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A CHARACTERISATION OF HILBERT SPACES VIA
ORTHOGONALITY AND PROXIMINALITY

FATHI B. SAIDI

In this paper we adopt the notion of orthogonality in Banach spaces introduced by
the author in [6]. There, the author showed that in any two-dimensional subspace F
of E, every nonzero element admits at most one orthogonal direction. The problem
of existence of such orthogonal direction was not addressed before. Our main purpose
in this paper is the investigation of this problem in the case where E is a real Banach
space. As a result we obtain a characterisation of Hilbert spaces stating that, if in
every two-dimensional subspace F of E every nonzero element admits an orthogonal
direction, then E is isometric to a Hilbert space. We conclude by presenting some
open problems.

1. INTRODUCTION

Usually, the notion of orthogonality is associated with inner product spaces. Many
extensions to Banach spaces have been introduced through the decades by various au-
thors, for example, Birkhoff [1], Roberts [5], James [3], Singer [9], Khalil [4], and, more
recently, in [6]. We adopt here the straightforward and simple extension of orthogonality
introduced in [6]:

DEFINITION 1: A finite or infinite sequence (xn)n €5, in a real or complex Banach
space E is said to be orthogonal if

for each V J anxn 6 E,
nes'ngS neS

where the an's are scalars. If, in addition, ||xn|| = 1 for all n € S, then (xn)nes is said to
be orthonormal. We write x A. y if x is orthogonal to y.

This concept of orthogonality was used in [6] to obtain a convenient and practical
characterisation of compact operators in L(G,E), where G is a normed space, E is a
Banach space that admits an orthonormal Schauder basis, and L(G, E) is the set of
bounded linear operators from G into E. This characterisation, which was previously
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known to hold when G and E are Hilbert spaces, says that the set of compact operators
in L(F, E) is the closure in L(F, E) of the set of finite-rank operators.

Other applications of the above concept of orthogonality can be found in [7] and
[8]. There the author obtains explicit characterisations of orthogonality in the spaces
l^(C),where C is the set of complex numbers, S is a set of positive integers, and p is a
real number in [l,oo). When p = 2, the usual characterisation of orthogonality in the
Hilbert spaces i | (C) is recovered.

In [6, Corollary 1], the author established the following uniqueness result showing
that in a two-dimensional subspace F of E, every nonzero element admits at most one
orthogonal direction in F:

PROPOSITION 1 . Let x and y be two nonzero elements in E satisfying x ± y.
Then we have

{z 6 span{x, y} : z ± x} = span{y}.

The problem of existence of an orthogonal direction to an element x in a two-
dimensional subspace F of E has not been addressed before. Our main purpose in this
paper is the investigation of this problem in the case where E is a real Banach space.
The question of existence in the complex case, in other words when dim(F) = 2 as a
complex Banach space, is left as an open problem for further investigation. Therefore,
we consider in this paper the following problem:

PROBLEM 1. Let £ b e a real Banach space. Is it true that in every two-dimensional
subspace F of E each nonzero vector admits a nonzero orthogonal vector?

We start in Section 2 by showing that, in order for Problem 1 to have an affirmative
answer, it is necessary that every proximinal subspace of E be Chebyshev (Lemma 1).
We then show that if every hyperplane of E is proximinal (equivalently, every hyperplane
is Chebyshev, by Lemma 1) then E must be isometric to a Hilbert space in order for
Problem 1 to have an affirmative answer (Lemma 2). Note that if every hyperplane of E
is proximinal then E is reflexive, [9, Corollary 2.4, p. 99]. We finish by establishing our
main result that shows that, when dim(i?) ^ 3, the answer to Problem 1 is affirmative if
and only if E is isometric to a Hilbert space (Theorem 1). The case where E is real and
dim(£) = 2 is still an open problem, Problem 2 in Section 3. More questions are raised
in Section 3 and are left as open problems for further investigation.

2. A CHARACTERISATION OF HILBERT SPACES

Throughout this paper we let R denote the set of real numbers. We start with the

following definition:

DEFINITION 2: A subset G of a Banach.space E is said to be proximinal if for

every x € E there exists y €. G such that

(2.1) d(x,y) = Md(x,g) :=d{x,G),
S6G
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where d(.,.) denotes the distance in E. A point y satisfying equation (2.1) is called a best
approximation of x from G. The set of best approximations from G of a point x € E

is denoted by TTO(X). If every point x £ E admits a unique best approximation from G,

then G is said to be Chebyshev and the best approximation of x from G is also denoted
by nG(x).

We now show that if E is a real Banach space with dim(jE) ^ 3 then, in order for
Problem 1 to have an affirmative answer, it is necessary that every proximinal subspace
of E be Chebyshev. Indeed we have:

LEMMA 1. Let E be a real Banach space of (finite or infinite) dimension ^ 2.
Suppose that in every two-dimensional subspace F of E each nonzero vector admits a
nonzero orthogonal vector. Then every proximinal subspace of E is Chebyshev.

PROOF: Let G be a proximinal subspace of E. If G = E or G — {0}, then there is
nothing to prove. Therefore suppose that G / E, {0}. If G is not Chebyshev then there
exists x £ E\G and there exist 5i, 52 € G such that

5ii52 £ ^ G W I 5I 7̂  52-

Let
S := (31 + span{52 - 5i}) n nG(x).

