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Summary

The transmission/disequilibrium test (TDT) and the affected sib pair test (ASP) both test for the
association of a marker allele with some conditions. Here, we present methods for calculating the
probability of detecting the association (power) for a study examining a fixed number of families for
suitability for the study and for calculating the number of such families to be examined. Both
calculations use a genetic model for the association. The model considered posits a bi-allelic marker
locus that is linked to a bi-allelic disease locus with a possibly nonzero recombination fraction
between the loci. The penetrance of the disease is an increasing function of the number of disease
alleles. The TDT tests whether the transmission by a heterozygous parent of a particular allele at a
marker locus to an affected offspring occurs with probability greater than 0.5. The ASP tests
whether transmission of the same allele to two affected sibs occurs with probability greater than 0.5.
In either case, evidence that the probability is greater than 0.5 is evidence for association between
the marker and the disease. Study inclusion criteria (IC) can greatly affect the necessary sample size
of a TDT or ASP study. IC considered by us include a randomly selected parent at least one parent
or both parents required to be heterozygous. It also allows a specified minimum number of affected
offspring to be required (TDT only). We use elementary probability calculations rather than
complex mathematical manipulations or asymptotic methods (large sample size approximations) to
compute power and requisite sample size for a proposed study. The advantages of these methods are
simplicity and generality.

1. Introduction

Both the transmission/disequilibrium test (TDT) and
the affected sib pair test (ASP) assess the evidence
linking a bi-allelic marker at a known locus with a
possibly unknown bi-allelic disease locus. Similar tests
use a quantitative phenotype as the outcome (see, for
example, Zhu & Elston, 2001). We do not consider
these tests here because our methods do not apply.
We describe methods for proceeding from a genetic
model to calculations of the power of a test of fixed
size and of the sample size needed to achieve a given
power.

We consider the distribution of genotypes of affected
offspring for the different genotypes of parents. Basic
probability calculations, particularly conditional
probability evaluations, are used to transform the

genetic parameters of the model into (1) the prob-
ability of transmission by a heterozygous parent of a
particular allele at a marker locus (TDT) to an affec-
ted offspring or the same marker allele to two affected
offspring (ASP), and (2) the probability that an ex-
amined family is included in the study. These calcu-
lations reduce the problem of power or sample size for
the test to the same calculation for the one-sample
binomial with random sample size.

The primary advantages of our methods are their
elementary nature and their generality of application.
The methods apply to both the TDT and ASP, they
use a general genetic model, and they handle arbitrary
study inclusion criteria (IC). However, these methods
do not provide analytic formulae for statistical power.
Even were it possible to concatenate the equations
presented here, the results would be too complex to
enhance understanding. Other investigators provide* Corresponding author. e-mail : bwb@mdanderson.org

Genet. Res., Camb. (2004), 83, pp. 133–141. f 2004 Cambridge University Press 133
DOI: 10.1017/S0016672304006743 Printed in the United Kingdom

https://doi.org/10.1017/S0016672304006743 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672304006743


formulae and, even when the formulae are derived
with simplifying assumptions, they provide insight
into the comparative properties of the TDT and ASP;
our methods would require numeric assessments.

The one simplifying assumption used in our
methods is that all families in a study contribute the
same sample size to the study and that this sample size
is the expected sample size averaged over family types.
The actual contribution depends on the number of
parents heterozygous at the marker locus and (for
the TDT) the random number of affected offspring.
Accounting for this variability would require large
sample methods not used in the remainder of this
work. We justify our simplification by two obser-
vations. The law of large numbers assures us that the
mean familial contribution to the sample size tends to
the population value, and there are typically many
families in TDT and ASP studies. We are also re-
assured by the agreement of our method (without any
correction for variable familial contribution) with
Knapp’s (1999) power calculated via simulation in a
wide variety of cases as described below.

Spielman et al. (1993) developed the statistical
aspects of the TDT to its current state. Knapp (1999),
Tu & Whittemore (1999), and Chen & Deng (2001)
use asymptotic methods to derive analytic formulae
for power calculations.

Asymptotic methods provide large sample size
approximations and are often available when exact
methods are not. However, mathematical expertise is
required to use and understand them. Additionally,
there is usually no estimate of the precision of these
approximations. Our only use of asymptotics is a
computational convenience: the replacement of the
binomial distribution with the approximating normal
distribution when averaging power over various
sample sizes for large studies. Were the user willing to
have a computer program run for minutes instead of a
few seconds, this approximation could be eliminated.

