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Abstract

We give the exact asymptotics of the tail of the stationary maximal dater in generalized
Jackson networks with subexponential service times. This maximal dater, which is an
analogue of the workload in an isolated queue, gives the time taken to clear all customers
present at some time t when stopping all arrivals that take place later than t . We use the
property that a large deviation of the maximal dater is caused by a single large service
time at a single station at some time in the distant past of t , in conjunction with fluid limits
of generalized Jackson networks, to derive the relevant asymptotics in closed form.
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1. Introduction

To the best of the authors’ knowledge, the literature on generalized Jackson networks with
heavy-tailed service times is limited to tandem queues. Exact asymptotics for these quantities
were obtained in [4]. The present paper addresses the case of generalized Jackson networks of
arbitrary topology. It focuses on a key state variable, namely the time to empty the network
when stopping the arrival process, which has previously been used to determine the stability
region of such networks [2], [3]. (This variable boils down to the virtual workload in an isolated
queue or to the sojourn time for tandem queues.) The aim of the paper is to derive the exact
asymptotics of the tail of this state variable in the stationary regime. The main ingredients for
the derivation of this result are as follows.

• We require a generalization of the so-called ‘single-big-event theorem’, well known
for isolated queues, to generalized Jackson networks of the sort we consider. This
was established in [4]. In the GI/GI/1 queue, this theorem states that, in the case of
subexponential service times, large workloads typically occur in the event that a single
large service time has taken place in the distant past, while all the other service times were
close to their means. Similarly, in generalized Jackson networks with subexponential
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service times, large maximal daters occur when a single large service time has taken
place at one of the stations, while all the other service times are close to their means.

• We must identify the role played by fluid limits within the context of the single-big-event
theorem for this class of networks.

• We must find the combination of these fluid limits and heavy-tailed calculus that allows
us to derive the closed form formulae for the asymptotics.

Although this result sheds light on the way such a network experiences a deviation from its
normal behaviour, it is in no way final, as the tail behaviour of other state variables, such as
the stationary queue size, are still unknown. The derivation of the (more complex) asymptotic
behaviour of these other state variables has already been obtained using a similar methodology
in the particular case of tandem queues [4]. The extension of these queue-size asymptotics to
generalized Jackson networks of arbitrary topology seems to require much more effort and will
not be pursued in the present paper. The proposed method should, however, extend to other
characteristics of stationary workload like, for instance, the sum of the residual service times
of all customers present in the network at some given time.

The paper is structured as follows. In Section 2, we introduce generalized Jackson networks
and show that the four assumptions required in order to use the single-big-event theorem (called
(IA), (AA), (SE), and (H) in [4]) hold. The main result is then established in Section 3.

1.1. Notation

Here and later in the paper, for positive functions f and g, the equivalence f (x) ∼ dg(x) with
d > 0 means that f (x)/g(x) → d as x → ∞. By convention, the equivalence f (x) ∼ dg(x)

with d = 0 means that f (x)/g(x) → 0 as x → ∞; this will be written f (x) = o(g(x)). We
will also use the notation f (x) = O(g(x)) to mean that both lim supx f (x)/g(x) < ∞ and
lim infx f (x)/g(x) > 0.

In this paper, ε(x) denotes a function such that ε(x) → 0 as x → ∞. The function ε may
vary from place to place; for example, we write

ε(x) + ε(x) = ε(x), ε(x)(1 + ε(x)) = ε(x),

and so on. Similarly, we will write ε(x, y) for ε(x) + ε(y), ε(x)ε(y), etc.

2. Generalized Jackson networks

2.1. General framework and sample-path construction of the maximal dater

2.1.1. Service time and routeing sequences. Here, we recall the notation introduced in [2]
to describe a generalized Jackson network with K nodes. The networks we consider are
characterized by the fact that service times and routeing decisions are associated with stations
and not with customers. This means that the j th service at station k takes σ

(k)
j units of time,

where {σ (k)
j }j≥1 is a predefined sequence. In the same way, when this service is completed,

the departing customer is sent to station ν
(k)
j (or leaves the network, if ν

(k)
j = K + 1) and is

put at the end of the queue at this station, where {ν(k)
j }j≥1 is also a predefined sequence, called

the routeing sequence. The sequences {σ (k)
j }j≥1 and {ν(k)

j }j≥1, where k ranges over the set of
stations, are called the driving sequences of the network. Node 0 models the external arrival
of customers to the network and, therefore, the arrival time of the j th customer in the network
takes place at σ

(0)
1 + · · · + σ

(0)
j and it joins the end of the queue at station ν

(0)
j . Hence, σ

(0)
j is

the j th interarrival time.
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Subexponential generalized Jackson networks 515

The sample-path construction introduced here is that of [2]. The main interest of such a
construction is that some monotonicity properties are preserved, as explained in [2]. As was
shown in [4], these monotonicity properties are crucial for our asymptotics calculation.

A generalized Jackson network will be defined by

JN = {{σ (k)
j }j≥1, {ν(k)

j }j≥0, n
(k), 0 ≤ k ≤ K},

where N = (n(0), n(1), . . . , n(K)) describes the initial condition. The interpretation is as fol-
lows: at time t = 0, in node i, i �= 0, there are n(i) customers, with service times σ

(i)
1 , . . . , σ

(i)

n(i)

(if appropriate, σ
(i)
1 may be interpreted as a residual service time). On the other hand, the

interpretation of n(0) (the i = 0 case) is as follows.

