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ON A THEOREM OF WIELSEN

Saroop K. KauL anp DALE V. THomPSON

The following theorem proved in this paper is a generalization of
a result of Jakob Nielsen. Suppose G is a group of linear
fractional transformations acting on the unit disc D 1in the
complex plane; suppose also that each element of G , except the
identity, is either a hyperbolic or a parabolic transformation.
Then any homeomorphism % of the open disc D onto itself which
satisfies the functional equation hg = g'h , for some
automorphism g - g’ of G , has a unique extension to a

homeomorphism of D onto itself.

In this paper we wish to give a topological proof of a theorem of
Nielsen. Nieisen in [171] considers a finitely generated group H , acting
on the disc D = {z € € : |z| =1, C the set of complex numbers} , each of
whose elements, except the identity e , is a hyperbolic substitution and
whose fundamental domein X has the property that Xc B , ) being the
open disc {z € C : |z| < 1} . It is easy to see then that B is a
covering space of the orbit space g/H . Nielsen then proved that any
lifting h to 5 , of a homeomorphism of B/H onto itself, has a unique
extension to the boundary S = {z € C : |z| <1} of D ; h has the
further property that it induces an automorphism g + g' of H onto

itself such that hg = g'h .

Before we can state our result we need the definitions of
homeomorphisms of type 1 and type 2 the "topological analogues" of

parabolic and hyperbolic substitutions respectively.
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Let X be a compact metric space and g be a homeomorphism of X
onto itself. Then ¢g 1is said to be of type 2 if there exist two
distinct points a(g) and b(g) in X , fixed under g , such that for

any compact set C < X - {b(g)} , 1lim gn(C) = alg) , and for any compact
710

set CcX - {alg)} , 1lim gHC) = b(g) ; alg) is called the attractive
N0

point of g and b(g) the repulsive point of g . We say that g is of

type 1 if in the above definition a(g) = b(g) . That is, g has only one

fixed point and it acts as both the attractive and the repulsive point for

g . These homeomorphisms have been studied by Kinoshita [8], [9]1, [10] and

Homma and Kinoshita [2], [3], and Kaul [4], [5].

A group G acting on X is said to be of type 1 (type 2) if each
element g of G and g # e 1is of type 1 (respectively type 2). We say
that G 1is a general group if each g € G - {e} is either of type 1 or of
type 2.

Let (G be a general group acting on X and let
L =1{alg) : g € 6G-{e}} and 0=X-T . A homeomorphism % of O onto
itself is said to be admissible if it induces an automorphism g + g' of
G onto itself such that hg = g'h on O . For any a € L , let
G, = {g € ¢ : gla) = a}l denote the stabilizer of a . For the definition

of minimal set see [1]. We shall prove the following theorems.

THEOREM 1. Let G be a general group acting on the dise D . Let
L be infinite and for any a € L , Ga #G. If h 1is an admissible

homeomorphism of O onto itself, them h can be extended to a

homeomorphism of D onto itself.

THEOREM 2. Let G be a general group acting on the dise D . Let
L have at most two points. If h is an admissible homeomorphism of O
onto itself then h can be extended to a homeomorphism of D onto itself.

REMARK |. The problem of generalizing the result of Nieilsen
mentioned in the opening paragraph above was first proposed by Kinoshita in
an unpublished paper [9]. In that paper Kinoshita also announced a theorem

similar to Theorem 1; for example:

THEOREM (Kinoshita). Suppose G 1is a group of type 2 acting on the
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dise D . If G satisfies the
(1) '"eontinuity" condition,
(2) Tecommutativity" condition, and
(3) Sperners condition on 0 and L 1is infinite,

then any homeomorphism of the orbit space O0/G onto itself has a lifting
to a homeomorphism h of O onto itself which is admissible and h has a

unique extension to all of D .

REMARK 2. In Theorem 1 above the three conditions of Kinoshita's
theorem have been replaced by the condition that for any a € L , Ga G .

Furthermore, the group admits elements of both types 1 and 2. In Theorems
1 and 2, in contrast to Nielsen's result, no conditions are imposed on the

nature of the fundamental domain or the number of generators of G .

1.

In this section we shall prove some properties of a general group G
acting on a compact metric space X that are needed later. Lemma 1.2
(ii1) is new.

