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A CONVERGENCE THEOREM FOR RIEMANNIAN MANIFOLDS
AND SOME APPLICATIONS

ATSUSHI KASUE

§0. Introduction

The purpose of the present paper is first to reformulate a Lipschitz
convergence theorem for Riemannian manifolds originally introduced by
Gromov [17] and secondly to give some applications of the theorem to a
class of open Riemannian manifolds.

Let #(m, 4, I, D) denote the class of compact m-dimensional Rieman-
nian manifolds M such that |the sectional curvature K, of M| < A% the
injectivity radius of M > I >0, and the diameter of M < D. The original
Gromov’s compactness theorem [17: Theorems 8.25 and 8.28] says that
given a sequence {M,} in #(m, 4, I, D), there exist a subsequence {M,.}
and a C"' Riemannian manifold M., such that {#,} converges to M. in
the Lipschitz distance (see [17] for the definitions of C"! Riemannian
manifolds and the convergence in the Lipschitz distance). Gromov gave
an outline of an argument to justify this theorem. Later, Katsuda [27]
worked out Gromov’s proof in full detail. On the other hand, very re-
cently, Peters [33] and Greene-Wu [16], independently, have improved the
original version as above in a different manner. Both of them make use
of harmonic coordinates and the Peter’s argument in [32]. Since the
Gromov’s theorem appeared, some applications have been found by several
authors (cf. e.g., [33], [28] and the literature).

In this paper, we shall also reformulate and prove the convergence
theorem in our manner. Our proof is similar to the Peters’ or Greene-
Wu’s one, but more transparent than theirs. Our formulation of the
convergence theorem is stated as follows:

THEOREM A. Given a sequence {M,},_,.... in M(m, A, I, D), there exist
a subsequence {M,.} of {M,}, a smooth manifold M, and C"*# diffeomorphisms
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D,: M, - M, (0<p<1) such that the pushforward @, g, of the metric
g, of M, converges to a metric g.. of class C** in the C"¥-topolegy (0 <
g <p<l).

As is pointed out in [33], the regularity of the limit metric is optimal
in terms of Hoélder conditions.

The second half of this paper is devoted to give some applications
of Theorem A (or its proof) to Riemannian manifolds of asymptotically
nonnegative curvature. We call a complete connected, noncompact
Riemannian manifold M of asymptotically nonnegative curvature if the
sectional curvature K, of M satisfies

(H.1) Ky> —kor,

where r, is the distance function to a fixed point o of M and k(?) is a
nonnegative, monotone nonincreasing function on [0, o) such that the

integral fwtk(t)dt is finite. This class obviously contains the class of

Riemannian open manifolds with nonnegative curvature everywhere. From
the view point of geometry at infinity, it would be natural to study our
class rather than the latter class. In [24], we have constructed a metric
space M(oo) associated with a manifold M of asymptotically nonnegative
curvature. Let us here explain it briefly (see [24] for details). We call
two rays ¢ and 7 of M equivalent if dis, (¢(¢), 7(£))/¢t goes to zero as ¢t —
co. Define a distance 4., on the equivalence classes by §.([s], [7]): = lim,_.,
d(eN S, rN S,)/t where S, denotes the metric sphere around a fixed
point of radius ¢ and d, stands for the inner (or intrinsic) distance on S,
induced from the distance dis, (,) on M. Then we have a metric space
M(o) of the equivalence classes of rays with the distance §. which is
independent of the choice of the fixed point (i.e., the center of S,) and to
which a family of scaled metric spheres {(1/¢)S,} converges with respect
to the Hausdorff distance as ¢ goes to infinity. We note that the com-
plement M\B,, of a metric ball B,, with sufficiently large radius ¢, is
homeomorphic to S,, X (¢, ). Actually M is isotopic to B, (for large
t,). For simplicity we call a connected component of M\B, (for large ?)
an end of M and denote it by &, (M) (a =1, ---, v(M)), where v(M) is
the number of the connected component of M\B, or S, (for large ). We
write M, (o) for the connected component of M(co) corresponding to
(M), so that {(1/9)S, N £ (M)} converges to M, (c0) with respect to the
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Hausdorff distance as ¢ — oo and then M,(c0) turns out to be a compact
inner metric space. Since Vol,_,(S, N &(M))/t"~* tends to a nonnegative
constant as ¢t — oo, let us write ¥ol,.,(M,(c0)) for the limit. Although
the metric spheres of M around a fixed point are not smooth in general,
we can approximate them by smooth hypersurfaces, e.g., the level hyper-
surfaces of the Riemannian convolution of the distance function to the
fixed point. As is often the case, it is important to know the curvature
of such smooth hypersurfaces. In Section 2, we shall prove the following

THEOREM B. Let M be a manifold of asymptotically nonnegative cur-
vature. Suppose that the sectional curvature K, of M satisfies:

(H.2) ky: = limsup £K(t) < + oo,

t—o0

where K(t): = sup {the sectional curvature of M at points x with dis,(o, x)
>t} and o is a fixed point of M. Let S, be the metric sphere around o
of radius t. Then for large t, there exists a smooth hypersurface S, of M
which has the following properties:
(1) (1/t) max {max,cs, dis,(x, S7), max, s, dis,(S;, )} >0 as ¢ — oo.
(ii) There is a Lipschitz homeomorphism ¢,: S| — S, with

- d»(¢z(x), SDt(y)) e(t
e ) S _E\Y g e )
di(x, y)

where &(t) goes to zero as t — oo and d, (resp., d;) denotes the inner distance

on S, (resp. S)).
(iii) The second fundamental form a; of S| is estimated by

1

(= (1 + a)yix tan ayEy — D) < ol < {1+ = + <0) Jgu,

where a is a fixed constant with 0 < a < n/2/ky.

Moreover if ¢ ol,_(MJ(o0)) >0, or equivalently lim,.. Vol, (B, N
E (M)t > 0 for some end &,(M), then one has a smooth approximation
S, with (i) and (i) as above, the second fundamental form &, of which

enjoys the following property:
(1 - E(t))gM <ta, <1+ 5(t))g1»1

on S, N &(M).

Theorem B says in particular that under the additional condition
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(H.2) as above, M(c0) is the limit (with respect to the Hausdorff distance)
of a family of compact (m — 1)-dimensional Riemannian manifolds {M,}
which are bounded uniformly in diameter and in curvature, and moreover
when ¥ ol,,_ (M (c0)) > 0 for some «, the volume of the connected com-
ponent of M, converging to M,(cc) may be assumed to have a positive
lower bound uniformly in ¢&. Hence in this case (noncollapsing case), it
turns out from Theorem A that M,(o0) is a smooth (m — 1)-dimensional
manifold with C*-metric (0 < g8 < 1). As for the other case (collapsing
case), i.e., ¥ol, (M, (0)) =0, we can apply the theory originated by
Gromov and developed by Fukaya (cf. e.g., [12] and the literature) to our
situation.

In the remaining sections, we shall show two applications of Theorem
B. One of them, Theorem 3.2, is concerning the total curvature of a
manifold of asymptotically nonnegative curvature and the other, Theorem
4.1, is on gap phenomena modeled after Euclidean space.

Theorem A is concerning a family of Riemannian manifolds in
M(m, A, I, D). However a similar result is still valid for a family of
Riemannian manifolds in #(m, 4, I, o) (cf. §1). In this case, we should
consider a pair (M, p) of a Riemannian manifold M and a point p of M,
and the topology of convergence in Theorem A should be appropriately
modified, because #(m, 4, I, ©) may contain complete, noncompact Rie-
mannian manifolds. This will be discussed elsewhere.

This paper is a revised version of a part of [23] which was completed
while the author was a member of the Mathematical Sciences Research
Institute at Berkeley. He greatly appreciates the institute for its hos-
pitality.

§1. Proof of Theorem A

The purpose of this section is to prove Theorem A. Before going into
the proof, we shall recall first some facts on harmonic coordinates. We
refer the reader to e.g., Jost [21] and Greene-Wu [16] for details.