McGinnis (1998, 2000) derived analytic formulae
for allele transmission probabilities and probability of
a heterozygous parent. The difficulty with the analytic
method lies in deriving the formulae and, for the user,
following the derivation. In some cases, problem
simplifications are necessary to obtain closed form
mathematical results. Our methods follow those of
McGinnis but we resort to computation rather than
problem simplification and so arrive at algorithms
instead of formulae.

2. Model

(i) TDT and ASP

(a) Background

A bi-allelic marker locus (A/B) is suspected to be
linked to and in possible linkage disequilibrium with a

bi-allelic disease locus (D/d) with disease-predisposing
allele D and non-predisposing allele d. Parents and
affected offspring in each family in the study are
genotyped at the A/B locus.

(b) TDT

The number of times (0, 1, 2) that alleles A and B are
transmitted by A/B heterozygous parents to an affec-
ted offspring is counted. The total number of trans-
missions of A is na ; similarly, nb is the total number of
transmissions of B; and n=na+nb. The statistic
measuring linkage of the marker locus with disease is
p̂t=na/n.

The TDT test can be either one- or two-sided
depending on whether allele A has been identified
in advance as being associated with the condition
studied or whether either allele A or B might be
implicated.

(c) ASP

One pair of affected sibs and each heterozygous
parent is genotyped. The number of times that either
the A or the B allele is transmitted by the A/B het-
erozygous parent to both affected sibs is denoted by
ns ; the number of times that different alleles are trans-
mitted is nu ; n=ns+nu. The statistic measuring link-
age is p̂s=ns/n. The ASP test is inherently two-sided.

(d) Notation

For the TDT, pt is the true (alternative hypothesis)
probability of transmission of A to an affected off-
spring by an A/B heterozygous parent. For the ASP
test, ps is the alternative hypothesis probability of
transmission of the same allele to two randomly
selected affected offspring. The variables ps or pt are
generically denoted (depending on the test being
considered) by pa.

(ii) Study design

The design of a study can have a large effect on the
size and cost of a study. Components of the design
include the inclusion criteria (IC) that must be met for
a family to enter the study and the sample size. The IC
include parental A/B heterozygousity conditions and
the minimum number of affected offspring in a family.
The sample size is the number of families to be ex-
amined for possible inclusion in the study. The sample
size required for a particular power of detection (and
the number of genotypings to be performed) differ
according to the IC. The cost of a study includes the
cost of finding possibly eligible families and the cost of
genotyping. The cost will also be considerably affected
by the IC. The IC considered include the following.
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1. Parental A/B heterozygousity conditions. One of
the following three criteria is used to determine the
families eligible for the study.

(1) Random parent. A randomly chosen parent
is genotyped and the family is included in the study
if this parent is A/B heterozygous.

(2) One parent A/B heterozygous. A random
parent is genotyped at the marker locus; if the
parent is A/B heterozygous the family is included.
If not, the other parent is genotyped and the
family is included if this other parent is A/B het-
erozygous.

(3) Both parents A/B heterozygous. Both par-
ents are genotyped and both must be A/B hetero-
zygous for inclusion.

2. Minimal number of affected offspring. For the TDT,
the investigator has the option of using only one
randomly chosen offspring per family in the study
or of using all such. In the latter case, the investi-
gator can specify k, the minimum number of af-
fected offspring required for a family to be eligible
for the study; k can be, and frequently is, 1. The use
of a value greater than 1 may, in some cases, lower
the requisite number of families examined or the
number of genotypings to be performed to achieve
a given statistical power.

(iii) List from which families are selected

Selection of families for the study occurs via random
sampling from a list, which may consist of either
affected offspring or families with affected offspring.
The type of list to be considered in the calculation is
the one that best mimics the ascertainment scheme to
be used in the study. The list contains only families or
members of families with at least k affected offspring.

The list is considered to be large enough that there
is little chance of identifying the same family through
different randomly chosen members. This condition
eliminates the need to consider the complexities of
sampling without replacement. With a list that is not
much larger than the sample size, the sample size
should be considered to be the number of different
families to be identified.