LEMMA 1.1. Let g be a homeomorphism of type 1 or 2 acting on a
compact metric space X . Let f be any homeomorphism of X onto itself.
Then fyf’l 18 a homeomorphism of type 1 or 2 respectively, and

1 1
a(fef™") = flalg)) and b(faf™) = f(6(g)) .

Proof. Clearly flalg)) and f(b(g)) are fixed points of fyf-l .

Suppose C < X - {f(b(g))} is compact, then

1im (g H)™c) = 1im (FF L) (C) = 7 1im S (FHO) = Flalg))
n->o

nro 70

since f’l(C) c X - {b(g)} . similarly, we can prove that for any compact

ccx-{flal@)} , 1lim (f8*r1)(c) = f(b(g)) and the proof is complete.

n-rco

LEMMA 1.2. Let X be a compact metric space and G be a general
group acting on X . Then the following hold:

(1) forany f €G, f(L)Y=L, hence f(L) =L and
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flo) =0 ;

(ii) if L has more than two points then L 1is a perfect set;

hence L 1is infinite;

(iii) if for each a € L, G # G then L is a minimal set;

(iv) 4f X =D then LC S .

Proof. (i) If x €L +then x =a(g) for some g € G , and by Lemma
1.1, for any f €6, f(=) = flalg) = alfef™) . since G is a group,
and f, g €G , fgf-l €G and f(x) €L . Hence f(L)< L . Applying
the same argument to f_l we get that f-l(L) clrL .,” Hence f(L) =L .

(i72) Let a € L . Since L has more than two points there is an

x € L such that « # a(g) or b(g) , wvhere a =a(g) . Since g is a

type 1 or 2, lim gn(x) =a and by (Z) each gn(x) € L . Hence each point
nro

of L 1is a limit point of L . This proves (i%).

(727) It is enough to show that for any x € L |
Lc{g(x) : g €6 =G(x) . Solet ¥y €L and f € G be such that
a(f) = Y , and suppose X # Y .

Suppose f 1is of type 1. Then by definition Llim fn(x) =Y and
nre

y € G(x)

Suppose f 1is of type 2. Two cases arise.

CASE 1. f(x) # = . Then by definition 1lim £ (£) =y and the proof
nr

is complete.

CASE 2. f(x) = x . Since G:z: # G there is a g ¢ G such that
g(x) # x . Hence =z # alg) or b(g) and g (z) converges to alg) . If
a(g) =y , then y € G(x) . If not, then, since =x, y are fixed points of

f , alg) 1is not a fixed point of f . Hence 1lim fn(a(g)) =y . Finally

n-reo
since {fn} is equicontinuous at alg) [2], and {gn(x)} converges to

alg) , {fngn(a(g))} converges to y [6, Lemma (1.1), p. 226].
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. o .on .
(iv) For if alg) € D for g € G-e , then 1lim g (s) = alg) , which
N>

is impossible because g(D) =D .

2.

A Euclidean neighbourhood of a point x € D is an open set U in D
containing x such that U is homeomorphic to the disc. We shall denote
the boundary of any set A by 04 . Any homeomorphic image of the closed

unit interval is called an arc.

LEMMA 2.1. ZLet g be a homeomorphism of type 1 or 2 on D . Then

any Euclidean neighbourhood U of alg) contains an are B such that

[+
o - . .
a= U "BlcD and a=avu {alg)} and is an are in D .
m=0
Proof. By a well known result of Kerekjarto any homeomorphism of type
1 or 2 is respectively topologically equivalent to a parabolic or a hyper-
bolic transformation [7]. Given a parabolic or hyperbolic transformation

o]
k and any point =x € D there is an arc B in D from z to k(x) such

(=]
that o = U kn(B) is homeomorphic to the half open interval. Now B
n=0
o]
being a compact subset of D , {kn(B)} converges only to al(k) . Hence

@ =avualk) is an arc, and the same is true of g .

Now given any U containing a(g) take a point x € U such that

glx) € U , and construct an arc B as above.

LEMMA 2.2. Let G be a general group acting on the disec D . Let
L be infinite and L be minimal. Then any non-empty open set U in §
containing a point alg) of L contains another point alf) of L
distinet from alg) such that a(f') ¢ alg') , where g =+ g' is an
automorphism of G .