1.1. Let M be a compact Riemannian manifold of dimension m with
Riemannian metric g,. Given a point o of M and a unit tangent vector
u at o, we first define the almost linear function 4,(x) associated with u
as follows: Let r(x): = disy (o, x), p(x): = exp, r(x)u, q(x): = exp, — r(x)u
and then set /4,(x): = {disy (x, g(x))* — disy (x, p(x))*}/4r(x). We assume
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from now that the sectional curvature K, of M satisfies: |K,| < 4* for a
constant 4 and the injectivity radius of M at o > I for a constant 1> 0.
Let & be a number less that min {I/2, x/44} and let &(x) be the vector at
x € Bs(0) obtained by the parallel translation of u from o to x along the
radial geodesic. Then for each x e B,o), we have

(1) [4@)]| < (),

(ii) |grad 4,(x) — @(x)| < 2/4*(sinh 24r(x)/sin 24r(x))r(x),

(iii) |V, (x)| < {94 (sinh 24r(x)/sin 24r(x)) Ar(x) coth Ar(x)}r(x).
Let us take here an orthonormal basis {u,, ---, u,} of T,M and set ¢;: =
4,,@=1, ---,m). Let h;: B{o) >R (i =1, ---, m) be the solution of the
Dirichlet problems: Ak, = 0 on B;(0) and h;, = 4, on 9B;(0), and define a
harmonic map H: Byg0) — R™ by H(x): = (h(x) — h(0), - - -, h,(x) — h,(0)).
Then we have the following

Facr 1.1. Let m, A and I be as before. Then there exists a positive
constant 6(m, A, I) depending only on m, A, and I that given any number
8 < d(m, A, I), the above harmonic map H: Bj(0) — R™ defines a coordinate
system around o which has the follcwing properties:

(1) @+ nm, 04)'r(x) < [H(x)| < (1 + yi(m, 54))r(x)

(1) (@ + nm, 6A)HEF < 20012180, (0)EE < (1 + po(m, SA)|EF

(1) 184lenmson < mlm, 4,1, f) (0 < B < 1)
where we set g, (x): = g4(Vh,, Vh,). For any harmonic function f on Byo),
one has

AV)  fles@anon < 7m, 4, I, B) SUPsy0 | f -

Moreover given an integer k and a constant /., suppose that the norm of
the i-th covariant derivatives (0 < i < k) of the Ricci tensor of M is bounded
by A.. Then one has

(V) 18uslersrpmaeny < nomy 4, 1, B, Ay)
and for any harmonic function [ on Byo),

(Vl) [f‘.6'2+",ﬂ(35/2(0)) < 774(m’ A> L ﬁ’ Ak) SuPB5(0>[f|°
Here the constants 7, (i =1, ---,4) depend only on the given constants m,
A, I, B, k, A, as indicated respectively.

1.2. Let us now prove Theorem A in three steps.

Step 1. Let M be a compact Riemannian manifold which belongs to
M (m, 4, [, D). Fix a positive constant § such that 0 <46 <4 (m, 4, I), where
o(m, 4,I) is as in Fact 1.1. Then we take a subset I' of finite points
Dy, -+, p, of M with dis, (p;, p,) > 26 (i #j) and dis, (I, p) < 46 for any
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p of M. By the Bishop’s comparison theorem, we see that Vol, (B{p.)
> ¢, for some positive constant ¢, depending only on m, 4, and §, and
furthermore Vol,, (M) < ¢, for some positive constant ¢, depending only on
m, A and D. Hence we have

per < 25t Vol (Bi(py) < Vol (M) < ¢,

This shows that the number x as above is bounded by a constant p; de-
pending only on m, A,I, D, and 6. In what follows, for the sake of
simplicity, we assume that the above yp is equal to p; by putting p, = p,
for i: p<i< po

Step 2. Set 8,: = d(m, 4, I), 5,: = n(m, 6,4), 6,: = 10-(1 + 7,)~°3,, and
0. = (1 + )8, (2 < k < 6), where d(m, 4, I) and y(m, §,4) are as in Fact
1.1. We take 4,/4 as a fixed constant § as in Step 1 and choose a subset
I' of finite points p,, -+ -, p, (¢ = ps,) of M such that dis, (1", p) < d, for
any pe M. For each i: 1 < i< p, we have a harmonic coordinates H;:
B;(p;) — R™ with the properties described in Fact 1.1. Observe first by
Fact 1.1 that

B™((1 + 770)_15) C H{(B{p)) < B™((1 + 70)9)

for any 6: 0 <46 <4, where B™(f): = {ve R™:|v|< t}. Take a smooth
function &: [0, co) — [0, ©) such that &f) =1 on [0, d,) and &¢) = 0 on
[0, ). Seté&;:=¢&(H,) G =1, ---,p). Then each & is a smooth function
on M such that the support of &, is contained in B;(p;, and & =1 on
B;(p:). Let us now define a smooth map #,: M — R" (N = (m + 1)p)
by #y:= EHy, -, EH,, &y -+, &), Then 5, turns out to be a smooth
embedding of M into a ball BY(R,) in R”, where R, is a constant depending
only on m, 4, I, and D. We fix i: 1< i< p, say i =1 for simplicity.
Then #,(B;(py) can be represented as a graph over H(B;(p,), namely,
e%'pM(Baa(pl)) ={(x, fiF, - - -, f,qu fo-- ’fy): x=(x, - -, %,) € H(Bs(p,)}, where
F,=H,oH{' and f;=&(F;). Note here that H,(B;(p)) C B"(3,) C
H(B,(p)). Thus by Fact 1.1, we see that for any p: 0 < g <1, the C*#
norm of F; and the C*# norm of F, and the C** norm of f, on B™(5,) are
bounded from above by a constant ¢, depending only on m, 4, I and g
This implies in particular that the length of the second fundamental form
ay of the embedding #,: M — B*(R,) is bounded by a constant ¢, depend-
ing only on m, 4, I and B.

Step 3. Let {M,} be a sequence of Riemannian manifolds in
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M(m, A, I, D). We identity M, (resp., the metric g, on M,) with the image
of M, by the embedding s, constructed in Step 2 (resp., #y,+8,)- Then
by the observations in Step 2, we have a subsequence {M,} of {M,} and
a compact submanifold M. of class C*? embedded in BY(R,) such that
{M,} converges to M., in the C># topology (0 < p <p<1) as n' — oo.
In what follows, we consider sufficiently large n’ so that the projection
II,: M, - M, along the normals to M, induces a C»*-diffeomorphism
from M, onto M,. Hence we have a sequence of C"“# metrics {1, 8.}
on M.. We claim here that, taking a subsequence {Ai} of {n’} if necessary,

(#) {[;48:} converges to a C"# metric g. on M, in C"¥ topology
O<p<p<l) as fi —> oo.

In fact, let {p,.,}i-1,...,. e as in Step 2 for M, and fix an index i, say
i = 1 for simplicity. Moreover let P (resp., P,.) be the orthogonal projec-
tion from R" onto R™ = {(x,, - - -, X, 0, - - -, 0) € R*} (resp., the restriction
of P to the metric ball B;(p,. ) of M, around p,. , with radius §,). Define
a C*»¢ diffeomorphism ¢, from B™(5,) into R™ by ¢,.: = PoIl,.oP;'. Then
the C*f-norm of ¢, is bounded uniformly in »/, and hence ¢, converges
to the identity map in C*# topology (0 < p' <p). We set g, ;=
(P, +8.)@[0x;, 0/ox,;) (i,j =1, ---,m). Then the C"f-norm of g, ; on
B™(5,) is bounded uniformly in n’. Hence taking a subsequence {n’} of
{n’} if necessary, we see that as n”/ — o, ¢,.,P,.+g.» converges to a C“#
metric on B™(5,) in C"# topology. Then it is easy to derive the above
claim (#) from this observation. This completes the proof of Theorem A.

1.3. It would be of some use to restate Theorem A as follows:

THEOREM A’. Let {M,} be a sequence of Riemannian manifolds in
M(m, A, I, D). Suppose that given a nonnegative integer k, the norm of the
i-th covariant derivative (0 < i < k) of the Ricci tensor on M, is bounded
uniformly in n by a constant A,. Then there exist a subsequence {M,.} of
{M,}, a smooth manifold M., and C'"*f-diffeomorphisms @,.: M, — M,
(0 < p< 1) such that as n’ goes to infinity, the pushforward of the metric
of M, by @, converges to a metric of class C'*** in C'**# topology
(0 < g < p<1). Moreover, if in addition to the above assumptions, {M,}
is a sequence of Kdhler manifolds, i.e., M, = (M,, g,,J,), then the push-
forward of the almost complex structure J, of M, converges in C!*%#
topology to an integrable almost complex structure J., on M, which is
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parallel with respect to the limit metric on M.,

Proof. The first part is a consequence of the argument of the proof
for Theorem A and Fact 1.1(v). As for the second part, we observe that
the C'**f-norm of the almost complex structure J, on M, (with respect
to the harmonic coordinates described in Fact 1.1) is bounded by a con-
stant depending only on m, 4, I, D, B and 4,, since J, is parallel with
respect to the metric of M,. Therefore for a subsequence {n’} of {n},
(D4, } converges in C'**# topology to an almost complex structure J,
of class C'*** on M. as n’ — co. Since JJ, is integrable, so is J, (cf. [30])
and moreover since J, is parallel with respect to the metric of M,, so is
J., with respect to the limit metric on M,. This completes the proof of
Theorem A’.