3. Methods

Distinguishing indistinguishable cases is standard
in probability derivations; its use here avoids the
occurrence of powers of 2 whose use might not be
obvious.

We consider haplotypes to consist of two ordered
pairs of alleles, a first pair and a second pair. The first
pair can be considered to be those inherited from the
father and the second to be from the mother (even

though phase is usually not determinable). By this
convention, the haplotype AD/BD differs from BD/
AD because the order of the alleles differs : the first
pair of alleles are {AD} and {BD}, respectively.

There are four possible first or second pairs of a
haplotype, {AD,Ad, BD,Bd}, so there are 16 ordered
haplotypes for a parent in the study: {AD/AD,AD/
Ad,AD/BD,AD/Bd,Ad/AD,Ad/Ad,Ad/BD,Ad/Bd,
BD/AD,BD/Ad,BD/BD,BD/Bd,Bd/AD,Bd/Ad,Bd/
BD,Bd/Bd}. An offspring type is one of these ordered
haplotypes. A family type is the ordered haplotype of
the father followed by the ordered haplotype of the
mother (i.e. the ordered genotype of the parents).
There are 16r16=256 family types.

Penetrances depend only on the number of D alleles
and not on the ordering of the haplotypes within the
genotype. Reordered haplotypes are combined in the
summations leading to the results.

(i) Parameters of the genetic model

’ Population frequencies of Bd, BD, Ad, AD. These
values can optionally be calculated from the popu-
lation frequencies of alleles A and D and the co-
efficient of disequilibrium,

FADrFBDxFAdrFBd (1)

where FAD, for example, is the population fre-
quency of the haplotype AD (McGinnis, 1998).

’ The recombination fraction between the marker
and the disease locus, h (0fhf0.5).

’ The penetrance of a genotype as a function of the
number of D alleles (0, 1, 2). By appropriate choice
of penetrance values, an arbitrary mode of inherit-
ance can be specified including additive, dominant,
recessive, and others.

’ The mean number of offspring per family, l,
including both affected and unaffected offspring.
The number of offspring is Poisson distributed with
mean l for all families.

(ii) Sample size and power calculations

The sample size, N, is the number of individuals or
families on the list thatmust be examined to assure that
the study has a specified power of detecting linkage at
some significance level. The sample size is calculated
by varying the sample size, N, and examining the re-
sulting power of the study, PowStudy(N). Because
PowStudy(N) is monotone increasing with N, finding
the value of N that yields the desired power is a solved
problem (e.g. a bisection algorithm could be used).

The power of the study is calculated from three
quantities : (1) pI, the probability that a random
member of the list leads to a family suitable for in-
clusion; (2) the expected sample size per family, N ;
and (3) the alternative hypothesis value, pa.
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The TDT can be either a one-or a two-sided test ;
the ASP is inherently two-sided. The significance level
for a two-sided test can be transformed into an
equivalent level for a one-sided test by halving it.
Hence, we consider only one-sided tests.

Let PowBin(pa,N) be the power of a one-sided test
of the null hypothesis that the probability of an event
is p=0.5 against the alternative that p>0.5 for a
sample size of N when the true probability of an event
is pa and the significance level is a.

Because the number of families in the study is ran-
dom, the power of a proposed study with N families
examined is :

PowStudy(N)=
XN

i=0

Bin(i, N, pI)PowBin(pa, irN )

(2)

where Bin(i,N, pI) is the probability that i families will
be included in the study when N members of the list
are examined and the probability of study inclusion of
each is pI.

For large N, this summation could require a great
number of calculations of PowBin; consequently,
when N is large, the binomial distribution is approxi-
mated by the normal and a Hermite formula is used to
integrate the density of this normal distribution times
PowBin. The Hermite formula approximates the in-
tegral by the sum of a fixed number of terms, each of
which is a weight times PowBin evaluated at a speci-
fied quantile of the normal distribution. See Table
25.10 of Abramowitz & Stegun (1964) for details.

(iii) Calculating probability of family inclusion, the
sample size per family and the alternative hypothesis

These quantities depend on the family type com-
position of the study, which in turn depends on the
composition of the list. The family type composition
of the list is dependent in turn on the expected number
of affected offspring in each family type.

’ Distribution of the number of affected offspring.
The mean total number of offspring per family is l ;
let the probability that an offspring of family type f
is affected be PA( f ). Then the number of affected
offspring is distributed Poisson with mean
m( f )=lPA( f ).