• If n(0) = 0 there is no external arrival.

• If ∞ > n(0) ≥ 1 then, for all 1 ≤ j ≤ n(0), the arrival time of the j th customer in the
network takes place at σ

(0)
1 + · · · + σ

(0)
j . Note that, in this case, there may be a finite

number of customers passing through a given station, so that the network is actually well
defined once a finite sequence of routeing decisions and service times is given for this
station.

• If n(0) = ∞ then when taking, for instance, the sequence {σ (0)
j }j≥1 to be independent

and identically distributed (i.i.d.), the arrival process is a renewal process.

2.1.2. Euler route, Euler network. Consider a route r = (r1, . . . , rφ) with 1 ≤ ri ≤ K for
i = 2, . . . , φ − 1. Such a route is successful if r1 = 0 and rφ = K + 1. To such a route, we
associate a routeing sequence ν = (ν(0), . . . , ν(K)) as follows (here, ‘⊕’ means concatenation
and ∅ denotes the empty sequence).

Procedure (r):

– 1 – for k = 0, . . . , K do

ν(k) := ∅;

φ(k) := 0;

od

– 2 – for i = 1, . . . , φ − 1 do

ν(ri ) := ν(ri ) ⊕ ri+1;

φ(ri ) := φ(ri ) + 1;

od

Note that φ(j) is the number of visits to node j in such a route.
A simple Euler network is a generalized Jackson network E = {σ, ν, N}, with N =

(1, 0, . . . , 0) = 1, such that the routeing sequence ν = {ν(k)
i }φ(k)

i=1 is generated by a successful

route and such that σ = {σ (k)
i }φ(k)

i=1 is a sequence of real-valued nonnegative numbers, repre-
senting service times.

Consider a sequence of simple Euler networks, say {E(n)}0
n=−∞, where E(n) = {σ(n),

ν(n), 1}. For m ≤ n ≤ 0, we define σ[m,n] and ν[m,n] to be the concatenation of {σ(k)}m≤k≤n
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and {ν(k)}m≤k≤n, and then define the following composed generalized Jackson network, with
N[m,n] = (n − m + 1, 0, . . . , 0):

JN[m,n] = {σ[m,n], ν[m,n], N[m,n]}.

2.1.3. Maximal dater. As proved in [2], for all possible values of ν(p) and σ(p) in the simple
Euler networks, and for all integers m ≤ n, the composed network JN[m,n] stays empty forever
after some finite time. We denote by X[m,n] the time taken to empty JN[m,n] forever and, by

Z[m,n] = X[m,n] −
n−m+1∑

i=1

σ
(0)
[m,n],i ,

the associated maximal dater. The sequence Z[−n,0] is an increasing sequence. We define the
maximal dater of the generalized Jackson network JN = {σ, ν, N}, where σ and ν are the
infinite concatenations of the {σ(n)}n and {ν(n)}n, and N = (∞, 0, . . . , 0), by

Z = lim
n→∞ Z[−n,0]. (2.1)

To all generalized Jackson networks JN[m,n], we also associate the generalized Jackson network
JN[m,n](0), in which the driving sequences are the same as in the original network except for
the sequence {σ (0)

j }, which is now σ
(0)
j = 0 for all j . Similarly, we define Z[m,n](0) to be the

time taken to empty the generalized Jackson network JN[m,n](0).
Let

Y
(k)
i =

φ(k)(i)∑
j=1

σ
(k)
j (i)

be the total load brought by (external) customer i to station k. In this expression, φ(k)(i) is the
number of visits of customer i to station k if he is alone in the network, and σ

(k)
j (i) denotes his

service time at this station. Note that

Zi := Z[i,i] = Y
(1)
i + · · · + Y

(K)
i for all i,

Z[n,0](0) ≥ max
j=1,...,K

0∑
i=n

Y
(j)
i for all n ≤ 0.

In addition, Lemma 4 of [3] implies that

lim
n→∞

Z[−n,0](0)

n
=: b = max

1≤k≤K
E[Y (k)

1 ] almost surely. (2.2)

2.2. Stochastic assumptions

Assumption 2.1. (Independence of routeing and service times.) The sequences {ν(k)} and
{σ (k′)} are mutually independent, for k and k′ ranging over the set of stations.

Assumption 2.2. (Independence of service times.) We assume that the service times are inde-
pendent for different stations and, in each station, i.i.d. with finite mean: E[σ (j)] = 1/µ(j) > 0
for all 1 ≤ j ≤ K .

https://doi.org/10.1239/jap/1118777185 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1118777185


Subexponential generalized Jackson networks 517

Assumption 2.3. (Routeing.) We assume that each of the successful routes used to build ν is
obtained by a Markov chain on the state space {0, 1, . . . , K, K + 1}, with transition matrix

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 r0,1 r0,2 · · · r0,K 0
0 r1,1 r1,2 · · · r1,K r1,K+1
0 r2,1 r2,2 · · · r2,K r2,K+1
...

...
...

...
...