Let M,, g., M, and g. be as in Theorem A. In the proof of
Theorem A, we used the apriori estimates in Hoélder spaces. If we apply
the apriori estimates in Sobolev spaces, we see that the components of
the limilt metric g.., expressed in the harmonic coordinates discribed in
Fact 1.1, are contained in the Sobolev spaces W*? (p > 1). In particular,
the curvature tensor R, of g. are almost everywhere defined (cf. [31] [33:
Theorem 5.3]). Moreover the curvature tensor R,. of g,. converges weakly
to R. as n’ — oo, namely, for any smooth covariant 4-tensor 7, the inner

product (T, R,.) = L{ T R, x, converges to f (T, R,>. This
holds for the Ricci tensors or the scalar curvatures of g,..

Let us now give an application of Theorem A. In order to state it,
we need some notations. For a compact Riemannian manifold M of di-
mension m with metric g,, we set

AM): = WL” - "(M) >
S
L = ot [ VR,

where S, (resp. R,) stands for the Ricci tensor of M (resp. the curvature
tensor of M), G, is a covariant 4-tensor defined by G, (W, Z, X, Y) =
8:W, X)g(Z,Y) — g.(Z, X)g,(Y, W), and c(M) denotes the average of the

scalar curvature p, of M: c¢(M): =j ox/Vol (M).
M
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THEOREM 1.1. Let M be a Riemannian manifold in #(m, A, I, D) and
0 a positive number. Then there exists a positive constant e(m, A, I, D; 5)
depending only on m, 4, I, D and ¢, such that

(1) if ZM) < e(m, 4, I, D; 5), then M is diffeomorphic to an Einstein
manifold M’ and the Lipschitz distance between M and M’ is less than §;

(i) if (M) < e(m, A, I, D; 5), then M is diffeomorphic to a space
form M’ of constant curvature and the Lipschitz distance between M and
M’ is less than §;

(1) if M) < e(m, 4,1, D; 5), then M is diffeomorphic to a locally
symmetric space M’ and the Lipschitz distnce between M and M’ is less
than 6.

Theorem 1.1 is a consequence from the following

LEMMA 1.2. Let M,., g,, M. and g., be as in Theorem A.

(i) If #(M,) goes to zero as n’ — oo, then g, is smooth and define an
Einstein metric, i.e., the Ricci tensor S, of g.. satisfies: S., = (c(M.)/m), &..,
where ¢(M,.) converges to ¢(M.) as n’ — .

(i) If A (M,) goes to zero as n’ — oo, then g. is smooth and has
constant curvature c(M.)[m(m — 1).

(i) If L(M,) goes to zero as n’ — oo, then g, is smocth and M., is
locally symmetric, i.e., the curvature tensor R., of g. is parallel.

Proof. Since {c(M,.)} is a bounded sequence, we have a subsequence
{c(M,)} which converges to a constant ¢ as i — 0. Observe first that the
components gi/ of the induced metric on the cotangent bundle T*M,.,
expressed in the harmonic coordinates described in Fact 1.1, satisfies

An'gfz’ = zzgfﬁ 7]z’e n’ ke + 2 Z gﬂg'zfr'ﬂ’;;r[’n’;és
kye

Dyq5758

where A, (resp. I',..},) stands for the Laplacian of g.. (resp. the Christoffel
symbols of g.). Suppose that #(M,) goes to zero as n’ — . Then it
follows that gif satisfies weakly

Bogi=2C g 12 3 gugrlT LT}
m D78
Hence the standard regularity argument implies that g% is smooth, and
furthermore the Ricci tensor S. satisfies: S, = (¢/m)g.. Moreover if
A (M,.) goes to zero as n’ — oo, then H#(M,) = 0 and hence M, has con-

stant curvature. Finally, let us assume that #(M,.) goes to zero as n'.
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Since the covariant derivative VR, of the curvature tensor R, of M,
converges weakly to the covariant derivative V-R_ (in the weak sense)
of the curvature tensor R, of M, as n’ — oo, we see that V.-R, = 0.
Then it follows from the regularity argument that g, is smooth and R,
is parallel. This completes the proof of Lemma 1.2.

§2. Proof of Theorem B

The purpose of this section is to prove Theorem B in Introduction.
We shall carry out the proof, based on (the proof of) Theorem A and
some facts given in [24]. Throughout this section, let us denote by M a
manifold of asymptotically nonnegative curvature. r,, B(p) and S,(p),
respectively, stand for the distance to a point p of M, the metric ball
around p of radius ¢ and the metric sphere around p of radius ¢.

2.1. To begin with, we define a Lipschitz function F,: M —R
associated with a family of metric spheres {S,(p)} around a point p of M
by F,(x): = lim,_. t — disy(x, S(p)). In order to prove Theorem B, we
have to recall the following two facts:

Fact 2.1 ([24: Lemma 1.4]).

(i) For any fixed point p of M, F,(x)/r,(x) converges to 1 as x goes
to infinity. In particular, F,: M — R is an exhaustion function on M,
namely, {xe M: F,(x) < t} is compact for any tc R.

(i1) As xe M goes to infinity,

max { (u,v): u,veV.-r (o} —0,
max {L (u, v): ueV.r(x), veV-F(x)} -0,

where V-r(x): = {ve T,M:|v|=1, t + r,(exp, — tv) = r(x) (0 < t < r(x)}
and V- F,: = {ve T,M: |v| =1, F,(exp,tv) — t = Fy(x) (t > 0)}.

Fact 2.2 ([24: Lemma 1.5]). Let o be the base point in (H.1) and J,
the solution of an equation: Ji + kJ, = 0, subject to the initial conditions:
J(0) = 0 and JY0) = 1, where k is as in (H.1). Then for any large t>0
and small ¢ > 0, there is a constant 5(t, ¢) > 0 such that the Riemannian
mollifier r; of r(: = r,) (0 < < 8(t, ¢)) is well defined and smooth on B,(0),
and it has the following properties:

(1) Ir—r|<s

(ii) 1—e—=0(r—o<|Vn|< 1+

(i) 1 — e <|Vrl(x) if disy(x, &) > ¢,
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(iv) Vr, <@+ e (logdyyor,
where &, stands for the cut locus of M with respect to the base point o and
0:(s): = max { (u, v): u, veV.-r(x), r(x) > s}. Moreover the Riemannian
mollifier F; of F(: = F,) is also well defined and smooth on B,(0), and it
satisfies:

(V) |F'_Fa|£€,

(vi) |VF; —Vr|< e+ 6,(r — o),

(vii) VF;> — (14 ¢) J: k(s)ds on {xe B,(o): F(x) > 0} if k=0 near
+ 05
VF, > — e — J‘: k(s)ds on {x e B,(0): F(x) > 0} if k=0 near + o,
where 0,(s): = max{J (w, v): ueV-r(x), veV.F(x), r(x) > s}.

