Canad. Math. Bull. Vol. 17 (5), 1975

HAMILTONIAN CIRCUITS ON THE N-CUBE

BY D. H. SMITH

1. Introduction. The problem of finding bounds for the number h(n) of Hamiltonian circuits on the *n*-cube has been studied by several authors, (1), (2), (3). The best upper bound known is due to Larman (5) who proved that $h(n) < 2(n/2)^{2^n}$.

In this paper we use a result of Nijenhuis and Wilf (4) on permanents of (0, 1)-matrices to show that for $n \ge 5$

$$h(n) < \frac{1}{2} \{ (n!)^{1/n} + \tau \}^{2^n} - \frac{4^n c^n n! (\sqrt[7]{18})^{2^n}}{2a} - \frac{(\sqrt[8]{81})^{2^n}}{2}$$

where τ , *a* and *c* are constants.

2. An upper bound for the permanent of a (0, 1)-matrix. If $A=(a_{ij})$ is an N-square matrix, then the permanent of A is defined as $p(A) = \sum_{\sigma \in S_N} \prod_{i=1}^N a_{i\sigma(i)}$ where the summation is over all permutations of the symmetric group S_N . Nijenhuis and Wilf (4) have shown that if $r_i = \sum_{j=1}^N a_{ij}$ (i=1, 2, ..., N) then

$$p(A) \leq \prod_{i=1}^{N} \{(r_i!)^{1/r_i} + \tau\}$$

where $\tau = 0.136708 \cdots$.

If A_n denotes the adjacency matrix of the *n*-cube it follows that

$$p(A_n) \leq ((n!)^{1/n} + \tau)^{2^n}.$$

3. Hamiltonian circuits. Let Q_n denote the *n*-cube.

DEFINITION. By a circuit in Q_n we shall mean a *directed* closed path in Q_n which does not intersect itself. We allow two step circuits passing twice through the same edge.

DEFINITION. By a *circuit covering* of Q_n we shall mean a set of circuits such that each vertex of Q_n is in exactly one circuit.

Denote the number of circuit coverings of Q_n by $NC(Q_n)$ and the number of *undirected* Hamiltonian circuits by h(n). Then we can write

$$NC(Q_n) = 2h(n) + j(n)$$

where j(n) denotes the number of circuit coverings which are not Hamiltonian circuits.

LEMMA 1. Let A_n be the adjacency matrix of Q_n . Then $p(A_n)=NC(Q_n)$. (In fact if A is the adjacency matrix of any graph G, p(A)=NC(G).)

759

[February

Proof. Writing each permutation $\sigma \in S_N$ as a product of cyclic permutations, each term of $p(A_n)$ can be written

$$(a_{i_1i_2}a_{i_2i_3}a_{i_3i_4}\cdots a_{i_pi_1})(a_{i_{p+1}i_{p+2}}\cdots a_{i_{p+s}i_{p+1}})()$$

Any term containing one or more factors a_{ij} corresponding to non-adjacent vertices v_i and v_j vanishes, since a_{ij} is zero. The remaining terms each represent a circuit covering, and each circuit covering corresponds to one non-zero term. Hence $p(A_n) = NC(Q_n)$.

Let k(n) denote the number of circuit coverings of Q_n which do not contain a Hamiltonian circuit of a subgraph of Q_n isomorphic to Q_r ($r \ge 4$). Let g(n) denote the number of circuit coverings of Q_n which contain a Hamiltonian circuit of a subgraph of Q_n isomorphic to Q_r for some $r \ge 4$ but are not Hamiltonian circuits of Q_n .

Then j(n) = k(n) + g(n) $(n \ge 4)$.

LEMMA 2. $k(n) \ge (\sqrt[8]{81})^{2^n} (n \ge 3)$.

Proof. $k(3)=NC(3)=p(A_3)=81$ by direct calculation.

By considering the *n*-cube as two (n-1)-cubes joined by 2^{n-1} edges we have

$$k(n) \ge k(n-1)k(n-1).$$

The result follows by induction.

LEMMA 3. $g(n) \ge (4^n c^n n! (\sqrt[\gamma]{18})^{2^n} / a)$ $(n \ge 5)$ where c is chosen so that $h(n) > c(\sqrt[\gamma]{18})^{2^n}$ for n=2, 3, 4 and $a=4096(\sqrt[\gamma]{18})^{16}c^4/2187$.

Proof. Considering the *n*-cube as two (n-1)-cubes joined by 2^{n-1} edges in *n* different ways, and counting combinations of Hamiltonian circuits in one (n-1)-cube and the circuit coverings counted by *g* in the other (n-1)-cube and vice versa, we get

$$g(n) \ge 2n(2h(n-1))g(n-1)$$
 (n>5)
= $4nh(n-1)g(n-1)$.

 $h(n) \ge c(\sqrt[n]{18})^{2^n}.$

It was proved by Douglas (2) that

Also

$$g(5) \ge 5(2h(4))NC(Q_4)$$

> 10h(4)(NC(Q_3))^2
$$\ge 10h(4)(P(A_3))^2$$

$$\ge 10c(\sqrt[7]{18})^{16}81^2.$$

The result now follows by induction.

THEOREM. $h(n) \leq \frac{1}{2} \{ (n!)^{1/n} + \tau \}^{2^n} - (4^n c^n n! (\sqrt[n]{18})^{2^n})/2a - (\sqrt[8]{81})^{2^n}/2.$

760

HAMILTONIAN CIRCUITS

Proof. $h(n) = \frac{1}{2} \{NC(Q_n) - k(n) - g(n)\} \ (n \ge 5) \text{ and the result follows.}$

This result provides further evidence in support of the conjecture $\lim_{n\to\infty} h(n)^{2^{-n}}/n = 1/e$.

References

1. H. L. Abbott, Hamiltonian circuits and paths on the n-cube, Canad. Math. Bull. 9(5) 1966, 557-562.

2. R. J. Douglas, A note on a theorem of H. L. Abbott, Canad. Math. Bull. 13(1) 1970, 79-81.

3. E. N. Gilbert, Gray codes and paths on the n-cube, Bell. Syst. Tech. J. 37 (1958), 815-826.

4. A. Nijenhuis and H. S. Wilf, On a conjecture in the theory of permanents, Bull. A. M. S. 76 (1970) 738-739.

5. D. G. Larman, Private communication.

GLAMORGAN POLYTECHNIC, TREFOREST,

WALES, U.K.