Then S is a closed and bounded line-segment given by

S = [53, 54] := {53 + ^(54 - 53) : 0 ^ A < 1},

for some 53,54 € G. Let x, 5, and F be given by,

x:=x- ^Y^-, 9 := ^ A and F := span{x,5}.

Then

TTG(X) n F = 7rG(x) n span{<?} = (KG(X)
 3 4 ) D span{<?}

= TTG(Z) n (^i + span{02 -

2
53+54

It follows tha t

(2.2) | |3?-*5ll = l|3f|l, - 1 ^ * <

and

(2.3) \\x-fg\\>P\l 1*1 > i -
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Now, consider the element y E F defined by

To finish the proof of the lemma, we shall show that y has no nonzero orthogonal vectors
in F. This would contradict the assumptions of the lemma and, consequently, G must
be Chebyshev. First note that the set {x,~g} is linearly independent. If there exists
Z(T^ 0) G F, z := ax + f5g for some scalars a and ft, such that y l z then

(2.4) lly-**ll = Hi/+ Ml,

for all t G R- If a 7̂  0 (we can assume without loss of generality that a > 0), then, for

every t G ( - I / a , I / a ) , we have

Let *i := ((1/2) + t0)/{\ - ta) and t2 := ((1/2) - 0)/(l + to) and choose t ^ 0 small
enough so that t\, t2 G [—1,1]. Then, by equation (2.2), we obtain that

which is not possible, since ||x|| / 0. Therefore we must have a = 0 and, consequently,
z = fig, /? 7̂  0. By equation (2.4) we obtain that

Letting t = 3/(2/?), we obtain ||rzr - 2g\\ = ||x + g\\, which is not possible in view of
equations (2.2) and (2.3). Therefore y has no nonzero orthogonal vector in F. The proof
of the lemma is now complete. D

Under the extra assumption that every hyperplane in E is proximinal, we obtain the
following characterisation:

LEMMA 2 . Let E be a reaJ Banach space of (finite or infinite) dimension ^ 3.
Suppose that in every two-dimensional subspace F of E each nonzero vector admits a

nonzero orthogonal vector. Also, suppose that every hyperplane in E is proximinal. Then

E is isometric to a Hilbert space.

PROOF: Let H be an arbitrary hyperplane in E and let x G E\H be fixed. Since
H is proximinal, we obtain, by Lemma 1, that H is Chebyshev. We claim that

(2.5) ||TTW(X)|| < ||x||, xeE.

Indeed, let h := irH(x). If h = 0, then nothing to prove. So, suppose that h ^ 0 and let

F = span{x, h}. Then there exists hL{^ 0) G F such / i x ± h. Clearly, the set {h, hL} is

linearly independent. Therefore

x = ah + /9/ix,
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for some a,,8 e E. This implies that

||z - ah\\ = \\phL\\ ^ \\/3hL + (a- l)h\ = \\x - h\\,

where the inequality follows from the fact that /i 1 / i 1 , [6, Theorem 2]. It follows that
ah € irH(x) = {h} and, consequently, a — 1. Therefore (x — h) _l_ h. This implies, that

and, consequently, that equation (2.5) holds. By [9, Theorem 5.1, p. 247], we obtain
that E is isometric to a Hilbert space, which completes the proof of the lemma. D

We are now ready to give our main result showing that, when dim(E) ^ 3, Problem
1 has an affirmative answer if and only if E is isometric to a Hilbert space. Indeed, we
have:

THEOREM 1. Let E be a real Banach space of (Gnite or infinite) dimension ^ 3.
Suppose that in every two-dimensional subspace F of E each nonzero vector admits a
nonzero orthogonal vector. Then E is isometric to a Hilbert space.

PROOF: Let G be a 2-dimensional subspace of E and let G' be a 3-dimensional
subspace of E containing G. Now, let H be any hyperplane in G'. Since H is finite
dimensional, it is proximinal in G'. It follows, by Lemma 2, that G' is isometric to
a Hilbert space, which implies that G is isometric to a Hilbert space. Hence every 2-
dimensional subspace of E is isometric to a Hilbert space and consequently, by [2, p. 17],
E is isometric to a Hilbert space. This completes the proof of the theorem. D

Note that the condition that in every two-dimensional subspace F of E each
nonzero vector admits a nonzero orthogonal vector is equivalent to the condition that
span x + xL — E for every x G E, where

xL := {zeE: z ±x}.

Therefore we have the following corollary:

COROLLARY 1. Let E be a real Banach space of (finite or infinite) dimension
> 3. Suppose that, for every x € E, span{x} + xL = E. Then E is isometric to a Hilbert
space.

3. O P E N P R O B L E M S

We start this section by noting that Theorem 1 was established only for the cases
where E is a real Banach space of dimension ^ 3. The case where dim(E') = 2 is still an
open problem:

P R O B L E M 2. Let E be a real Banach space satisfying dim(i?) = 2. Is it true that, if

each nonzero vector admits a nonzero orthogonal vector then E is isometric to a Hilbert

space?
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