2.2. Let us now give the proof of Theorem B which is devided into
three steps. In what follows, we assume that M satisfies (H.2) in Theorem
B. '

Step 1. Let F(: = F,) be the Lipschitz function associated with a
family of the metric spheres {S,(o)} around a point, say the base point
o in (H.1). Let us fix sufficiently large numbers T and 7" with T < T”
and sufficiently small numbers ¢, 6 (> 0) with 6 < 6(7”, ¢) as in Fact 2.2
We consider the Riemannian mollifier F; of F on Br.(0), and set 2, ,: =
{xe M: F(x) < T} and %, ,: = 09;,. For any xe2;,, we denote by 7,:
[0, c0) — M the geodesic which emanates from x and which is tangent to
the outer unit normal of 3, , at x. We define three numbers r,(x), r,(x),
and z4(x) € (0, o] associated with 7, as follows: z,(x): = inf {t € (0, o0):
7.0 € 25,7}, 7(x): = inf{t e (0, 0): ¥, , has no focal points along 7,4},
and z4(x): = sup {t € (0, o0): dis,(n,(s), 2;,r) = s for se [0, f]}. Clearly, z,(x)
< min {r,(x)/2, 7,(x)}. For the sake of simplicity, we assume that % is not
constantly equal to zero. Then we have

(21) (%) > ‘Ul(Ty &=

1 — 6T, e)HAT — 5)]
1+ 9AT) ’

where A(t): = tV/K(t), K(f): = sup {the sectional curvature of M at points

x with r(x) > 8}, (t): = r K(s)ds, 0(, &): = 2 + O,(t — ¢) + 6,(t — ¢), and 6,

(i=1,2) are as in Fact 52.2. Note that

13
arctan [

2.2 (T, 2 T o
(2.2) T N (€ (0, 0]
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as e >0 and T — co. In order to prove (2.1), we first observe that the
second fundamental form w, . of 2, with respect to the outer unit normal
satisfies

@3 tur = o VE 2 = 08 [ hud,

because of Fact 2.2(vi), (vii). Let J,, be the solution of an equation:
Iy + (T — &) " A(T — e)Jr,. = 0, subject to the initial conditions: J7,.(0)
=1 and J7,.0) = — (1 + AT)/(1 — 6T, ¢)), and set (T, ¢): = inf{t > 0;
Jr..(f) = 0}. Then %, , has no focal points along 7,,q,;; as long as 7,([0, £])
C M\Q;,r and t < p(T, ¢), because we have (2.3) and the sectional cur-
vature of M is bounded from above by (7' — &) 24T —¢) on M\, ;.
Since p(T, ¢) > (T, ¢), we have obtained

2.4 (%) = (T, ¢)

if 7y(x) < 7,(x). Suppose now that min {ry(x): x€ 2; s} < y(T, ¢). Then it
turns out from (2.4) that there exists a geodesic 7: [0, 2¢] — M such that
4 = min {r,(x): x€ 2, 7}, 9(&) = 7, (e]0, £]) for some xe 2, ,, and 5(f) =
7,2¢ — t) (te [4, 24]) for some ye ;. Since we have by Fact 2.2 (vii):

EFG@)deE> — (1 + ¢ f; K(s)ds on [0,2¢], it follows that (F,o5)(26) —

(Fsop)(©) > — 2¢(1 + s)j: k(s)ds. This implies that

‘> [(1 + e)f: k(s)ds]” > T

T Q4T
On the other hand, £ is assumed to be less than x(T,¢), and hence we
have
AT — &) < arctan (1 — 6(T, )NAT — ¢) < (1 — (T, )AT — ) )
1 + 9a(T) A + 9uT) 1+ (T

This is a contradiction. Thus we have shown (2.1).

Step 2. Fix positive constants a, b with a < b <z/2vk, (< + ). Then
taking a sufficiently large number T and a sufficiently small number e,
we may assume by (2.1) and (2.2) that min {r,(x): xe ¥, ,} > bT. Set psr
1= disy oz, %), Dor: = {xe M: 0< 0;,7(x) < bT} and 5, ;: = {x € M: p, ()
= aT}. Since p;r is smooth on !jm, 3, is also smooth. Moreover it
follows from (2.3) that
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VZP&,T > (log JT,s),opd,T(gM - dpﬁ,r)

on &, where J; . is asin Step 1. In particular, the second fundamental
form @, of 3, . satisfies

(2.5) dsr = (T, e, @)8u (pa(T, ¢, @): = (log Jz,.Y (aT)).
Note that
(2.6) 1+ a)Tp(T, e, a) > — (1 + a)y/ey tan ayey

as ¢ >0 and 7 —> co. In order to get an upper bound of &; ,, we compare
0s,r With r(=r,). Since

d _ ' d?
& o) =1+ [ GRG0

>1—(1+e) I’: k(s)ds-t  (by Fact 2.2(vii)
>1-Q1+9 I: sk(s)ds - _;,_

>1— 14 9uiT)
for any xe X, and te [0, bT], we see that
2.7 (VFs Vpsry > 1 — (1 + 9bAT)
on J;,. In particular, we have by Facts 2.1 and 2.2
(2.8) min{(Vpsr, V): vEV-r(x), x€ 257} =1 — (1 + bAT) — &(T)
where ¢(T) goes to zero as T — . Moreover it follows from (2.7) that

F;> T+ {1— @1+ esi(D}ps,r

and hence

(2.9) r>T—ce+ {1 — @+ 9bA(T)}ps,r

on @;,, since F;< F+e<r+ec On the other hand, by Fact (2.1(1),
we have

(2.10) r< por + L+ a(TXT + ¢)

where ¢(T) goes to zero as T — co. It turns out from (2.9) that

. 1 AT — ¢)
@11)  Vp,r < [ oor + (T — &)1 — @ + ba(T)}

|e. = det)
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on O,,. In fact, by (2.9), we see that the sectional curvature at 7,(f) >
— k(. > — KT — ¢ + {1 — (1 + 9bAT)}). Let J,,. be the solution
of an equation: J7, — k(T — ¢ + {1 — (1 + &)bATN)J,,. = 0, with J.(0)
=0 and j;,e(O) = 1. Then we have

Vsz,T < (log jT,e)/ ° Pa,T(gM - dP?x,T)

and
(log J,)(®) = Jr,ls(t) [t [ BT = e+ 1 — @+ 9paTe) jT,e(s)ds]
< JT,lea) [1+ Jr® [ BT — e+ (1 = @+ OBUDY)s]

< % + (T — e){1l(—T(-1 i bAT)} =

In particular, (2.11) implies that

4 e a): = 1 AT — ¢)
@12) dor <p(Te g (T = ot gt o).
Note that
(2.13) 1+ )Tu(T, ¢, a) 1+ ,(1;

as ¢—0 and T — . Finally, let us summarize the results obtained
above. For any large number T, we choose sufficiently small , > 0 with
lim,_. 6, = 0 and set S,: = S‘a?,f (’.f’: = T/(1 4+ a)). Then we have

(i) max{max,cs,, disy (x, Sr), max,¢s, dis, (Sz(0), W}/T — 0
as T goes to infinity (cf. (2.9) and (2.10));

(i1) the integral curve of r;,/|Vr;, | defines a Lispchitz homeomorphism
¢r from S, onto S;(o) such that

et < dT(¢~T(x), @T(y)) < et
dr(x, )

where ¢(T") goes to zero as T — o and d, (resp., d;) denotes the inner
distance on S, (resp., Sz(0)) (cf. (2.8) and Fact 2.1);
(iii) the second fundamental form &, of S, in M satisfies

1

1+ a)yeytanayey — (T) < Tar, < 1+ - + (1),
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where a is a constant with 0 < a < 7/2/ky (cf. (2.5) and (2.12)). Thus we
have proved the first assertion of Theorem B.

Step 3. We are now in the position to prove the second assertion of
the theorem, by applying Theorem A to our situation. Suppose that
Vol,, (B,(0) N &,(M))/t" is bounded away from zero as ¢ — oo, for some end
(M) of M. This is equivalent to saying that

Vol (M(0)): = Lim Vol,_,(S(0) N &.(M))/t"-*
= Jim Vol,._, (S, N &)/t~

t—oo

>0,

where {S’,} is as in Step 2. For the sake of simplicity, we assume that M
has one end, so that ¥7l,,_,(M(c0)) is positive. Then if the dimension m
of M is greater than or equal to 3, the family {(1/t)§t} of compact Rieman-
nian manifolds is bounded uniformly in curvature, diameter and volume,
and hence it turns out from Theorem A that when m > 3, M(c0) is a
smooth manifold with a Riemannian metric of class C*#(0 < g <1), since
M(oo) is the limit of {(1/t)§t} with respect to the Hausdorff distance. In
order to construct smooth approximations {S,} stated in the second
assertion of Theorem B, we first observe that the injectivity radius of M at
a point x is bounded from below by cr(x) for some positive constant c.
Actually, this follows from the argument in the proof of the first assertion
of the theorem. Secondly, let us consider a family of Riemannian mani-
folds {(1/)M} and set A/a, b): = {xe (1/))M: b < dis, (0, x) < a}, where
dis, (0, x): = (1/t) dis, (0, x). Then we have the following

Lemma 2.3. Fix two positive numbers a, b with a > b. Then for large
t, there exists a C*f-diffeomorphism II, (0 < g < 1) from A/(a, b) into the
cone €(M (o)) over M(co), i.e., ¥(M(0)): = [0, 00) X ;.M (co) which has the
following properties: as t goes to infinity, II, (A a, b)) converges to [a, b]
X wM(o0) and II,,G, converges to the metric dt* + t'g., in C"* topology
(0 < p < B<1), where G, (resp., 8.) is the Riemannian metric of (1/t)M
(resp., M(o0)).