0 rK,1 rK,2 · · · rK,K rK,K+1
0 0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

This is equivalent to assuming that the routeing decisions {ν(k)
j } at station k are i.i.d. in j ,

independent of everything else, and such that the routeing decision selects station i with
probability P[ν(k) = i] = rk,i . The fact that the routes built with this Markovian procedure
are successful implies that state K + 1 is the only absorbing state of this chain and that all
other states are transient; we then have the very same Markovian routeing assumptions as in
(exponential) Jackson networks. More generally, when denoting by Ek the law of the chain with
initial condition k and, by Vj , the number of visits of this absorbing chain to state j , we define

E0[Vk] = πk, P0[Vk ≥ 1] = pk, Ek[Vj ] = πk,j .

We will use the following notation:

bj = πj

µ(j)
, bj,i = πj,i

µ(i)
, Bj = max

i
bj,i .

With this notation, we have b = maxi πi/µ
(i) = maxi bi . Let λ−1 = E[σ 0] = a. Throughout

this paper we will assume that the following stability condition holds:

λb < 1. (2.3)

Theorem 13 of [2] applies, meaning that if λb < 1, then Z < ∞ almost surely; conversely, if
λb > 1 then Z = ∞ almost surely.

Example 2.1. As an example, we will consider a network with the following routeing matrix:

R =

⎧⎪⎪⎨
⎪⎪⎩

0 1 0 0
0 0 p 1 − p

0 q 0 1 − q

0 0 0 1

⎫⎪⎪⎬
⎪⎪⎭

.

In this case, we have
π1 = 1 + qπ2, π2 = pπ1,

which imply that

π1 = 1

1 − pq
, π2 = p

1 − pq
.

Similarly, we have
π1,1 = π1, π1,2 = π2,

π2,1 = q

1 − pq
, π2,2 = 1

1 − pq
,
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and
p1 = 1, p2 = p.

Hence, we have

b = B1 = 1

1 − pq
max

{
1

µ(1)
,

p

µ(2)

}
and B2 = 1

1 − pq
max

{
q

µ(1)
,

1

µ(2)

}
.

In particular, for p = 1 and q = 0, we are dealing with the case of queues in tandem and we
have b = B1 = max(1/µ(1), 1/µ(2)) and B2 = 1/µ(2).

We now recall some definitions.

Definition 2.1. A distribution function F on R+ (with F = 1 − F ) is long tailed if, for any
y > 0,

F̄ (x + y) ∼ F̄ (x) as x → ∞.

We introduce a proper subset of the class of long-tailed distributions, namely the class of
subexponential distributions, denoted by S.

Definition 2.2. A distribution function F on R+ is called subexponential if F ∗2(x) ∼ 2F̄ (x),
where F ∗2(x) is the tail of the two-fold convolution of F .

Definition 2.3. A positive measurable function f on [0, ∞) is called regularly varying with
index α ∈ R (denoted f ∈ R(α)) if

lim
x→∞

f (tx)

f (x)
= tα for all t > 0.

Definition 2.4. A positive measurable function h on [0, ∞) is called rapidly varying (denoted
h ∈ R(−∞)) if

lim
x→∞

h(tx)

h(x)
= 0 for all t > 1.

For example, Weibull or lognormal random variables have tail distributions that are rapidly
varying. For more on the matter, see [5] and [6].

Assumption 2.4. (Subexponentiality of service times.) For a distribution function F on the
positive real line, with finite first moment M = ∫ ∞

0 F̄ (u) du, F̄ (u) = 1 −F(u) denotes the tail
of F and F s the integrated tail distribution, given by

F s(x) = 1 − min

{
1,

∫ ∞

x

F̄ (u) du

}
=: 1 − F̄ s(x).

The assumptions concerning service times are the following. There exists a distribution function
F on R+ such that

1. F is subexponential, with finite first moment M;

2. the integrated distribution F s is subexponential; and

3. the following equivalence holds when x tends to ∞:

P[σ (k)
1 > x] ∼ c(k)F̄ (x)

for all k = 1, . . . , K , with
∑K

k=1 c(k) =: c > 0.
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2.3. Main result

We first introduce some notation; the intuitive meanings of these quantities will be given later
on. Let f j (σ, n) be the following piecewise-linear function of the nonnegative real numbers σ

and n:

f j (σ, n) = 1{σ>na}(σ −na+npjBj )+1{σ≤na} max
k

{
pjbj,k

σ

a
+

(
bk

a
−1

)
(na−σ)

}+
. (2.4)

In addition, for all positive real numbers x and all j = 1, . . . , K , let �j(x) be the following
domain:

�j(x) = {(σ, t) ∈ R
2+ : f j (σ, t) > x}. (2.5)

Remark 2.1. We may rewrite the function f j as

f j (σ, n) =
{
σ − na + max

k

{
nbk − σ

a
(bk − pjbj,k), npjbj,k

}}+
.

This is due to the fact that pjbj,k ≤ bk . In particular, we see that

f j (σ, n) ≥ σ − na − npjBj . (2.6)

Example 2.2. Continuing Example 2.1, we have

f 1(σ, n) =
{
σ − na + n

1 − pq
max

{
1

µ(1)
,

p

µ(2)

}}+
,

f 2(σ, n) =
{
σ − na + max

{
npq

(1 − pq)µ(1)
,

np

(1 − pq)µ(2)
,

n

(1 − pq)µ(1)
− σ

aµ(1)

}}+
.