’ Composition of the list. Whether the list is con-
stituted of families or affected offspring, L( f ), the
proportion of the list consisting of family type f, is
proportional to the population frequency of fam-
ilies of type f and to the probability that the family
has at least k affected offspring. Thus, for a list of
families, the expected frequency of family type f is

L( f )= F fS(k, m( f ))P
g F gS(k, m(g))

(3)

where S(k, m( f )) is the probability of k or more
affected offspring given that the mean number of
affected offspring is m( f ) (i.e. S is the tail of the
Poisson distribution).

F f, the frequency of family type f in the population,
is the product of the population frequencies of
two haplotypes: that of the father and that of the
mother in family type f.

For a list of affected offspring from families with at
least k affected offspring, the representation on the
list of family type f is also proportional to the ex-
pected number of affected offspring of the family
type, N k( f ). This is the mean number of affected
offspring given that there are at least k such and is :

N k( f )=m( f )
S(kx1, m( f ))

S(k, m( f ))
: (4)

The frequency of family type f in the list of affected
offspring is

L( f )= F fS(k, m( f ))N k( f )P
g F gS(k, m(g))N k(g)

(5)

’ Frequency of family types in the study. Families on
the list meeting the parental heterogeneity condi-
tions will be eligible for the study. The probability
that a random family from a list of families is
eligible for the study is

pI=
X

f

IH( f )L( f ) (6)

where IH( f ) is 1 if family type f meets the parental
heterogeneity requirements of the study and 0
otherwise.

The expected frequency of family type f in the
study is

Sf=
IH( f )L( f )P
g IH(g)L(g)

(7)

for a list either of families or of offspring.

N ( f ) is the average sample size contributed to the
study by a family of type f. For an ASP study or
TDT with one affected offspring per family used,
N ( f ) is the number of A/B heterozygous parents.
For the TDT using all affected offspring, N ( f ) is
the number of heterozygous parents multiplied by
N k(g). N is the average (over family types) contri-
bution to the sample size of the study:

N=
X

f

SfN ( f ) (8)

Similarly, pa, the alternative hypothesis probability
of specific allele transmission (TDT) or trans-
mission of the same marker allele to affected sibs
(ASP), is the weighted average of the same value
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over the family types:

pa=

P
f SfN ( f )pa( f )

N : (9)

(iv) Calculation of the probability that an offspring is
affected and the alternative hypothesis probability for
each family type

The discussion in this section is limited to one family
type, f, defined by the ordered haplotypes of the father
and of the mother.

Denote the haplotype of one parent by wx/yz where
w and y are one of {A, B} and x and z are one of
{D, d}. As an example, consider AD/Bd. Four pairs
of alleles can be transmitted to an offspring with
probabilities given below. Without recombination,
the allele pairs wx and yz can be transmitted, each
with probability (1xh)/2 (AD and Bd in our ex-
ample). With recombination, the pairs wz and xy can
be transmitted with probability h/2. (Ad and BD in
the example).

Unless the parent is heterozygous at both the
marker and disease sites, there will be duplicate un-
ordered allele pairs in the described calculations.
These duplicates could be combined and the corre-
sponding probabilities added but this is unnecessary,
because the combination is logically performed in
summations later.

From the previous results applied to the father and
to the mother, we take all combinations of one allele
pair from the haplotype of the father with one from
the mother. The probabilities of the two allele pairs
are multiplied to obtain the probability of an off-
spring with the specified genotype. Again, there are
unordered duplicated accounted for in the summa-
tions.

We denote the frequency of offspring haplotype o
by Fr(o) o, oi, and oj range over all possible offspring
types for family type f.

The probability that an offspring of haplotype o is
affected is the penetrance, Pen(o). The probability
that a random offspring is affected is

PA( f )=
X

o

Fr(o)Pen(o), (10)

where Fr(o) is the proportion of offspring type o in
the family type and Pen(o) is the penetrance of this
offspring type.