The second assertion of Theorem B is an immediate consequence of
Lemma 2.3. Actually, (after fixing constants a, b as above with & <1<
a,) we can take the hypersurfaces ét: = II;*({1} X M(c0)) as required ap-
proximations for the metric spheres S,(0).
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Proof of Lemma 2.3. We first observe that the injectivity radius of
(1/)M on A, (10a, b/10) is bounded from below by a positive constant c
(independent of #) and the sectional curvature K, of (1/t)M (for large f) is
pinched as follows: — ¢() < K, < 10*°b7%,, where &(f) goes to zero as
t — oo. Given a small positive constant § < 10-*b, we take a finite number
of points x,, ---,x;, of A(4a, b/4) (for large f) such that dis, (%, x.,,)
> 25 #j), dis, (x;,45, 0) > b/10 + 26, and the union of the metric balls
B, .((x,,) of (1/t)M around x,, of radius 25 covers A,(2a, b/2). Then the
number x4 is bounded from above by a positive constant p, which is in-
dependent of t. In fact, by setting 4: = 10b-'4/ky, we have

°[ sin Au]™"!
o | [ S22 du < Vol ( 1) Buiten)

< % Vol,, (Bs,./0))

< “’;",,,“ f:ﬂJi"'l(u)du (cf. [24: Lemma 1.2])

Oy at
< oo [ (I oop)™-'du

< Lo (i) Ba)
m

where J, is as in Fact 2.2 and Ji(c0): = lim,_,., ,ﬁ(t)(< expr tk(t)dt) (cf.
0

[14: Theorem C])). Thus we can apply the argument of the proof of Theorem
A to our situation and obtain the maps I7,: A,(a, b) - ¥(M(0)) (for large
¢) mentioned in Lemma 2.3, since A,(a, b) converges to [a, b] X ;.M (c0) with
respect to the Hausdorff distance as f goes to infinity. This completes
the proof of Lemma 2.3.

2.3. Let us now give two corollaries to Theorem B.

CORLLARY 2.4. Let M be as in Theorem B. Suppose that the dimen-
sion m of M is greater than or equal to 3 and, for some end & (M) of M,
Vol (M (c0)) is positive. Then:

(1) M) is a compact smooth manifold of dimension m — 1 with
C*# metric (0 < g < 1) such that the diameter diam (M,(c0)) is not greater
than = and the volume Vol, _, (M,(0)) is equal to ¥ ol,,_,(M, (o)) and not
greater than the volume of a metric ball with radius diam (M,(c0)) in the
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sphere of constant curvature 1.

(i) If £y < 38 and M,(o0) is simply connected, or if m is odd and
M,(o0) is orientable, then the injectivity radius of M,(oo) is not less than
7/¥1 + &, and Vol,,_, (M (o)) is nct less than the volume of a metric ball
with radius z/v'1 + £y in the sphere of constant curvature 1 + ky.

(iii) If diam (M (c0)) > =/2, Vol,._, (M (o)) is not less than the volume
of a metric ball with radius n/2v/1 + ky in the sphere of constant curvature
14 ky.

Proof. Since M, (o) is the limit (in C*# topology) of a family of
compact Riemannian manifolds {é’t} such that their diameters are uni-
formly bounded from above, their volumes are uniformly bounded from
below by a positive constant, and further the curvature K, of S, satisfies:
1— )< K, <1+ Ky + (), where «(f) goes to zero as ¢-—> oo, the first
assertion (resp., the second assertion, the last assertion) turns out to be
true because of the Rauch’s comparison theorem (resp., the Klingenberg’s
theorem (cf. [4: Ch. 5]), Lemma 2 in [3]). This completes the proof of
Corollary 2.4.

CoroOLLARY 2.5. Let M be as in Theorem B. Suppose that the di-
mension m of M is greater than or equal to 3 and for an end &.M) of
M, v ol,_(M,0)) is positive. Then M,((co) is isometric to the space form

of constant curvature 1, if an integral f lox [P(r+1)-™ is finite for some
ea(M)

p > 1, where py (resp, r) denotes the scalar curvature of M (resp. the di-
stance to a fixed point).

Proof. In what follows, we assume for the sake of simplicity that M
has one end and we keep the same notations as in Lemma 2.3. Suppose

that the integral J lox[P(r + 1)*-™ is finite for some p > 1. We observe
M

that this is equivalent to the condition that the integral J IRy |P(r + 1)=-™
M

is finite, since ||Ry| < c.(px| + kor) for some constant c¢,, depending only
on m, where R, denotes the curvature tensor of M and k is as in (H.1).

Then it follows that f IR;|| converges to zero as ¢ — oo, where R, is
Ai(a,b)

the curvature tensor of (1/tf)M. Therefore, applying the same argument of
Lemma 1.2 to the family {A,(a, b)}, we see that the cone #(M(o0)) is flat,
nemely M(oo) has constant curvature 1. This completes the proof of
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Corollary 2.5.

Remark. In Corollary 5.5, the condition: I loulP(r + 1)? ™ < 400
)

Ca

can be replaced by a weaker one: lim inf tzp""f lox P = 0, where
A(at,bt)
Aat, bt) = {xe M: bt < r(x) < at} (0<b<a).

Remark 2.6. Let M be a manifold of asymptotically nonnegative
curvarure. Then the condition (H.2), namely, the finiteness of «,, is ob-
viously equivalent to the condition that the scalar curvature p, of M
satisfies: sup r’p, < 4+ . Moreover given a nonnegative integer k, sup-
pose that the Ricci tensor S, of M satisfies: |V!Sy|| < ¢,/rt** for each i:
0 < i< k and some positive constants ¢;, Then according to Theorem A’,
Lemma 2.3 can be restated as follows: Fix two positive numbers a, b with
a > b. Then for large ¢, there exists a C***-diffeomorphism /7, (0 < g < 1)
from A,(a, b) into the cone #(M(0)) over M(), i.e., €(M(c0)): = [0, o0)
X wM(c0), which has the following properties: as ¢t goes to infinity,
I1(A[(a, b)) converges to [a, b] X ..M(co) and I1,,G, converges to the metric
di + t’g.. in C'**# topology (0 < p’ < g < 1), where G, (resp. g.) is the
Riemannian metric of (1/t)M (resp. M(oo)).

§3. The total curvature of a manifold of asymptotically
nonnegative curvature

A well known theorem of Cohn-Vossen [8] states that if the total

curvature integral I K, on a complete oriented two dimensional Rieman-
M

nian manifold M is absolutely convergent, then (1/27r)f K, < %U(M), where
M

K, (resp., X(M)) denotes the Gaussian curvature (resp., the Euler charac-
teristic) of M. Later, several authors, e.g., Huber [19, 20], Finn [11], Maeda

[29], Shiohama [35, 36] etc., interpreted the difference: %(M) — (1/27:)I K,.
M

On the other hand, some authors, e.g., Greene-Wu [13], Poor [34], Walter
[38] etc., made their attempts to generalize the Cohn-Vossen’s inequality
to 4- (or 6-) dimensional Riemannian manifolds of nonnegative sectional
curvature (outside a compact set). The purpose of this section is to study
some relations between the total curvature and the geometry at infinity
of a manifold with asymptotically nonnegative curvature.

Throughout this section, M is an oriented manifold of asymptotically
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nonnegative curvature and m denotes the dimension of M.
3.1. To begin with, we shall prove the following

ProposiTioN 4.1. Let M be as above and suppose m = 2, then the
following assertions hold:

(i) The total curvature J K, is absolutely convergent.
M

(i) M) = (1/2n)JM K, + diam (M(c0))/x.
(iii) In the case: K, > 0,

i 3 ry _ : o [Length (6D)]*
2 diam (M (c0)) == irelf"Length (#7) = 1lr)1f ~ o Area (D)

’

where Z%: = {ve T,M: |v| = 1, exp,tve X, (the set of all rays starting at p)}
and D ranges over all compact domains of M with smooth boundary oD.

