserving left invariant mean;

(2) if (S, K) is an affine action of S on the Bauer simplex

K such that for all s € S and x € ex K , sx € ex K ,

and there is an x~ t ex K with Tx [A(K)) C H , then there

exists a common fixed point for (S, K) that is an extreme

point;

(3) S, H has the common fixed point property on compacta with

respect to E-representations.

Proof. (l) •+ (2). Suppose H admits the lattice preserving left

invariant mean u . Let (S, K) be an affine action on the Bauer simplex

K as in (2) with x Q € ex K such that TxQ[A{K)) C H . If f, g € A[K)

and s i S , then TxQ(jVg)(s) = (fVg)[sxQ) = f(sxQ)Vg[sxQ) since

sx_ € ex K and K is a Bauer simplex (the evaluation functional at sx.

is lattice preserving) . Thus TxAfVg) is the pointwise sup of TxQf

and Kco<? and therefore, also the sup relative to H . Consequently,

Txn is lattice preserving so that v = u ° 2x. is a lattice preserving

mean on A(K) that is invariant under the action of 5 . Then v is

evaluation on A(K) at some y € ex K and y is the desired common fixed

point. (ff need only be a lattice for this implication.)

(2) •* (l). Choose K to be the space of means on H in the

W*-topology and (5, K) the canonical action where S']i(h) = ]l[h ) for

all h in H . Then ex K is precisely the set of lattice preserving

means on H (for example, [7 2, p. 238]). It is well-known that H

(defined as in Theorem 1 above) coincides with A{K) and h •*• % is a

linear order-preserving isometry (see, for example, [16, p. ll+2]).

Consequently, T\i [A{K)) C # and K is a Bauer simplex since A(K) is a

lattice. The action of S is extreme point preserving, for if u € ex K

and s € S , then e#p = u ° I is lattice preserving since both \i and
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Z- are. It follows from (2) that there exists V € ex K which is a
s

common fixed point for (S, K) . v is then a lattice preserving left

invariant mean.

Since every Bauer simplex K is affinely homeomorphic to the space of

probability measures (in the U*-topology) on a compact Hausdorff space

(namely, ex K ) and every such space is a Bauer simplex [2], statements

(2) and (3) are formally equivalent.

REMARK. The equivalence of (l) and (2) of Theorem 1 in [7 3] is a

particular case of the above theorem. If H is a closed subalgebra of

m{S) , then H is a sublattice of m{S) (see, for example, [J5, p. 150]).

Furthermore, it follows from the two classical identities

fg = %| ( f + 0 ) 2 - ( / - < 7 ) 2 | and f v g = t[(f+g)+\f-g\],

that the multiplicative linear functionals on H coincide with the lattice

preserving linear functionals on H . The latter two well-known statements

are implicit in the use of Kakutani's Theorem in the proof of (3) implies

(1) of Theorem 1 in [J3].
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