(a) Probability of transmission of marker
A (TDT only)

We know the allele pair transmitted by each parent to
o and so we can count the number of transmissions of
A by a heterozygous parent,CA(o), which can take the
values 0 to nH( f ), the number of A/B heterozygous

parents in family type f. The proportion of trans-
missions of A to an affected offspring by an A/B
heterozygous parent is thus

pt( f )=
P

o Fr(o)Pen(o)CA(o)

PA( f )nH( f )
(11)

(b) Probability of transmission of the same marker
allele (ASP only)

For the ASP, we examine all pairs of offspring types
and count the number of transmissions of A or B
to both offspring types by a marker heterozygous
parent. Let the offspring types be oi and oj ; the count
of transmissions of the same allele is denoted by
CS(oi, oj) and can take values 0 to nH( f ). Hence

ps( f )=

P
oi

P
oj
Fr(oi)Pen(oi)Fr(oj)Pen(oj)CS(oi, oj)

PA( f )
2nH( f )

:

(12)

4. Results

(i) Examples: TDT

Our example is the first case in Table 1 of McGinnis
(1998) ; the results are shown in Table 1. There is a
considerable decrease in the requisite sample size and
in the number of genotypings required if the study
admits only families with at least two affected off-
spring. This might be counter to intuition but it is
explained by the fact that, with the genetic parameters
used, affected offspring are very common: 48% of the
offspring in the population are affected. The table also
shows that requiring both parents to be A/B hetero-
zygous is unwise, because it results in 90% of ex-
amined families being excluded from the study, which
greatly increases the number of families to be ex-
amined to achieve the specified power.

Random parent selection requiring two affected
offspring is the most efficient IC in terms of the num-
ber of genotypes that must be determined; next best is
requiring one parent to be A/B heterozygous with at
least two affected offspring. In terms of the number of
families included in the study, these two cases are
again the best but their order is reversed.

(ii) Examples: ASP

Table 2 (top) shows results for ASP applied to the
same genetic parameters as above. The genetic para-
meters used makes the ASP test much more demand-
ing in sample size. However, requiring that one parent
be A/B heterozygous is the most efficient IC in terms
of the number of genotypes to be determined; random
parent selection is the optimum in terms of the num-
ber of families examined.
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Table 2 (bottom) shows an example that is more
favorable to the ASP test. It differs from the previous
one only in the penetrances. In this example, random
parent selection is most efficient in the number of
genotypes to be performed and requiring one parent
to be heterozygous is most efficient in the number of
families required.

(iii) Comparison with simulations

Knapp (1999) presents the results of 5000 simulations
of the power of the TDT for a study using a single
affected offspring from families with at least one A/B
heterozygous parent. The sample sizes of his simu-
lated studies were chosen to produce 80% power for

Table 1. Sample size required for 80% power – TDT

Designa pt pI

N
fix nH

N offspring
included

N families
examined

Exp N
genotypes

R/1/1 0.567 0.351 342 1.350 1 739 999
R/A/1 0.568 0.351 342 1.35 1.89 382 636
R/A/2 0.568 0.341 338 1.33 2.61 286 541
O/1/1 0.566 0.580 359 1.21 1 514 1326
O/A/1 0.567 0.580 354 1.21 1.89 268 830
O/A/2 0.567 0.567 354 1.20 2.61 199 692
B/1/1 0.571 0.123 317 2.00 1 1305 982
B/A/1 0.573 0.123 315 2.00 1.89 666 1055
B/A/2 0.572 0.115 306 2.00 2.61 507 833

A one-sided test with significance level 0.05 is used. The population frequency of D is
0.60 and of A is 0.75; the disequilibruim coefficient is the maximum possible at 0.015.
The recombination fraction between the marker and disease loci is 0; the penetrance
is 0.3, 0.45 and 0.6 for 0, 1 and 2 disease alleles, D. The mean number of offspring per
family is three. Ascertainment is from a list of affected offspring.
a Family inclusion criteria. ‘R’, ‘O’, ‘B’ for random parent, one parent hetero-
zygous, and both parents heterozygous at the marker locus. ‘1’ following the first ‘ / ’
indicates one affected offspring per family included; ‘A’ indicates the inclusion of all
affected offspring. The final ‘1’ or ‘2’ is the minimum number of affected offspring
per family, k. pt is the probability that a heterozygous parent transmits A to an
affected offspring. pI is the probability that a family examined will meet the parental
heterozygousity condition. ‘N fix’ is the fixed sample size, n, necessary for an 80%
power. nH is the average number of A/B heterozygous parents per family. ‘N off-
spring included’ means the average number of affected offspring per family. ‘N
families examined’ means the average number of families to be examined to achieve
0.8 power. ‘Exp N genotypes’ means the expected number of (A/B) genotypings
performed including those that exclude families who do not meet the heterozygousity
requirement used.