Proof. We shall prove the first assertion, referring to [24]. We write
K; (resp., K3) for max {0, K,} (resp., max {0, — K,}). Then observe first

that the integral I K is finite, because of Hypothesis (H.1) (cf. [24: 1.3]).
M

We fix a point p of M and denote by %% the part of %} which consists
of a finite number of closed subarcs in the tangent unit circle parametrized
by the arc-length 0 (0 < 8 < 27). Then for sufficiently large ¢, we have

1(M) = XUB(p)

~ [ k4L kg + 3(0)

u T 5|,
21 JBu» 27 J &

where S,(p): = S.(p) N exp,tZ7, ,, is the geodesic curvature of S,(p) and
3(t) goes to zero as t — oo (cf. [24: Lemma 1.2 and Proposition 2.3]). Since

lim inf kg, > 0 (cf. [ibid.: Lemma 1.2 (iii)]), we have

t—co Si(p)
(3.1) [ JEal < + oo

This proves the assertion (i). To show the second assertion, it is enough
to prove that

(3:2) [ e 2 diam (M(c0)) = lim LeER (LD

S¢(p) -0 t

as t — oo. This is done as follows. For any v(f) = (sin 6, cos d) € %%, set
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Jy(8): = dexp,.»t(0/06) (the Jacobi field along the ray exp, tv(d) with J,(0)
=0 and J;(0) = 9/06 at v()). Then it turns out that J,(f) astisfies

| o))" + Ky (exp, tv(@))|J,| = 0.
In partucular, we have

190 = 1= [ Ku(exp, s0(0) |9, ds -

It follows from (3.1) that for almost all v(f), the limit 2(6) of |J,(t)| as
t — oo exists and it is given by

1) = 1= [ Ku(exp, s0(0) | J.(5) ds

Observe here that A(6) = lim,_..|J,(¢)|/t for almost all v(f). Therefore we

get
[ ko= 101ds [ 208
Sp(t) Rp 2p
Length (Sp(t)) — ‘[ |J0(t)l d0 __)‘[ Z(ﬂ)dﬂ
t Bt A

as t— oo. This shows (3.2), because 2 diam (M(c)) = lim,_., Length (§,,(t))/t
(cf. [24: Proposition 2.3]). Moreover it turns out from the above observation
that

(3.3) 2 diam (M(co)) = Length (#7) — j Ky,

where 9,: = {exp, tv(6): ¢t > 0, v(f) € Z%}. Let us now suppose that K, >0
everywhere on M. Then we may assume that M is diffeomorphic to R?
because otherwise, M is a flat cylinder R X 8'. Taking account of the
Toponogov’s splitting theorem, we see that for any (small) number ¢ > 0,
there is a point p, of M with

3.4) j Ky<e

(cf. [29: p. 457]). Now it follows from (3.3) and (3.4) that for any ¢ > 0,
inf Length (Z}) > 2 diam (M(o0))
PEM

> Length (%) — ¢
> inf Length (%) — ¢.
DPEM
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Thus we have shown that 2diam (M(c0)) = inf,c, Length (%?). Finally
we shall prove that diam (M(c0)) = L(M)?, where L(M): = inf Length (6D)/
Area (D). This is a consequence of the second assertion (ii) as above
and an isoperimetric inequality due to Fiala [10] and Huber [18]. Actually
their isoperimetric inequality tells us that, for any simply connected do-
main D of M,

Length (3D) 1 -
o >1—-_—| K;.
4z Area (D) — o f p

Thus we have

diam (M(0)) 5, L(M)

.o 4

1
21— o[ K

_ diam (M(c0)) .

T

Remarks. (i) The second assertion can be also derived from the first
assertion and a result by Shiohama [35] (cf. also Finn [11] and Huber [20]).

(ii) Let M be a manifold of asymptotically nonnegative curvature.
Then as is mentioned in Introduction, for each end &,(M), we have the
limit #7ol,,_,(M,(0)) of Vol,_(S,(0) N &, (M))[t"-! as t— co, which is in-
dependent of the choice of the reference point o. Moreover it is not
hard to see that

m Vol,, (B,(0) N &(M))
tm
= lim _Voln-1(S0) N &.M)I"
t== [m Vol,, (By(0o) N & (M)]™*

Yol -1 (M(00)) = lim
troo

Thus #ol,_, (M(0)): = D20 97l _, (M, (c0)) is related to an isoperimetric
constant I,(M) defined by

o Vol,_,(39)
L(M): =inf ~ "m0/
D) = ot gl @y

where £ ranges over all bounded domains of M with smooth boundaries.
Then, we have

L(M) < m®=m [f ol (M(c0))]'™ .
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Moreover if the Ricci curvature of M is nonnegative everywhere, we see
that

L(M) = C(m) [V oly-(M(co))]'™

where C(m) is a positive constant depending only on m. Actually, in this
case, the measure of rays starting at p with respect to the metric on the
unit tangent sphere at p is bounded from below by ¥ ol,,_; (M(c0)), so that
we can apply a theorem of Croke [7] to our situation.

3.2. As we have seen just above, the situation on M is much simpler
when the dimension m is two. However it is more complicated in higher
dimensional cases. In the next theorem, we consider the case as in
Theorem B.

TuEoOREM 3.2. Let M be a manifold of asymptotically nonnegative cur-
vature satisfying the condition (H.2) as in Theorem B. Suppose that the
dimension m is greater than or equal to 3. Then the following assertions
hold:

(1) If the Gauss-Bonnet-Chern integral:f Qx is absolutely conver-
M

gent, then

Vol (M(e0)

Wy -1

1X(M) - fM Q| < (1 + Alm, £y)

where £y is as in (H.2), A(m, k,) is a nonnegative constant depending only
on m and &y, and o, _, denotes the volume of the unit (m — 1)-sphere of

Euclidean space. Moreover if k,; = 0, or I lpxP(r + 1)**~™ is finite for some
M

p>1, then
WM) = I 0, + Y ol (M (o0))
u W —q
[ ou+x_ 1

7 Hm(M(0))
where the summation is taken over the ends & (M) with ¥ ol,,_,(M,(c0)) > 0.
(i1) The Gauss-Bonnet-Chern integral f Q. 1s absolutely convergent,

if one of the following conditions holds:
(ii-a) m is odd (24:= 0 by definition).
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@ii-b) m = 4.
(ii-c) The total scalar curvature J. lox|™* is finite.
M

(ii-d) The sectional curvature of M is nonnegative everywhere and M
is not diffeomorphic to R™ (in this case, ¥ ol, _, (M(0)) = 0).
(iil) In the case: m = 3, 4 or 5, one has

x(M)_I QMzim—'Mzo.
¥ W1
CoroLLARY 3.3. Let M be as in Theorem 3.2 and suppose that m is

odd. Then one has the following assertions:

(1) M) + 0> ¥ oly_y (M(0)) > 0.

(1) AUM) %= 0 & Vol,_, (M(co)) > 0, if £y = 0, or f lpulr + 1
is finite for some p > 1.

(i) XM) # 0 & Yol (M(0)) > 0 if m = 3 or b.

iv) M) #0 & Vol (M(0)) > 0 & M is diffeomorphic to R™,
if M has nonnegative sectional curvature.

Proof. The assertions (i)-(iii) are direct consequences of Theorem 3.2.
The last one is derived from Theorem 3.2 and the structure theorem by
Cheeger-Gromoll [6].

COROLLARY 3.4. Let M be as in Theorem 3.2. Suppose that m = 4
and

R S
2(~/1 + /CM)3

M) <[ @
Then:

(i) oly (M(c0)) < Voly (B, (1 + £y)), where r(M): = z/2/1 + £, and
B,(1 + k) is the metric ball of radius r in the 3-sphere of constant curva-
ture 1 + &,

(i1) diam (M (c0)) < #/2, if ¥ ol, (M (c0)) > 0 for an end &, (M).

(iii) All of the Busemann functions on M are exhaustion, if ¢ ol (M (o))
> 0 and the sectional curvature is nonnegative.