Proof. Suppose the lemma is not true. Then there exists a non-empty
open set U containing an a(g) € L , such that, if a(f) € U n L , then
a(f') = alg') . By minimality of L there exists a finite set
{pi :1<i=n} in G such that [ U{piU : 1 =7 =n} [, Remark

(2.12), p. 14]. That is, for any f € ¢, a(f) € piU for some 1 ,
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1 << =n. Hence pzla(f) €U . But p:;la(f) = a[pzlfpi] (Lemma 1.1),
!

and by the above assumption a[Ip;lfpi]:] =al(g') . Now

[pzlfpi] = pé(_l)f’pé , since g »+ ¢g' 1is a homomorphism, and by Lemma

1.1, a[pt!("l)f’pé] =p75(_l)a(f’) . Hence a(f') =p,L!a(g') . Now g~=»g'
being an automorphism of G , L = {a(f') : f € G} = {péa(g') : 1 =<1 <n}

contradicts the assumption that L is infinite. Hence the lemma is true.

3.

In this section we shall prove Theorem 1. We therefore assume
throughout that G is a general group acting on the disc D , that L is

infinite and that for each a € L , Ga # G so that L is a minimal set

(Lemma 1.2 (Z%%)), and lastly that % is an admissible homeomorphism of O
onto itself inducing an automorphismof G , g > g' , so that hg = g'h .
For any A =D we define A=A nL.

LEMMA 3.1. Let a € L and U be any Euclidean neighbourhood of
a. If forany g € G, alg) €U, then alg') ¢ Ints(ﬁb’) , where

Ul =Uno.

Proof. By Lemma 2.2 the open set V =D - U containing alg) € L
contains an a(f) € L , such that al(f) # alg) and a(f') # alg’) . By
Lemma 1.2 (Ziv), Dco.

It is easy to see that using Lemma 2.1 we can construct an open arc

o = al V] a2 U a3 in V where

o, = U g [B]ecD, a,= U g°[B,)] <D,
1 k=0 1 2 k=0 2

and a3 connects the end points of al and a2 in Von 3 and is other-

wise disjoint with them, so that a = o u {a{f), alg)} is an arc in D
with o C D and its end points a(f) and a(g) in S . Hence ha = B
i o in D and B =%a, uha, uka. . But Ao, = ‘ :
is an open arc in and B 1 Y ko, U hag ut a3 ha3 since a3

[]
is an arc in D . Now
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o =k U g“[8) = U (8] = U g™nls] .
k=0 k=0 k=0

o
Since g' is of type 1 or 2, h maps % onto D and hBl is a compact

subset of D , ha, has the unique limit point a{g’) . Similarly, hu2

1
has the unique limit point a(f') . Thus B = B u {a(f'), alg")} is a

closed arc in D with end points a(f’') and a(g') . Since acC B - Ul s

B = hacC D - hUl as h maps D onto B .

Now R separates D into two components El and E2 . Since U is

a Euclidean neighbourhood, U' = U N O 1is a connected set, and

anU' =@, hence hU' 1lies either in E, or E, . Suppose h' < E .

Then AU' = WU' nL NS and alg') being an end point of B is not

1
an interior point of EI NS with respect to S . Hence al(g') is not an
interior point of AU’ with respect to S . This proves the lemma.

For any a € I consider a decreasing nested sequence {Un} of

(e o]
Buclidean neighbourhoods of a so that n E; = {a} . Then Ué =0n Un
n=1
and O - 5;. are arcwise connected for n =1, 2, ... . Let
(=2
A(a) = N RKU' . Then A(a) being the intersection of compact connected

n=1 n

non-empty subsets of D 1is non-empty compact and connected.

8

hU!

LEMMA 3.2. Forany a €L, Ala) = '

it O

n=l

Proof, If x € A(a) N0 then for all n=1, x € hUé . Since &

(2]
is a homeomorphism on O , Wiz e ﬁ; . Hence hWlz e n T7 = {a} ¢ T ,

n=1 "
which is a contradiction, since O n = 9. Consequently,
® — *® *® ® ~
= T = Ut I = 7 - '
A(a) ngl 2 {'n=l hUn] nL ngl (@ nI) = ngl huy

and the proof is complete.
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LEMMA 3.3. If a € L then A(a) is a singleton; and if a = a(f)
for some f € G, then A(a) = {a(f")} .

Proof. First we claim that I = IntsA(a) = @ : suppose not. Then by

Lemma 2.2 there exist distinct points a(f) and alg) in I , such that
al(f') # alg’) . Suppose alg') # a . Now alg) € I implies that
a(g) € IntSIhUé| for each n =1, 2, ... . Hence by Lemma 3.1,

o8

alg') € v; for each 7 , that is, alg') € ﬁ% = {aq} , which is a

n=1

contradiction.