Table 2. Sample size required for 80% power – ASP. Sample-size
requirements for the ASP test using the same parameter values as Table 1.
Precisely two affected offspring are used for the ASP so the second and third
entries of the inclusion criterion for TDT do not apply here. (Other columns
as Table 1.) Case 1 uses the same parameter values as the previous table. In
Case 2, the penetrances are changed to 0, 0.3 and 0.6 for 0, 1 and 2 D alleles

Ascertainment ps ph n
N H
parents

N families
examined

N
genotypes

Case 1: penetrances 0.3, 0.45 and 0.6 for 0, 1 and 2 D alleles
R 0.5113 0.3412 12107 1.33 26613 53854
O 0.5109 0.5670 13065 1.20 19153 38307
B 0.5125 0.1154 9921 2.00 43073 67711

Case 2: penetrances 0, 0.3 and 0.6 for 0, 1 and 2 D alleles
R 0.5882 0.2355 207 1.19 749 1278
O 0.5791 0.4241 256 1.11 552 1572
B 0.6339 0.0468 89 2.00 993 2078
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a two-sided significance level of 1.0r10x7. The cases
simulated include four modes of disease gene inherit-
ance (multiplicative, additive, recessive and domi-
nant), three penetrance ratios (1.5, 2, 4), and four
values for the population proportion of disease gene
(0.01, 0.1, 0.5, 0.8) ; this results in 48 cases. The num-
ber of cases is doubled to 96 by simulating sample
sizes arising from two different approximations. The
distribution of differences between the power from
our method and that reported by Knapp is shown in
Table 3. Notice that Knapp reports power to only two
decimal places – this could increase or decrease the
difference between his power and ours by up to 0.005.

The differences between the power from simulation
and our methods were small. Allowing for a variable n
slightly improves the agreement of simulation with
our methods.

5. Discussion: possible extensions to the methods

We have used probability calculations to determine :
(1) pa, the alternative probability hypothesis ; (2) pI,
the probability that a random family chosen from the
list will meet the parental heterozygousity conditions
of the study; and (3) N , the average contribution to
the study sample size of an included family.

Power is calculated separately for each possible
number of families,N, in the study. (N can range from
0 to the number of families examined.) The compu-
tations assume that each family contributes the same
sample size, N , and the study power is the average of
the powers at each N weighted by the probability of
having N families in the study.

We describe two possible extensions to this
method; neither is implemented in the available com-
puter program.

(i) Variable contribution to study sample size

The actual contribution per family to the study
sample size varies systematically by family type owing
to the different numbers of marker heterogeneous
parents, and randomly within a family type (for TDT
with all affected offspring included) owing to the

random number of affected offspring. It would be
slightly more accurate to average power over all
possible study sample sizes taking into account this
variability than to average only over the number of
families, assuming that all families contribute the
same sample size. This would require a calculation of
power for each possible sample size instead of only a
calculation for each possible number of families.

An exact determination of the distribution of the
overall sample size is computationally barely feasible.
The distribution for one family can be found by enu-
merating all cases and averaging over family types
weighted by their frequency in the study. The distri-
bution for N families requires evaluating the con-
volution of this distribution with itself N times.
There are efficient methods to shortcut this compu-
tation but implementing them would be a major
undertaking.

Asymptotics provides a compromise solution. The
variance of the contribution of one family can be
calculated, and the mean,N , has been calculated. The
mean and variance of the study sample size are N
times the corresponding figures for one family. As-
suming normality of the distribution of sample sizes
(the large sample size approximation), one could
average power over the normal distribution.

We did not implement either of these possibilities,
owing largely to the close correspondence of our re-
sults with the simulations of Knapp. Also, accounting
for a variable number of families in the study im-
proved the agreement with the results of Knapp
only slightly; accounting for the variable contribution
of families would, in our opinion, make a lesser
change.