Proof. The first assertion is just a consequence of Theorem 3.2. The
second one follows from the first one and Corollary 2.4(iii). The last one
is derived from the second one and Corollary 4.4 in [24].
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Proof of Theorem 3.2. To begin with, let us recall the definition of
the Gauss-Bonnet-Chern integrand 2, of M (cf. [7]). Let {e, ---, e,} be
an orthonormal frame over a coordinate neighbourhood of M and {¢', - - -,
0™} the dual 1-forms. Then the structure equations on M are given by

dl91=w”-/\0], dcuij=.Q“+wi,¢/\wkj,

where o,; and £2,, are, respectively, the connection 1-forms and the cur-
vature 2-forms of M. The Gauss-Bonnet-Chern form is the m-form on M

defined by
(= D" > iy oo idua A o A R (m = 20)
Q4 = 2mzmn |
0 (m=2n+1),
where the summation is taken over all permutations {i,, - - -, i} of {1, - - -, m}
and e(i, ---,1i,) is the signature. For an integer k: 0 < k< i[m — 1],

define (m — 1)-forms I, on the tangent sphere bundle SM of M by
Hk(v) = Ck,m Z e(iu T, im—l)gilig VANERRRVAN Qigkﬂm AN Wigp i1 VANERRUVAN [ F

for ve SM, where the constants C,, are given by

(= D" | 1 =2
o . |ETTR s m—2k— D) (m = 2n)
S TCHE Y (m=2n+1).
z"2"n! Lk

Let D be a compact domain with smooth boundary 0D. Then the Gauss-
Bonnet-Chern formula of [7] reads

(3.5) UD) = f Qp — Shm=vm f VT,

D aD
where v denotes the unit outer normal to dD. Let {2,};.;,...,, be the eigen-
values of the second fundamental form « of 4D (i.e., a(X, Y): = {yxv, D).
If we take an orthonormal frame {e, ---,e,} so that v = e,, ale,e,) =

28, (,j=1,---,m — 1) along 3D, then the boundary integrands in (3.5)
can be expressed as follows:

v¥II, = (— )" C Ze(in Ty im—l)gixiz VANERERVAN ‘Qigk_)izk
A Qo A e A Ay

Here it is convenient for us to introduce the following notations: for
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t>0, M': = (1/t)M, B': = the metric ball of M* around a fixed point of
radius 1, S’: = 9B’, 2‘: = the Gauss-Bonnet-Chern integrand of M‘, and
II}: = the (m — 1)-form on the tangent sphere bundle of M' (0 < k<
[m — 11/2). Since S* may not be smooth, we take the smooth approxima-
tion S* for 8¢ (for large #) as in Theorem B. Then the second funda-
mental form & of S satisfies

(3.6) || < clky) + 1

for large ¢, where c(k;) > 0 depends only on x,. Moreover in the case
that ¥"l,_,(M,(o0)) > 0 for some end &, (M), we may assume that

(3.7 1—ethg. <& <1+ et)s:

on §* N &(M), where &(f) goes to zero as ¢ — o and g, is the Rieman-
nian metric of M‘. Let us now apply the formula (3.5) to the domains
B! which are bounded by S¢. Then since M® is isotopic to B, we have

WUM) = UM*) = U(B)
=| Q- Z%‘ro'”mf_ v,
St

Bt
where v, is the outer unit normal to S‘. The hypotheses (H.1), (H.2) and
(3.6) imply that if the integral f Q4 is absolutely convergent, then

M
Y ol (M (c0))

m-1

100) — [ 2| < (1 + Alm, )

Suppose further that &, = 0, or I [ox[P(r+1)»-™ is finite. Then M,(c0)
M
has constant curvature 1 if ¥ ol,_, (M, (o)) is positive, and we have

Vol (M())

Wiy —q

= [ o+

1
= | Qu YIS Y PN
R #(z(M,(=2)))

because of (3.7 and the argument in the proof of Corollary 2.5. This
proves the first assertion of Theorem 3.2.

Since f 124 < cm(f lox|[™? +J‘ kor"‘/?) for some constant c,, the
M M M

integralj 2, is absolutely convergent, if the condition (ii-c) holds. In
M
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the case of (ii-d), M has a soul of dimension n > 0 and hence the volume

element of M grows like at most r™-" (cf. [22]). This shows that the

integral f 2, is absolutely convergent. Let us now examine more closely
M

the cases: m = 3, 4, 5. At first, we assume that m = 4. In this case, we
have

‘QM = %{RIZI‘ZRMM + R1313R2424 + R1414R2323 + Rfﬂﬂ + R%324 + R4¥23}de

71'2

where Q,, = ¥R,,,0" N 6 and dv,,: =6 N N 6° N\ 6. If we put 25: =
max {0, — 2,/dv,}, then we have

Q7 < = K@)
[

where k£ and K(r) are as in (H.1) and (H.2), and r is the distance to the
base point o in (H.1). Since the volume element dv, is estimated (within
the cut locus of M with respect to the reference point o) by dv, < J(r)'dr
A dO in terms of the polar coordinates (r, ®) around o, we have

jm@<+m.
M

Thus it is enough to show that

(3.8) YD) <@y~ [ a0+ 0,
(0N Bt

where &(f) goes to zero as t— oo. (3.8) is derived by the following ob-
servations:

lim — [ v = Pl ()

t—co 8¢ (O

liminf — [ 17t = limin L | 2Ri + BRi + KR 2 0,

t—oo St t—co 47‘(2 St

where 2 (i = 1, 2, 3) are the eigenvalues of &.
We consider next the case: m = 5. In this case, we have

lim — [ iy = LD
St

Wy

t—oo

liminf — | WFIL
st

t—o0
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— lim inf Bij (AR + BARlss + BA R ARy, + A2 R, + HARSw)
T t

t—r oo

>0;
lim inf — f V¥ It
St

t—o

= lim infgl?jg (R§212R§434 + R£313R§424 + R{414R§323 + Ri?342 + RiBZiz + R£4232)
T t

t—oo

>0.

These imply that X(M) > ¥ ol, (M(0))]w,.
Finally we assume that m = 3. Then we have

¥ oly (M(0)) :

(2]

t—oo

lim — J VT =
¢

liminf — [ w1t = lim infij Ry >0.

t—eo 3t toeo 4 J 50
These shows that X(M) > ¥ ol,(M(0))/w,. This completes the proof of
Theorem 3.2.

Remark. Let M be a complete, minimal submanifold of dimension m
in Euclidean space R¥. Suppose that the total scalar curvature: I [ ™
M

is finite, where «, denotes the second fundamental form of M. Then
Anderson [1] shows that |a,] < ¢/r™ for some positive constant ¢, where r
is the distance to a fixed point of M. In the case of m > 3, M satisfies
(H.1) and (H.2) with «; = 0 and, since M is a minimal submanifold of
Euclidean space, M, (o) is isometric to the unit (m — 1)-sphere of R™ for

each end & (M). Thus it follows from Theorem 3.2 that (M) = j Qu +
M
v(M), where v(M) stands for the number of the ends of M.

§4. Gap Theorems for asymptotically flat manifolds

A result of Greene-Wu [15] says that a complete, connectsd, non-
compact Riemannian manifold M of dimension m must be isomstric to
Euclidean space R™, if M is simply connected at infinity, the sesctional
curvature K, is everywhere nonnegative, and moreover (#): K, vanishes
outside a compact set. Here M is called simply connzcted at infinity if
for any compact set C, there is a compact set C’ containing C such that
M\’ is connected and simply connected. Moreover, Ramark in p. 59 of
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Ballmann-Gromov-Schreoder [2] states (without proof) that the above fact
still holds under a weaker condition: dis,, (x, 0)’K,(x) goes to zero as xe¢ M
tends to infinity, instead of the condition (). We note that this stronger
statement was actually proved by Greene-Wu [15] under the additional
condition that M possesses a pole o, namely, a point o of M where the
exponential map exp,: T,M — M induces a diffeomorphism. (They imposed
there a further additional assumption on M when m = 4 or 8, but it turns
out to be a consequence from the other conditions. See [25, 26] for the
reasoning and also more elementary proofs of the gap theorems in [15].)
On the other hand, we have similar results for the cases of manifolds with
nonpositive curvature (cf. [2: pp. 57-58] [15] [25, 26]).
In this section, we shall prove the following

THEOREM 4.1. Let M be a manifold of asymptotically nonnegative
curvature satisfying (H.2). Suppose that the dimension m >3 and
Vol (M(c0)) > 0, and suppose that k£, = 0, or Lllpﬂlz'(r + )" < 4+ oo
for some p > 1. Then M is isometric to Euclidean space R™ if onz of the
following conditions holds:

(i) The sectional curvature is nonnegative everywhere.

(i1) The Ricci curvature is nonnegative everywhere and m is odd.

