
WEAK AND NORM SEQUENTIAL CONVERGENCE IN M(S)

A. TONG and D. WILKEN

(Received 7 October 1969)

Communicated by J. P. O. Silbsrstein

Let S be a compact Hausdorff space; let C(S) be the algebra of all continuous
complex valued functions on S; and let M(S) be the dual space of (S) (the space
of all regular Borel measures on S). In [2] Grothendieck gave a description of weak
sequential convergence in M(S) in terms of uniform convergence on sequences of
disjoint open sets in S. In this note we give a condition on the carriers of rr.easures
to guarantee that weak zero convergent sequences are norm zero ccmergent.
While this condition is interesting in its own right, it can also be used to obtain
immediately some well-known results about compact operators from C(S) to c0.

We begin with a stronger version of Grothendieck's theorem which follows:
(For a measure ju in M(S), | \i | denotes its total variation.)

THEOREM 1. Let {/!„} be a sequence in M(S). Then the following statements
are equivalent:

i) {/*n} IS weakly sequentially compact.

ii) {|/^n|}
 (S weakly sequentially compact.

iii) For each sequence {Em} of pairwise disjoint open sets in S,

Hn{Em) ->• 0 uniformly in n.

iv) For each sequence {Fm} of pairwise disjoint Borel sets in S,

|/*»| (Fm) -* 0 uniformly in n.

v) 3 a constant K such that || /*„ | ^ K for all n and

lim |/in[ (£) = 0 uniformly in n, where fi = E - ^ - \fin\.

PROOF. The equivalence of i) and iii) is, as mentioned above, due to
Grothendieck (see [2], Theorem 2, pg. 146). The implications i) => v) and v) => ii)
are immediate consequences of well-known results applied to the space L^fi), where
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(See [1], Corollaries 10 and 11, pp. 293-294). That v)=>iv) is clear since n, as a
finite measure, satisfies

(0
\n = l n = l

Hence fi(Fn) -* 0 and the convergence condition in v) yields the desired result.
All that remains to show (see the diagram) is iv) =?- iii) which is obvious.

i) ii)

0 v)
iii) <= iv)

For our purposes the most important consequences of the theorem are
conditions iv) and v) and the following corollary.

COROLLARY. Let {/in} converge weakly in M(S). Let {Fn} be a family of
Borel sets such that limn\jin\(Fk) = 0for each k. If F = U ^ F ^ , then

lim | ft, | (JO = 0.

PROOF. Let Gk = Fk\(\Ji = iFt), A: = 2 , 3 , - and let Gt = F t . Then
F = UT=i Gk a n d {Gk} is a sequence of pairwise disjoint Borel sets. Write
H = Zl/2«|ft, | . Then fi(F) = It

OT=i KGk) < oo so that, if Hm = U?=» G* then
^(Hm) -> 0. Let e > 0. By condition v) of Theorem 1,3N such that | //„ | (HN) < e/2
uniformly in n.

Since lim | /;„ | (Fk) = 0 for each K,

so that

n ^ n0 => |ft,| (F) ^ I f t , ! ^ ) + ••• + |ft,| (FN) + |ft,| (Jfw) < 8

and hence lim | /.(„ | (i7) = 0.

For our main theorem we use the following notation: Z+ = positive integers
and || n || denotes the norm of \i e M(S). By a carrier of ^ we mean any Borel set
off which | fi | is zero.

THEOREM 2. Le? {yun} be a weakly zero convergent sequence in M(S). Let
Sn denote a carrier of \xn. Then the following statements are equivalent.

i) I ft, 1 - 0 .
ii) For each infinite set I c Z + , there is an integer Nt such that

https://doi.org/10.1017/S1446788700012684 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700012684


[3] Weak and norm sequential convergence in M(5)

s.) = o

iii) For each infinite set I c Z + , there is an integer Nt such that

= 0|

ie 1
i I

PROOF. That i) => ii) => iii) is obvious. We show iii) => ii) => i).

Proof of ii) => i): Let R = {functions <f>: Z+ -> {0,1}}. Let

, if <^(o = l .
Then

Let Ro = {(j) eR: <f>{i) = 0 infinitely often}.