In the specific case of queues in tandem (p = 1 and q = 0), these equations reduce to

f 1(σ, n) =
{
σ − na + n max

{
1

µ(1)
,

1

µ(2)

}}+
,

f 2(σ, n) =
{
σ − na + n

µ(2)

}+
,

and the corresponding domains are

�1(x) =
{
σ > x + t

(
a − max

{
1

µ(1)
,

1

µ(2)

})}
, (2.7)

�2(x) =
{
σ > x + t

(
a − 1

µ(2)

)}
. (2.8)

Theorem 2.1. Consider a stable generalized Jackson network with subexponential service-
time distributions satisfying Assumptions 2.1–2.4. Let Z denote its stationary maximal dater
at customer arrivals (see Section 2.1 for a formal definition of Z). When x → ∞,

P[Z > x] ∼
K∑

j=1

πj

∫∫
(σ,t)∈�j (x)

P[σ (j) ∈ dσ ] dt. (2.9)
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This equation may be rewritten with the constants {αj
i , β

j
i , γ

j
i }0≤i≤l , which will be calculated

in Lemma 3.3 below, as

P[Z > x] ∼
K∑

j=1

πj

{ l∑
i=0

∑
α

j
i x≤n<α

j
i+1x

P

[
σ (j) >

x

β
j
i

+ nγ
j
i

]}

or, using δ
j
i = 1/β

j
i + α

j
i γ

j
i and d(j) = πjc

(j), as

P[Z > x] ∼
K∑

j=1

d(j)

{ l∑
i=0

1

γ
j
i

[F̄ s(δ
j
i x) − F̄ s(δ

j
i+1x)]

}
. (2.10)

The following statements then hold, as x tends to ∞.

1. If F̄ s ∈ R(−α), with α > 0, we can rewrite (2.10) as

P[Z > x]
F̄ s(x)

→
K∑

j=1

d(j)

{ l∑
i=0

1

γ
j
i

[(δj
i )−α − (δ

j
i+1)

−α]
}
.

2. If F̄ s ∈ R(−∞) then

P[Z > x]
F̄ s(x)

→
K∑

j=1

d(j)

a − pjBj

. (2.11)

Remark 2.2. In view of (2.6), we see that {σ > x + t (a − pjBj )} ⊂ �(j)(x) and, hence,

P[Z > x] ≥
K∑

j=1

πj

∑
n≥0

P[σ (j) > x + n(a − pjBj )] ∼
K∑

j=1

d(j)

a − pjBj

F̄ s(x).

Hence, in general, the asymptotics described in (2.11) are a lower bound. In the rapidly varying
case, this lower bound is tight. In the regularly varying case, the complete shape of the domain
must be taken into consideration and, indeed, the part �j(x) \ {σ > x + t (a − pjBj )} is no
longer negligible, due to the scaling property of regularly varying functions. More insights into
the shape of the domain will be given in Section 3.3.

Example 2.3. In the specific case of queues in tandem, from (2.7) and (2.8) we see that (2.9)
reduces to

P[Z > x] ∼
∑
n≥0

P

[
σ (1) > x+n

(
a−max

{
1

µ(1)
,

1

µ(2)

})]
+

∑
n≥0

P

[
σ (2) > x+n

(
a− 1

µ(2)

)]
,

which corresponds to the exact asymptotics of Theorem 9 of [4].

2.4. Technical conditions

The properties (IA) and (AA) of [4] are as follows.

(IA) The sequence of simple Euler networks {E(n)}−∞
n=0 consists of i.i.d. random variables.
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(AA) The random variables {Y (k)
i } are independent of the interarrival times and such that the

sequence of random vectors {(Y (1)
i , . . . , Y

(K)
i )}i∈N is i.i.d. (general dependences between

the components of the vector (Y
(1)
i , . . . , Y

(K)
i ) are allowed).

Under our Assumptions 2.1–2.3, both of these properties hold.
Under Assumption 2.1, the variable Z associated to JN = {σ, ν, N} represents the stationary

maximal dater of the generalized Jackson network, namely the time that it would take, in steady
state, to clear the workload of all customers present in the system, when stopping future arrivals.

The assumptions (SE) and (H) of [4] are as follows.

(SE) For all k = 1, . . . , K ,

P[Y (k)
1 > x] ∼ πk P[σ (k) > x] ∼ d(k)F̄ (x),

with d(k) = c(k)πk . Thus, d := ∑
k d(k) > 0.

(H) We have

P

[ K∑
k=1

Y
(k)
1 > x

]
∼ P

[
max

1≤k≤K
Y

(k)
1 > x

]
∼

K∑
k=1

P[Y (k)
1 > x] ∼ dF̄ (x).

(See Sections 4.4.2 and 7.2 of [4].) Under our Assumption 2.4, both of these assumptions are
satisfied. Also under Assumption 2.4, there exists a nondecreasing, integer-valued function Nx

that tends to infinity as x tends to infinity and is such that, for all finite real numbers b,

Nx∑
n=0

F̄ (x + nb) = o(F̄ s(x)), x → ∞

(see Section 4.1.2 of [4]).

3. Exact tail asymptotics

3.1. Single-big-event theorem

As already mentioned, one of the tools we will use within this setting is the ‘single-big-event
theorem’ for generalized Jackson networks. More precisely, Theorems 7 and 8 of [4] give the
following result.