(ii) Poisson distribution of number of
affected offspring

The assumption that the number of offspring in a
family is Poisson distributed is strong. The only use of
this assumption is to obtain the distribution of the
number of affected offspring by family type. An arbi-
trary distribution could be used. This distribution
could be used to model, for example, cases in which

Table 3. Power by our method minus power from simulation. Distribution of power calculated by our methods
minus that obtained by Knapp (1999) from 5000 simulations, each in 96 sets of parameters

Method Min. 1st Qu. Median Mean 3rd Qu. Max. % below 0.01 % below 0.02

Fix na x0.0361 x0.0024 0.0033 0.0036 0.0135 0.0307 60 87
Var nb x0.0190 x0.0022 0.0020 0.0011 0.0069 0.0262 76 94

a Fix n: the distribution of differences where the study sample size is fixed at its expectation.
b Var n: the distribution when power is averaged over possible sample sizes.
Successive columns show the minimum, first quartile, median, mean, third quartile and maximum value of the difference. The
final two columns show the percentage of cases that are less than 0.01 and 0.02 in absolute value.
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having an affected offspring decreases the probability
of future offspring.

6. Computer program

A standard Fortran95 program that performs the
calculations described is available as source and as a
PC or a Macintosh executable. Inputs to the program
are the genetic parameters and inclusion criteria of the
study; it calculates either power for a fixed number of
families examined or the number of families needed
to achieve a specified power. For links to the latest
version of the program see the entry tdtasp at http://
odin.mdacc.tmc.edu/anonftp/.

7. Glossary of symbols

F . When applied to an allele pair, FAD, the fre-
quency of that pair in the haplotypes of the popu-
lation. When applied to a family type, F f, the
population frequency of the type – the product of
the population frequencies of the four allele pairs of
the parents.

IH( f ). 1 if family type f meets the heterogeneity
conditions for the study, otherwise is 0.

k. The minimum number of affected offspring re-
quired for a family to be included in the study. Also,
the minimum number of affected offspring required
for a family or its affected offspring to be on the
list from which families are randomly chosen to be
examined for study suitability. For the TDT with all
affected offspring used, k is chosen by the study de-
signer ; for the ASP, k is fixed at 2; for TDT with only
one affected offspring per family used, k is 1.

l. The mean number of total offspring per family –
assumed to be the same for all families. The distri-
bution of the number of offspring is Poisson.

L( f ). The proportion of the list constituted of family
type f or offspring of family type f depending on
whether the list contains families or affected offspring.

na, nb, n, pt, p̂t. (TDT) na and nb are the observed
number of transmissions of alleles A and B to an af-
fected offspring by a heterozygous parent. n=na+nb
and p̂t=na/n. pt is the true (alternative hypothesis)
probability of transmission of A; pt (f ) is the prob-
ability of transmission of A by a heterozygous parent
for family type f.

ns, nu, n, ps, p̂s. (ASP) ns is the number of times that the
same allele is transmitted to the two affected sibs by a
heterozygous parent ; nu is the number of times that
different alleles are transmitted. n=ns+nu and p̂s=ns/
n. ps is the true (alternative hypothesis) probability of
transmission of the same allele to two affected off-
spring. ps (f ) is the same probability for family type f.

N. The number of families from the list that must be
examined to obtain the desired power.

N ( f ), N . The average contribution to the study
sample size of a family of type f. N , the average (over
family types) contribution to the study sample size of
one family.

nH( f ). The number of A/B heterozygous parents in
family type f.

N k( f ). The mean number of affected offspring of a
family of type f given that there are at least k affected
offspring.

pa( f ). The expected value of pt or ps (for TDT and
ASP, respectively) for family type f. pa is the expected
value of this quantity averaged over family types.

PA( f ). The probability that a random offspring of
family to type f is affected.

pI. The probability that a random member of the list
leads to a family that will be included in the study.

PowBin(pa,N). The power of a one-sided one-sample
binomial test of the null hypothesis that p=0.5
against the alternative that p>0.5. The sample size is
N and the true probability is pa. The significance level
of the test is a.

Pen(o). The probability that offspring of type o is
affected.

PowStudy(N). The power of a study resulting from
the examination of N members of the list and from
including in the resulting study all eligible families.

pa. Generic notation for the alternative hypothesis
value ; for TDT it is pt, for ASP, it is ps.

S(i ; m). The probability of i or more events in a
Poisson distribution with mean m.

Sf. The proportion of families in the study that are of
family type f.

h. The recombination fraction between the marker
and disease locus (0fhf0.5).
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