Then

'" u. n=fu n
Now if </> e^o then r^(i) = S, infinitely often.
Let / = {i: <j)Q) = 0}. By the condition ii)

3Nj: lim|ft,_

Tel

Also

tQ.m c

Tel

Hence for each 4>eR0 there corresponds an integer Nj such that the above
inclusion is valid. Since there are at most countably many such sets of the form
n>gN//(e/S'i,if we enumerate them Tu T2,---, then Ao c\J™=1 Tn and limn|/in|
(Tk) = 0 for each k. Also, R\R0 contains only countably many (j), say
{ n̂}n°°=1. Let Un = f lun* T^ii). Since 4>n$R0, <f>n(i) = 0 only finitely often, i.e.
TfJiO = S\ St for all i sufficiently large. Thus | nn \ (TJk) = 0 for all sufficiently
large n and At — l j r=i Uk with l imn|^n | (l/ t) = 0 for each k. By the Corollary
to Theorem 1, we have

lim | fin [ (S) = lim | na \ (Ao) + lim | fin \ {AJ = 0.

But | nn | (S) = I [ia I and so | fin \\ -* 0.
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Proof of iii) => ii). Suppose by way contradiction that iii) holds, but for
some infinite set / c Z +

limn sup I nn 11 Q S; I > 0, for each positive integer JV.

is I
In particular, 3ex > 0 such that

limBsupUn| If)
\iZNiZNl

iel

where Nj is the integer given by iii). Choose Jx to t e an infinite sublet cf Z+ such
that n e Jx => | \in | (So) > e1; where

f~\ o
0 — | | 'J;-

We consider two cases. ' e '

Case 1. Suppose that for each meJu limBeJ l j / / n | ( S 0 O S J = 0. Fix
«! e Jx. Then 3 m2 such that

n ^ m2, n e Jx => | \in \ (So\S2) > ex.

Let n 2 e J1 ; n2 > max{m2,n1}. Then since limBSJl | / iB| (So OSn2) = 0 there is m3

such that
n^m3,nejx,^>\fin\ [_S0\(Sns r\Sn2)] > ex.

Inductively we can define a sequence {nk} a Jx satisfying

But if we consider the Borel sets

E2 = (So nSB2)\SBl, ••-,£, = (So

then | y.nu | (fi j > et and the {£t} are pairwise disjoint Borel sets. By Theorem 1,
the sequence {/j.nk} cannot converge weakly to zero. Hence Case 1 cannot obtain.

Case 2. For some nteJu l imn e J l sup \[in\ (So C\Sn>) > 0.

Choose J2 to be infinite subset of J t and e2 > 0 such that

Now, either

a) Hmn6 J21 nn | (So n Sn, n S J = 0 for all meJ2or

b) 3 n2 e J 2 such that limn £ J2 sup | /zB | (So n Sn2 O SB2) > 0.
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But a) is merely a repetition of Case 1 above and cannot obtain. Therefore it is
possible to inductively obtain sequences {Jk}, {sk}, and {nk} satisfying

J j D j 2 ZD • • • ZD Jk = > • • • ,

each Jk is infinite, Ek > 0, nkeJk, nk+1 > nk for each k, and

\nn\ (Sonsmin-nsHk)^ek>0

if nejk+l. Let J o = {nk}. Then for any positive integer M, 3 S > 0 such that

ieJo

for all n sufficiently large in Jo. This contradicts iii), and we have proven iii) => ii).

Remark. Note that in condition (iii), the limit is taken only over the in-
tegers n el so that (iii) is actually a statement about subsequences of {ft,}.

Some simple examples of the theorem are the following: Let {ft,} be a weakly
zero convergent sequence in M(S).

I. If SnnSm = 0 for n ^ m, then fin -> 0.

II. If for each m, lim, | ft, | ( S J = 0, then fl ft, | -» 0.

III. If each fxn is atomic, then | ^n | -* 0.

To indicate the connection with compact operators, recall that if T is a boun-
ded operator from C(S) to c0, then T is represented by a sequence of measures
{ft,} so that

i) T{f) = (ifdnt, Sfdfi2,-)JeC(S),

ii) V-n -* 0» weak*.

Assume, in addition, that in M(S) weak* sequential convergence implies weak
sequential convergence. This is the case, for example, when S is extremely dis-
connected or a closed subset of an extremely disconnected space. Then we can
reformulate I, II, and III above in terms of known results or easy consequences
of known results about operators (by replacing the phrase "then | fin |j -> 0" with
"then T is compact"). In particular, when C(S) = m (where m denotes the space
of bounded sequences), any matrix operator is compact. For it is easy to check
that such operators correspond to measures carried on the integers.

The precise reformulation of Theorem 2 for operators becomes: T is non-
compact if and only if there is a sequence of Borel sets Rt which are carriers for
a subsequence {vj of {/!„} such that for each positive integer N,
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This reformulation characterizes non-compact operators from C(S) to c0

and is useful for constructing such operators.
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