Proposition 3.1. Let Z be the stationary maximal dater of the generalized Jackson network
defined in (2.1). For any x and for j = 1, . . . , r, let {Kj

n,x} be a sequence of events such that,

1. for any n and j , the event K
j
n,x and the random variable Y

(j)
−n = ∑φ(j)(−n)

k=1 σ
(j)
k (−n) are

independent; and

2. for any j , P[Kj
n,x] → 1, uniformly in n ≥ Nx , as x → ∞.

For all sequences εn → 0, we write xn = x + n(a − b + εn). Then, as x → ∞,

P[Z > x] ∼
K∑

j=1

∑
n≥Nx

P[Z > x, Y
(j)
−n > xn, K

j
n,x]

and P[Z > x] = O(F̄ s(x)).
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Proposition 3.1 leads to the following, more convenient, result.

Corollary 3.1. Take any sequence of events {Kj
n } such that, for any j , K

j
n and the random

variable Y
(j)
−n are independent, and P(K

j
n ) → 1 as n → ∞. Take zx → ∞, with zx = o(x),

such that F̄ s(x ± zx) ∼ F̄ s(x), and let

G(x) =
K∑

j=1

∑
n≥Nx

P[Z[−n,0] > x, K
j
n , Y

(j)
−n > xn, φ

(j)(−n) ≤ L].

Then we have

(1 + ε(x))G(x) ≤ P[Z > x] ≤ (1 + ε(x))G(x − zx) + ε(L, x)F̄ s(x). (3.1)

Furthermore, if G is long tailed we have

P[Z > x] ∼ G(x) as x → ∞.

The proof can be found in Appendix A.

3.2. Fluid limit

We have to find sequences of events {Kj
n } allowing us to calculate the sum

∑
n≥Nx

P[Z[−n,0] > x, K
j
n , Y

(j)
−n > xn, φ

(j)(−n) ≤ L],

where, as above, xn = x+n(a−b+εn). The events in question will be based on the piecewise-
linear functions f j (σ, n) defined in (2.4). Let us describe the intuitive reason for introducing
this function. Assume that the ‘big’ service time is equal to σ and takes place at station j within
the set of service times of the simple Euler network E(−n). Let us look at the maximal dater
Z[−n,0] in the fluid scale suggested by the almost-sure limit of (2.2).

• If σ > na then the number of customers queued at station j at time σ is of order npj ,
whereas the number of customers at the other stations is small. So, according to (2.2),
the time taken to empty the network, from time σ on, should be of order npjBj . Hence,
in this case, the maximal dater in question should indeed be of order f j (σ, n).

• If σ < na then, at time σ , the number of customers blocked at station j is of order
pjσ/a, and the other stations have few customers; from time σ to the time of the last
arrival (which is of order na), station k has to serve the approximate load pj (σ/a)bj,k

generated by these blocked customers plus the load (na − σ)bk/a generated by the
external arrivals in the time interval from σ to the last arrival. In this time interval, the
service capacity is of order (na −σ). Hence, the maximal dater should again be of order
f j (σ, n).

Particularly for the last case, a more thorough understanding of the fluid limit is clearly
necessary. This is provided by the results of [7]. We now return to a more rigorous treatment.

Consider a generalized Jackson network built from the i.i.d. sequence of simple Euler
networks {E(k)}. To all simple Euler networks E and all positive integers n, we associate the
network JNn(E) with input {Ẽ(k)}∞k=−n, where Ẽ(k) = E(k) for all k > −n and Ẽ(−n) = E.
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We allow for a specific initial condition for k = −n and then take the original sequence. That
is, if we denote by σ (k),n and ν(k),n the concatenations

({σ (k)(E)}, {σ (k)(−n + 1)}, . . . , {σ (k)(0)}, . . . )
and

({ν(k)(E)}, {ν(k)(−n + 1)}, . . . , {ν(k)(0)}, . . . ),
respectively, then

JNn(E) = {σn(E), νn(E), Nn}, with Nn = (n, 0, . . . , 0).

The maximal dater of order [−n, 0] in this network will be denoted by Z̃n(E); of course
Z̃n(E(n)) = Z[−n,0]. More generally, we will add the superscript ‘n’ to any other function
associated to the network JNn(E).

For all simple Euler networks E = (σ, ν, 1), let Y (j)(E) = ∑φ(j)

u=1 σ
(j)
u . We are now in a

position to state the main result pertaining to the fluid limit. Let εn and zn be some sequences
of positive real numbers. We define

U j (n) = {E is a simple Euler network such that Y (k)(E) ≤ zn for all k �= j},
V j (n) = {E ∈ U j (n), Y (j)(E) ≥ n(a − b), φ(j) ≤ L},

K
j
n =

{
sup

E∈V j (n)

∣∣∣∣ Z̃
n(E) − f j (Y (j)(E), n)

n

∣∣∣∣ ≤ εn

}
,

K̄
j
n = K

j
n ∩ {E(−n) ∈ U j (n)}.

We first recall a result that derives directly from Proposition 5.1 and Remark 5.1 of [7].

Proposition 3.2. Under the previous assumptions, there exists a sequence zn → ∞, with
zn/n → 0, such that

sup
E∈V j (n)

∣∣∣∣ Z̃
n(E) − f j (Y (j)(E), n)

n

∣∣∣∣ n→∞−−−→ 0 almost surely.

