## HAMILTONIAN CIRCUITS ON THE $N$-CUBE

BY<br>D. H. SMITH

1. Introduction. The problem of finding bounds for the number $h(n)$ of Hamiltonian circuits on the $n$-cube has been studied by several authors, (1), (2), (3). The best upper bound known is due to Larman (5) who proved that $h(n)<2(n / 2)^{2^{n}}$.

In this paper we use a result of Nijenhuis and Wilf (4) on permanents of ( 0,1 )matrices to show that for $n \geq 5$

$$
h(n)<\frac{1}{2}\left\{(n!)^{1 / n}+\tau\right\}^{2^{n}}-\frac{4^{n} c^{n} n!(\sqrt[7]{18)})^{2^{n}}}{2 a}-\frac{(\sqrt[8]{81})^{2^{n}}}{2}
$$

where $\tau, a$ and $c$ are constants.
2. An upper bound for the permanent of a ( 0,1 )-matrix. If $A=\left(a_{i j}\right)$ is an $N$ square matrix, then the permanent of $A$ is defined as $p(A)=\sum_{\sigma \in S_{N}} \prod_{i=1}^{N} a_{i \sigma(i)}$ where the summation is over all permutations of the symmetric group $S_{N}$. Nijenhuis and Wilf (4) have shown that if $r_{i}=\sum_{j=1}^{N} a_{i j}(i=1,2, \ldots, N)$ then

$$
p(A) \leq \prod_{i=1}^{N}\left\{\left(r_{i}!\right)^{1 / r_{i}}+\tau\right\}
$$

where $\tau=0.136708 \cdots$.
If $A_{n}$ denotes the adjacency matrix of the $n$-cube it follows that

$$
p\left(A_{n}\right) \leq\left((n!)^{1 / n}+\tau\right)^{2^{n}} .
$$

3. Hamiltonian circuits. Let $Q_{n}$ denote the $n$-cube.

Definition. By a circuit in $Q_{n}$ we shall mean a directed closed path in $Q_{n}$ which does not intersect itself. We allow two step circuits passing twice through the same edge.

Definition. By a circuit covering of $Q_{n}$ we shall mean a set of circuits such that each vertex of $Q_{n}$ is in exactly one circuit.

Denote the number of circuit coverings of $Q_{n}$ by $N C\left(Q_{n}\right)$ and the number of undirected Hamiltonian circuits by $h(n)$. Then we can write

$$
N C\left(Q_{n}\right)=2 h(n)+j(n)
$$

where $j(n)$ denotes the number of circuit coverings which are not Hamiltonian circuits.

Lemma 1. Let $A_{n}$ be the adjacency matrix of $Q_{n}$. Then $p\left(A_{n}\right)=N C\left(Q_{n}\right)$. (In fact if $A$ is the adjacency matrix of any graph $G, p(A)=N C(G)$.)

Proof. Writing each permutation $\sigma \in S_{N}$ as a product of cyclic permutations, each term of $p\left(A_{n}\right)$ can be written

$$
\left(a_{i i_{2}} a_{i_{2 i 3} i_{i s i 4}} a_{i 4} \cdots a_{i_{p i} i_{1}}\right)\left(a_{i_{p+1} i_{p+2}} \cdots a_{i_{p+s+} i_{p+1}}\right)() \cdots .
$$

Any term containing one or more factors $a_{i j}$ corresponding to non-adjacent vertices $v_{i}$ and $v_{j}$ vanishes, since $a_{i j}$ is zero. The remaining terms each represent a circuit covering, and each circuit covering corresponds to one non-zero term. Hence $p\left(A_{n}\right)=N C\left(Q_{n}\right)$.

Let $k(n)$ denote the number of circuit coverings of $Q_{n}$ which do not contain a Hamiltonian circuit of a subgraph of $Q_{n}$ isomorphic to $Q_{r}(r \geq 4)$. Let $g(n)$ denote the number of circuit coverings of $Q_{n}$ which contain a Hamiltonian circuit of a subgraph of $Q_{n}$ isomorphic to $Q_{r}$ for some $r \geq 4$ but are not Hamiltonian circuits of $Q_{n}$.

Then $j(n)=k(n)+g(n)(n \geq 4)$.
Lemma 2. $k(n) \geq(\sqrt[8]{81})^{2^{n}}(n \geq 3)$.
Proof. $k(3)=N C(3)=p\left(A_{3}\right)=81$ by direct calculation.
By considering the $n$-cube as two ( $n-1$ )-cubes joined by $2^{n-1}$ edges we have

$$
k(n) \geq k(n-1) k(n-1)
$$

The result follows by induction.
Lemma 3. $g(n) \geq\left(4^{n} c^{n} n!(\sqrt[7]{18})^{2^{n}} / a\right)(n \geq 5)$ where $c$ is chosen so that $h(n)>$ $c(\sqrt[7]{18})^{2^{n}}$ for $n=2,3,4$ and $a=4096(\sqrt[7]{18})^{16} c^{4} / 2187$.

Proof. Considering the $n$-cube as two ( $n-1$ )-cubes joined by $2^{n-1}$ edges in $n$ different ways, and counting combinations of Hamiltonian circuits in one ( $n-1$ )cube and the circuit coverings counted by $g$ in the other ( $n-1$ )-cube and vice versa, we get

$$
\begin{aligned}
g(n) & \geq 2 n(2 h(n-1)) g(n-1) \quad(n>5) \\
& =4 n h(n-1) g(n-1)
\end{aligned}
$$

It was proved by Douglas (2) that

$$
h(n) \geq c(\sqrt[7]{18})^{2^{n}}
$$

Also

$$
\begin{aligned}
g(5) & \geq 5(2 h(4)) N C\left(Q_{4}\right) \\
& >10 h(4)\left(N C\left(Q_{3}\right)\right)^{2} \\
& \geq 10 h(4)\left(P\left(A_{3}\right)\right)^{2} \\
& \geq 10 c\left(\sqrt[7]{18)^{16}} 81^{2} .\right.
\end{aligned}
$$

The result now follows by induction.
Theorem. $h(n) \leq \frac{1}{2}\left\{(n!)^{1 / n}+\tau\right\}^{2^{n}}-\left(4^{n} c^{n} n!(\sqrt[7]{18})^{2^{n}}\right) / 2 a-(\sqrt[8]{81})^{2^{n}} / 2$.

Proof. $h(n)=\frac{1}{2}\left\{N C\left(Q_{n}\right)-k(n)-g(n)\right\}(n \geq 5)$ and the result follows.
This result provides further evidence in support of the conjecture $\lim _{n \rightarrow \infty} h(n)^{2^{-n}} \mid n$ $=1 / e$.

## References

1. H. L. Abbott, Hamiltonian circuits and paths on the n-cube, Canad. Math. Bull. 9(5) 1966, 557-562.
2. R. J. Douglas, A note on a theorem of H. L. Abbott, Canad. Math. Bull. 13(1) 1970, 79-81.
3. E. N. Gilbert, Gray codes and paths on the n-cube, Bell. Syst. Tech. J. 37 (1958), 815-826.
4. A. Nijenhuis and H. S. Wilf, On a conjecture in the theory of permanents, Bull. A. M. S. 76 (1970) 738-739.
5. D. G. Larman, Private communication.

Glamorgan Polytechnic,
Treforest,
Wales, U.K.