(iii) The Ricci curvature is nonnegative everywhere and M is simply
connected at infinity.

(iv) The sectional curvature is nonpositive everywhere.

CoROLLARY 4.2. Let M be a manifold of asymptotically nonnesgative
curvature satisfying (H.2). Suppose that the dimension m is odd and the
Euler characteristic y(M) does not vanish, and suppose that k, = 0, or

I lonP(r + 1) < 4 oo for some p > 1. Then M is isomorphic to Euclid-
M

ean space R™ if the Ricci curvature is everywhere nonnegative, or if the
sectional curvature is everywhere nonpositive.

Corollary 4.2 follows from Theorem 4.1 and Corollary 3.3.

Proof of Theorem 4.1. We first observe that if m > 3 and ¥ o!,,_ (M (o))
> 0 for some end &,(M), then M, (c0) is isometric to the quotient space
of the unit sphere S™-(1) of R™ by a group I', of isometries of S™ (1)
(cf. Corollary 2.5). Moreover it turns out from this observation, the as-
sumption: ¥ ol,,_; (M(c0)) >0, and the splitting theorem by Cheeger-
Gromoll [5] that if the Ricci curvature of M is nonnegative everywhere,
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then M(oo) is isometric to S™~(1)/". On the other hand, we know that
if the Ricci curvature of M is nonnegative everywhere and ¥ ol,,_ (M (o))
= w,_,(: = Vol,_,(S™"'(1))), then M must be isometric to Euclidean space
R™. Thus we have shown Theorem 4.1 under the condition (i) (cf. [6]),
(ii) or (iii). It remains to prove the theorem under the condition (iv).
Suppose the condition (iv) holds. We note then the following

Facr (cf. [25: Lemma 13]). Let M be a complete, connected, and non-
compact Riemannian manifold of nonpositive curvature. Suppose there is
a compact subset C of M such that the fundamental group of a noncompact
component of M\C is finite. Then M is simply connected.

Thus it turns out that M is simply connected, and hence M is dif-
feomorphic to R™. This implies that M(oo) is isometric to S™-!(1), so that
M is isometric to R™, because of the Rauch comparison theorem.

Remark. Let M be as in Theorem B and suppose the dimension is
greater than or equal to 3. Then very recently, Uesu [37] has proved
that M is isometric to Euclidean space if M is simply connected and M
has no focal points.

REFERENCES

[1] M. T. Anderson, The compactification of a minimal submanifold in Euclidean space
by the Gauss map, preprint.

[2] W. Ballmann, M. Gromov and V. Schroeder, Manifolds of Nonpositive Curvature,
Progress in Math., 61, Birkhiuser, Boston-Basel-Stuttgart, 1985.

[8] D. L. Brittain, A diameter pinching theorem for positive Ricci curvature, preprint,

[4] J. Cheeger and D. G. Ebin, Comparison Theorems in Riemannian Geometry, North-
Holland, Amsterdam-Oxford-New York, 1975.

[5] J. Cheeger and D. Gromoll, The splitting theorem for manifolds of nonnegative
Riceci curvature, J. Differential Geom., 6 (1971), 119-128.

, On the structure of complete manifolds of nonnegative curvature, Ann. of
Math., 96 (1974), 413-443.

[7]1 S.-S. Chern, On the curvature integra in a Riemannian manifold, Ann. of Math.,
46 (1945), 674-684.

[81 S. Cohn-Vossen, Kurzeste Wege und Totalkriimung auf Flichen, Compositio Math.,
2 (1985), 69-133.

[9] C. B. Croke, Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci.
Eec. Norm. Sup., Paris, 13 (1980), 419-435.

[10] F. Fiala, Le probléme des isopérimétres sur les surfaces ouvertes & courbure posi-
tive, Comment. Math. Helv., 13 (1940/41), 293-346.

[11] M. Finn, On a class of conformal metrics, with application to differential geometry
in the large, Comment. Math. Helv., 40 (1965), 1-30.

https://doi.org/10.1017/50027763000001380 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000001380

50 ATSUSHI KASUE

[12] K. Fukaya, On a compactification of the set of Riemannian manifolds with bounded
curvature and diameters, Curvature and Topology of Riemannian Manifolds,
Lecture Notes in Math., 1201, Springer-Verlag, 1986.

[13] R. E. Greene and H. Wu, C~ convex functions and manifolds of positive curvature,
Acta Math., 137 (1976), 209-245.

[14] ———, Function Theory on Manifolds Which Possess a Pole, Lecture Notes in Math.,
699, Springer-Verlag, 1979.

[15] ——, Gap Theorems for noncompact Riemannian manifolds, Duke Math. J., 49
(1982), 731-756.

[16] ——, Lipschitz convergence of Riemannian manifolds, Pacific J. Math., 131 (1988),
119-141,

[17] M. Gromov, Structures métrique pour les variétés riemanniennes, redige par J.
Lafontaine et P. Pansu, Textes Math. No. 1, Edic/Fernand Nathan, Paris, 1981.

[18] A. Huber, On the isoperimetric inequality on surfaces of variable Gaussian curva-
ture, Ann. of Math., 60 (1954), 237-247.

, On subharmonic functions and differential geometry in the large, Comment.

Math. Helv., 32 (1957), 13-72.

, Métrique conformes complétes et singularités isolées de fonctions sous-
harmoniques, C. R. Acad. des Sci., Paris, 260 (1965), 6267-6268.

[21] J. Jost, Harmonic Mappings between Riemannian manifolds, Proc. Centre of Math.
Analysis, Australia Nat. Univ., 4, 1983.

[22] A. Kasue, Applications of Laplacian and Hessian comparison theorems, Geometry
of Geodesics and Related Topics, Advanced Studies in Pure Math., 3 (1984), 333-
386.

[283] ——, On manifolds of asymptotically nonnegative curvature, preprint, M.S.R.I.
Berkeley, July 1986.

[24] ——, A compactification of a manifold with asymptotically nonnegative curvature,
Ann. Sci. Ecole Norm. Sup., Paris, 21 (1988), 593-622.

[25] A. Kasue and K. Sugahara, Gap theorems for certain submanifolds of Euclidean
spaces and Hyperbolic space forms, Osaka J. Math., 24 (1987), 679-704.

[26] ——, —— II, Curvature and Topology of Riemannian Manifolds, Lecture Notes in
Math., 1201, Springer-Verlag, 1986.

[27] A. Katsuda, Gromov’s convergence theorem and its application, Nagoya Math. J.,
100 (1985), 11-48.

[28] ——, A pinching problem for locally homogeneous spaces, Curvature and Topology
of Riemannian Manifolds, Lecture Notes in Math., 1201, Springer-Verlag, 1986.

[29] M. Maeda, A geometric significance of total curvature on complete open surfaces,
Geometry of Geodesics and Related Topics Advanced Studies in Pure Math., 3
(1984), 451-458.

[30] A. Nijenhuis-W. B. Woolf, Some integration problems in almost complex manifolds,
Ann. of Math., 77 (1963), 424-483.

[81] L. G. Nikolaev, Smoothness of the metric of spaces with two-sided bounded Alek-
sandrov curvature, Siberian Math. J., 24 (1983), 247-263.

[32] S. Peters, Cheeger’s finiteness theorem for diffeomorphism classes of Riemannian
manifolds, J. reine angew. Math., 349 (1984), 77-82.

[88] ——, Convergence of Riemannian manifolds, Compositio Math., 62 (1987), 3-16.

[34] W. A. Poor, Jr., Some results on nonnegatively curved manifolds, J. Differential
Geom., 9 (1974), 583-600.

[85] K. Shiohama, Total curvature and minimal areas of complete open surfaces, Proc.
Amer. Math. Soc., 94 (1985), 310-316.

[19]

[20]

https://doi.org/10.1017/50027763000001380 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000001380

CONVERGENCE THEOREM FOR RIEMANNIAN MANIFOLDS 51

[36] ——, An integral formula for the measure of rays on complete open surfaces, J.
Differential Geom., 23 (1986), 197-205.

[37] K. Uesu, The Titz metric on focal points free manifolds and its application, preprint.

[38] R. Walter, A generalized Allendoeffer-Weil formula and an inequality of the Cohn-
Vossen type, J. Differential Geom., 10 (1975), 167-180.

Department of Mathematics
Osaka University
Toyonaka, Osaka 560, Japan

https://doi.org/10.1017/5S0027763000001380 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000001380