Lemma 3.1. We have, as x → ∞,

G(x) =
K∑

j=1

∑
n≥Nx

P[Z[−n,0] > x, K̄
j
n , Y

(j)
−n > xn, φ

(j)(−n) ≤ L] + o(F̄ s(x)). (3.2)

Proof. Note that, owing to Proposition 3.2, the sequence of events {Kj
n } satisfies the assump-

tions of Corollary 3.1. Since K̄
j
n ⊂ K

j
n , we have

G(x) ≥
K∑

j=1

∑
n≥Nx

P[Z[−n,0] > x, K̄
j
n , Y

(j)
−n > xn, φ

(j)(−n) ≤ L].

To find an upper bound, note that

P[Z[−n,0] > x, K
j
n , Y

(j)
−n > xn, φ

(j)(−n) ≤ L]
≤ P[Z[−n,0] > x, K̄

j
n , Y

(j)
−n > xn, φ

(j)(−n) ≤ L]
+ P

[
Y

(j)
−n > xn,

∑
i �=j

Y
(i)
−n > zn

]
.
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Therefore, Lemma 3.1 will follow from our next result.

Lemma 3.2.

∑
n≥Nx

P

[
Y

(j)
−n > xn,

∑
i �=j

Y
(i)
−n > zn

]
= o(F̄ s(x)).

Proof. We use the same notation as in Appendix 7.2 of [2]. We have (with zx = zNx )

P[Y (j)
−n > xn,

∑
i �=j Y

(i)
−n > zn | ν]

F̄ (xn)F̄ (zx)
= P[Y (j)

−n > xn | ν]
F̄ (xn)

P[∑i �=j Y
(i)
−n > zn | ν]

F̄ (zx)

≤ d̃(j)
ν

∑
i �=j

d̃(i)
ν .

Taking the sum over n and then the expectation, we have

∑
n≥Nx

P

[
Y

(j)
−n > xn,

∑
i �=j

Y
(i)
−n > zn

]
≤ E

[
d̃(j)
ν

∑
i �=j

d̃(i)
ν

]
F̄ (zx)

∑
n≥Nx

F̄ (xn),

which gives the result, completing the proofs of Lemma 3.2 and, hence, Lemma 3.1.

3.3. Computation of the exact asymptotics

In this section, we show that we can calculate the sum in (3.2). Its use in Corollary 3.1 and
Lemma 3.1 will give the exact asymptotics of P[Z > x] in Theorem 2.1. Before stating this
result, we must introduce some additional notation.

In the event K̄
j
n ∩ {Y (j)

−n > xn, φ
(j)(−n) ≤ L}, we have

Z[−n,0] = f j (Y
(j)
−n , n) + nηn, with ηn a random variable such that |ηn| ≤ εn.

Then, {Z[−n,0] > x} = {f j (Y
(j)
−n , n) > x − nηn}. In order to prove the equivalence (2.9), we

will first give an explicit form for the domains �j defined in (2.5).

Lemma 3.3. There exist constants {αj
i , β

j
i , γ

j
i }0≤i≤l (given in closed form, in the proof of

the present lemma, as functions of the quantities pj and bj,k defined in Section 2.2), with
0 = α

j
0 ≤ α

j
1 ≤ · · · ≤ α

j
l , such that

�j(z) =
l⋃

i=0

{
α

j
i z ≤ t < α

j
i+1z, σ >

z

β
j
i

+ tγ
j
i

}
,

with the convention that α
j
l+1 = ∞. Moreover, we have

α
j
0 = 0, α

j
1 = 1

pjBj

, β
j
0 = 1, γ

j
0 = a − pjBj ,

for all j . In addition, β
j
i ≤ 1 for all i and j , and the following inclusion holds:

{σ ≥ z + t (a − pjBj )} ⊂ �j(z). (3.3)
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z

pj Bj

pj Bj

σ = ta

σ = + −z t a( )

σ

z

t

Figure 1: The first part of �j(z).

Proof. The domain �j may be divided into two parts, as follows:

�j(z) = {(σ, t) : f j (σ, t) > z}.
= {σ > ta, σ > z + t (a − pjBj )} ∪

{
σ ≤ ta, σ > a min

k

z + t (a − bk)

a − bk + pjbj,k

}
.

For the first part, we have (see Figure 1)

{σ > ta, σ > z + t (a − pjBj )}
=

{
0 ≤ t <

z

pjBj

, σ > z + t (a − pjBj )

}
∪

{
z

pjBj

≤ t, σ > ta

}
.

For the second part, we have (see Figure 2){
σ ≤ ta, σ > a min

k

z + t (a − bk)

a − bk + pjbj,k

}
=

⋃
k

{
z

pjbj,k

≤ t, a
z + t (a − bk)

a − bk + pjbj,k

< σ ≤ ta

}
.

From this, it is easy to see that the lemma holds (see Figure 3).
The inequality on the β

j
i follows directly from the fact that pjbj,k ≤ bk , from which we

have
a

a − bk + pjbj,k

≥ 1.