Thus A(a) is a non-empty compact connected subset of S with an

empty interior. Hence A(a) is a singleton.
If a = a(f) for some f € G then f being of type 1 or 2 for any

x €0, lim fn(x) = a ; so that the sequence {fn(x)} lies eventually in
Vel

each Ué =U n0 . Hence {hfn(x)} = {f’n(h(x)]} lies eventually in each
oo
hUé , m=1,2, ... . Since N hUé = A(a) is a singleton,
n=1

lim f'n(h(x)) = A(a) . But f' being of type 1 or 2, and since hx € 0 ,

b matad

lim f’n(h(x)) = a(f') . Therefore a(f’') = A(a) . This completes the

Y 5catd

proof of the lemma.

Proof of Theorem 1. Define h* : D+ D as follows: for x € 0 , let
h*(x) = h(x) and for a € I let h*a) = A{a) . We claim that h* is

the required extension.

It is easy to see that for any two defining sequences {Uh} and {Vn}

0 (=]

of Euclidean neighbourhood of a € L , ] hUé =N hVé , Since they both
n=1 n=1

form a neighbourhood base at a . Hence, A(a) being a singleton, h* is

well defined. Since O is open in D , h* 1is clearly continuous at each

point of O . To see that h* 1is continuous at a € L , let € > 0 be
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8

given., Since A(a) =

i1 D

Eﬁ; € U(h*(a), €) , where U(h*(a), €) is
1

e-neighbourhood of #%*(a) , there exists an integer m , such that
hUP < U(h*(a), €) for all m zm . Recall that U/ =U nO . Let

n

n
x € Eh nL and {wm} be a defining sequence of Euclidean neighbourhood
(o)
for x . Then N w = {x} implies that for some m' , w, €U, for all
n=1
k 2 m' . Hence hw% c hUé < U(h*(a), €) for all k = m' implying that

h*(z) € U(h*(a), €) . Thus h*(Un) ¢ U(h*(a), €) for some n for which

Un C Um and h* 1is continuous at a and hence on D .

Now g - g’ being an automorphism of ¢ such that h_lg' = gh-l s
h_l is also an admissible homeomorphism of O . Working with h—l
similarly we have a continuous extension (h_l)* of h_l to D . Hence

h*(h_l]* and (h_l)*h* are continuous extensions of the identity mappings
of (O and therefore identity themselves. Thus h 1is one-to-one and onto

and D Dbeing compact #h is & homeomorphism. This proves the theorem.

4,
Let U(x, r) denote the r-neighbourhood of a point zx .

Proof of Theorem 2. CASE 1. Suppose [ 1is a singleton {a} . Then
there is an f € G of type 1 such that a = a(f) . Assume that there is
an € > 0 such that for every positive integer =n ,

hlU(a, 1/n)-{a}) ¢ Ula, €) . Then there is a sequence {xn} such that

\

x, € Ua, 1/n) and Y, = hxn €D -Ula, e}l , n=1,2, ... . Clearly

{h_lyn} converges to a . But D - Ula, €) being compact, assume without
loss of generality that {yn} converges to y € D . But then y # a
. . -1 R . -1
implies that y € 0 , and *h being continuous at y we have h "y = a .

But this is a contradiction since hy € 0 . Thus for any € > 0 there is

an n such that A[U(a, 1/n)-{a}] c U{a, €) .

Define h* : D+ D by h*(x) = h(x) if x € 0 and h*(a) =a . By
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the last paragraph then #4* 1is continuous and a homeomorphism.

CASE 2. L[ has two points L = {a, b} . Then a, b lies in S .

There

in O

is a Euclidean neighbourhood U of a such that a = 9U is an arc

with end points ¢, d in 0nS , ¢, d separate a, b in S ,

and b €D~ U . Then ho is an arc in 0 with end points he and hd

in S

such that hc and hd separate a, b in S . Therefore only one

of the points a and b 1lies in hU , say qa € iU . Let h* =h on O

and h#*(a) = a and h*(b) = b . Then a similar argument as in Case 1

shows that h* is the required extemsion. If b € AU , define h*(a)

It
-

and h#*(b) = a . Again an argument as in Case 1 proves h* to be the

required extension.

This completes the proof.

{1

£2]

£3]

(4]

(5]
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