Lemma 3.4. Let X be a random variable such that F̄ s ∈ S, let εn → 0 as n → ∞, and let
a(x) and b(x) be real-valued functions such that, as x → ∞,

a(x)

x
→ a,

b(x)

x
→ b, with 0 < a < b.

If F̄ (x) = P[X > x] then, for α ≥ 1 and β > 0, we have∑
a(x)≤n<b(x)

P[X > αx + n(β + εn)] −
∑

ax≤n<bx

P[X > αx + nβ] = o(F̄ s(x)) as x → ∞.
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bk
pj bj,k

σ = a
z t a+ −( )

a − bk +
pj bj,k

az
a − bk +

σ = ta

z
pj bj,k

σ

t

Figure 2: Construction of the second part of �j(z).

Proof. For simplicity of notation, we assume that a(x) ≤ ax for all x. We have

∑
a(x)≤n≤ax

P[X > αx + n(β + εn)] = 1 + ε(x)

β

∫ αx+axβ

αx+a(x)β

F̄ (u) du

≤ 1 + ε(x)

β

ax − a(x)

ax
F̄ s(αx),

since F̄ (x) is nonincreasing. Hence, we have only to prove the lemma for a(x) = ax and
b(x) = bx. We have the following bound, with δx = supn≥ax εn:

∑
ax≤n<bx

P[X > αx + n(β + εn)] − P[X > αx + nβ]

≤
∑
n

P[X ∈ (αx + nβ, αx + n(β + δx))]

= (1 + ε(x))F̄ s(αx)

(
1

β
− 1

β + δx

)

= o(F̄ s(αx)) = o(F̄ s(x)).

Proof of Theorem 2.1. From Corollary 3.1 and Lemma 3.1, we know that the tail asymptotics
of the maximal dater is linked to the quantity S(j), defined by

S(j) =
∑

n≥Nx

P[Z[−n,0] > x, K̄
j
n , Y

(j)
−n > xn, φ

(j)(−n) ≤ L].

In the event A
j
n,x = K̄

j
n ∩ {Y (j)

−n > xn, φ
(j)(−n) ≤ L}, we have

{Z[−n,0] > x} = {f j (Y
(j)
−n , n) > x − nηn} = {(Y (j)

−n , n) ∈ �j(x − nηn)}.
Clearly, �j(z) is a nonincreasing function of z, and we define

D
j
− =: �j(x − nεn) ⊃ �j(x − nηn) ⊃ �j(x + nεn) =: D

j
+.
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pj Bjσ = + −z t a( )
σ = ta

bk
pj bj,k

σ = a
z t a+ −( )

a − bk +

t

z

σ

Figure 3: Domain �j(z).

For simplicity of notation, we write Y (j) = Y
(j)
−n and φ(j) = φ(j)(−n). We assume, without

loss of generality, that εn is a decreasing sequence; hence, εn ≤ εNx = ε(x) for n ≥ Nx and,
for n ≥ Nx , we have

A+(n) := P[(Y (j), n) ∈ D
j
+]

=
l∑

i=0

1{αj
i (x+nεn)≤n<α

j
i+1(x+nεn)} P

[
Y (j) >

x

β
j
i

+ nγ
j
i + nεn

β
j
i

]

≤
l∑

i=0

1{αj
i x≤n<α

j
i+1(x+nε(x))} P

[
Y (j) >

x

β
j
i

+ nγ
j
i + nεn

β
j
i

]
.

Then, ∑
n≥Nx

A+(n) ≤
∑

Nx≤n<α
j
1 x(1+ε(x))

P[Y (j) > x + n(a − pjBj ) + nεn]

+
l∑

i=1

∑
α

j
i x≤n<α

j
i+1x(1+ε(x))

P

[
Y (j) >

x

β
j
i

+ nγ
j
i + nεn

β
j
i

]
.

From Assumption 2.2, we know that Y (j) has an integrated tail that belongs to S; therefore, as
a corollary of Lemma 3.4, we have∑

n≥Nx

A+(n) =
∑

0≤n<α
j
1 x

P[Y (j) > x + n(a − pjBj )]

+
l∑

i=1

∑
α

j
i x≤n<α

j
i+1x

P

[
Y (j) >

x

β
j
i

+ nγ
j
i

]
+ ε(x)F̄ s(x)

= (1 + ε(x))

l∑
i=0

∑
α

j
i x≤n<α

j
i+1x

E[φ(j)] P

[
σ (j) >

x

β
j
i

+ nγ
j
i

]
+ ε(x)F̄ s(x),
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where the last equality follows from assumption (SE) of [4]. However, we have

S(j) ≤
∑

n≥Nx

A+(n).

We now look at the lower bound. By the same arguments as above, we easily find that
∑

n≥Nx

A−(n) =
∑

n≥Nx

A+(n) + ε(x)F̄ s(x), with A−(n) := P[(Y (j), n) ∈ D
j
−].

We now show that∑
n≥Nx

A−(n) =
∑

n≥Nx

P[(Y (j), n) ∈ D
j
−, A

j
n,x] + ε(x, L)F̄ s(x).

Consider the difference

A−(n) − P[(Y (j), n) ∈ D
j
−, A

j
n,x] ≤ P[(Y (j), n) ∈ D

j
−, φ(j)(−n) > L]

≤ P[Y (j) ≥ x + n(a − pjBj − εn), φ
(j)(−n) > L],

where the last inequality follows from inclusion (3.3) of Lemma 3.3. By the same kind of
argument as in Corollary 3.1, we have

∑
n≥Nx

A−(n) − P[(Y (j), n) ∈ D
j
−, A

j
n,x] ≤ ε(x, L)F̄ s(x).

Hence, we have proved that, when x → ∞,

S(j) ∼
l∑

i=0

∑
α

j
i x≤n<α

j
i+1x

E[φ(j)] P

[
σ (j) >

x

β
j
i

+ nγ
j
i

]
.

Now, since this quantity is long tailed, we can use Corollary 3.1 to derive the required asymp-
totics for P[Z > x]. This completes the proof.

Appendix A. Proof of Corollary 3.1

The proof is based on Proposition 3.1, which shows that

P[Z > x] = (1 + ε(x))

( K∑
j=1

∑
n≥Nx

P[Z > x, Y
(j)
−n > xn, K

j
n ]

)
.

Since Z ≥ Z[−n,0], we have

P[Z > x, Y
(j)
−n > xn, K

j
n ] ≥ P[Z[−n,0] > x, Y

(j)
−n > xn, K

j
n ]

≥ P[Z[−n,0] > x, Y
(j)
−n > xn, K

j
n , φ(j)(−n) ≤ L]

and, hence,

P[Z > x] ≥ (1 + ε(x))

( K∑
j=1

∑
n≥Nx

P[Z[−n,0] > x, Y
(j)
−n > xn, K

j
n , φ(j)(−n) ≤ L]

)
.
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We now derive the upper bound. Take zx → ∞ such that F̄ s(x + zx) ∼ F̄ s(x). Then, when
x → ∞, we have

P[Z[−∞,−n−1] < zx] = P[Z < zx] → 1.

We define x̃ = x + zx and

K̃
j
n,x = K

j
n ∩ {Z[−∞,−n−1] ≤ zx}.

Observe that K̃
j
n,x satisfies the assumptions of Proposition 3.1. By subadditivity, we have

Z ≤ Z[−∞,−n−1] + Z[−n,0] (see [2]) and, hence,

P[Z > x̃, K̃
j
n,x, Y

(j)
−n > x̃n] ≤ P[Z[−∞,−n−1] + Z[−n,0] > x̃, K̃

j
n,x, Y

(j)
−n > x̃n]

≤ P[Z[−n,0] > x, K̃
j
n,x, Y

(j)
−n > xn]

≤ P[Z[−n,0] > x, K
j
n , Y

(j)
−n > xn].

We now make a partition of φ:

A(n) = P[Z[−n,0] > x, K
j
n , Y

(j)
−n > xn]

≤ P[Z[−n,0] > x, K
j
n , Y

(j)
−n > xn, φ

(j)(−n) ≤ L] + P[Y (j)
−n > xn, φ

(j)(−n) > L]
= P[Z[−n,0] > x, K

j
n , Y (j)(E(−n)) > xn, φ

(j)(−n) ≤ L] + B(n).

We will use the following result due to Kesten (for a proof, see [1]).

Lemma A.1. Let X ∈ S and let Sn be the sum of n independent copies of X. Then, for every
ε > 0, there exists a K(ε) > 0 such that

sup
x≥0

P[Sn > x]
P [X > x] ≤ K(ε)(1 + ε)n, n = 1, 2, . . . .

Recall that P[φ(j)(0) = l] = δl(1 − δ) for some 0 < δ < 1. Hence, if we take an ε such
that (1 + ε)δ < 1, then

B(n) =
∑

l≥L+1

P[φ(j)(−n) = l] P

[ l∑
k=1

σ
(j)
k (−n) > xn

]

≤
∑

l≥L+1

δl(1 − δ)K(ε)(1 + ε)l P[σ (j) > xn]

≤ (1 − δ)K(ε) P[σ (j) > xn] ((1 + ε)δ)L+1

1 − (1 + ε)δ
,

and we have

∑
n≥Nx

A(n) ≤
∑

n≥Nx

P[Z > x, K
j
n , Y

(j)
−n > xn, φ

(j)(−n) ≤ L] + ε(x, L)F̄ s(x).
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Since K̃
j
n,x satisfies the assumptions of Proposition 3.1, we have

P(Z > x̃) = (1 + ε(x̃))

K∑
j=1

∑
n≥Nx̃

P[Z > x̃, K̃
j
n,x, Y

(j)
−n > x̃n)]

≤ (1 + ε(x))

K∑
j=1

∑
n≥Nx

P[Z[−n,0] > x, K
j
n , Y

(j)
−n > xn]

≤ (1 + ε(x))

K∑
j=1

∑
n≥Nx

P[Z[−n,0] > x, K
j
n , Y

(j)
−n > xn, φ

(j)(−n) ≤ L]

+ ε(x, L)F̄ s(x).

Hence, we have shown, in the notation of Lemma A.1, that

P[Z > x] ≥ (1 + ε(x))G(x),

P[Z > x + zx] ≤ (1 + ε(x))G(x) + ε(x, L)F̄ s(x).

From these inequalities, we can directly derive (3.1). If G is long tailed, we can choose zx → ∞
such that G(x + zx) ∼ G(x) and F̄ s(x + zx) ∼ F̄ s(x), and the last statement of Corollary 3.1
follows.
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