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The basic unit of probability theory is a probability distribution. The basic
unit of statistical inference is a family of probability distributions. Dating
from the time of Laplace and Gauss, the one-dimensional normal family1

x ∼ N(μ, σ2), (1.1)

1 Equation (1.1) means that the real-valued random variable x has density
exp{−(x − μ)2/σ2} · (2πσ2)−1/2 on the real line.
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2 One-parameter Exponential Families

with μ ∈ (−∞,∞) and σ2 positive, has played a dominant role in both
theory and practice. A strong desire to go beyond normal models fueled
the development of exponential family theory. One-parameter exponential
families are useful in their own right, and crucial to understanding the mul-
tiparameter exponential families of Parts 2 through 5. Here we will present
the general one-parameter family theory, and show how it plays out in fa-
miliar contexts such as the Poisson, binomial, normal, and gamma distri-
butions.

1.1 Definitions, Notation, and Terminology

This section reviews the basic definitions for exponential families. An ex-
ponential family is a set of probability densitiesG, “density” here including
the possibility of discrete atoms (as in the family of binomial densities). A
one-parameter exponential family has densities gη(y) of the form

G =
{
gη(y) = eηy−ψ(η)g0(y)m(dy), η ∈ A, y ∈ Y

}
, (1.2)

where A and Y are subsets of the real line R1.
There is a more-or-less standard terminology for the elements of (1.2):

• η is the natural or canonical parameter; in familiar families like the Pois-
son and binomial, it often isn’t the parameter we are used to working
with.

• y is the sufficient or natural statistic, a name that will be more meaningful
when we discuss repeated sampling situations; in many cases (the more
interesting ones) y = y(x) is a function of an observed data set x (as in
the binomial example below); y takes values in its sample space Y.

• The densities in G are defined with respect to some carrying measure
m(dy), such as the uniform measure on [−∞,∞] for the normal family,
or the discrete measure putting weight 1 on the non-negative integers
(“counting measure”) for the Poisson family. Usually m(dy) won’t be
indicated in our notation. We will call g0(y) the carrying density.

• ψ(η) in (1.2) is the normalizing function or cumulant generating func-
tion; it scales the densities gη(y) to integrate to 1 over sample space Y,∫

Y
gη(y)m(dy) =

∫
Y

eηyg0(y)m(dy)
/
eψ(η) = 1. (1.3)

• The natural parameter space A consists of all η for which the integral
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1.1 Definitions, Notation, and Terminology 3

on the right is finite,

A =
{
η :

∫
Y

eηyg0(y)m(dy) < ∞
}
. (1.4)

Homework 1.1 Use convexity to prove that if η1 and η2 ∈ A then so
does any point in the interval [η1, η2] (implying that A is a possibly infinite
interval in R1).

Homework 1.2 We can reparameterize G in terms of η̃ = cη and ỹ = y/c.
Explicitly describe the reparameterized densities g̃η̃(ỹ).

Suppose g0(y) is any given positive function on a subset Y of the real
line. We can construct an exponential family G through g0(y) by “tilting” it
exponentially,

gη(y) ∝ eηyg0(y), (1.5)

and then renormalizing gη(y) to integrate to 1,

gη(y) = eηy−ψ(η)g0(y), where eψ(η) =

∫
Y

eηyg0(y)m(dy). (1.6)

The space A is all values of η such that the integral is finite. It seems like
we might employ other tilting functions, say

gη(y) ∝
1

1 + η|y|
g0(y), (1.7)

but only exponential tilting gives convenient properties under independent
sampling.

If η0 is any point in A we can write

gη(y) =
gη(y)
gη0 (y)

gη0 (y) = e(η−η0)y−(ψ(η)−ψ(η0))gη0 (y). (1.8)

This is the same exponential family, now represented with

η −→ η − η0, ψ −→ ψ(η) − ψ(η0), and g0 −→ gη0 . (1.9)

Any member gη0 (y) of G can be chosen as the carrier density, with all the
other members as exponential tilts of gη0 . Important: the sample space Y
is the same for all members of G, and all put positive probability on ev-
ery point in Y. The members of G are absolutely continuous with respect
to each other, which greatly reduces the opportunities for pathologies in
exponential families.
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4 One-parameter Exponential Families

The Poisson Family

As an important first example we consider the Poisson family. A Pois-
son random variable Y having expectation μ > 0 takes values on the non-
negative integers Z+ = {0, 1, . . . },

Prμ{Y = y} = e−μμy/y!, for y ∈ Z+. (1.10)

The densities e−μμy/y!, taken with respect to counting measure onY = Z+,
can be written in exponential family form as

gη(y) = eηy−ψ(η)g0(y)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
η = log μ (μ = eη)
ψ(η) = eη (= μ)
g0(y) = 1/y!.

(1.11)

(Here g0(y) is not a member of G, and is not even a proper density.)

Homework 1.3 (a) Rewrite G so that g0(y) corresponds to the Poisson
distribution with μ = 1.

(b) Carry out the numerical calculations that tilt Poi(12), seen in Fig-
ure 1.1, into Poi(6).
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Figure 1.1 Poisson densities for μ = 3, 6, 9, 12, 15, 18; heavy
curve with dots for μ = 12.
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1.2 Moment Relationships 5

Even though the mathematics in (1.11) is straightforward, it is still a
little surprising to see that any Poisson density is a simple exponential tilt
of any other.

1.2 Moment Relationships

The name cumulant generating function for the normalizer ψ(η) reflects
an older methodology for finding expectations, variances, and higher-order
moments. The methodology is particularly useful and easy to apply within
exponential families.

Expectation and Variance

Differentiating exp{ψ(η)} =
∫
Y eηyg0(y)m(dy) with respect to η, and indicat-

ing differentiation by dots, gives

ψ̇(η)eψ(η) =

∫
Y

yeηyg0(y)m(dy) (1.12)

and (
ψ̈(η) + ψ̇(η)2

)
eψ(η) =

∫
Y

y2eηyg0(y)m(dy). (1.13)

(The dominated convergence conditions for differentiating inside the inte-
gral are always satisfied inside exponential families; see Theorem 2.2 of
Brown, 1986.) Multiplying by exp{−ψ(η)} gives expressions for the expec-
tation μη and variance Vη of Y ,

ψ̇(η) = μη = Eη{Y}, (1.14)

ψ̈(η) = Vη = Varη{Y}, (1.15)

where Eη and Varη indicate expectation and variance under density gη. Vη
is greater than 0, implying that ψ(η) has a positive second derivative ev-
erywhere, in other words, that ψ(η) is convex. Except in trivial cases, the
variance Vη is positive for all η ∈ A.

Notice that

μ̇ =
dμ
dη
= Vη > 0.

The mapping from η to μ is 1:1 increasing and infinitely differentiable. We
can index the family G just as well with μ, the expectation parameter, as
with η. Functions like ψ(η), Eη, and Vη can just as well be thought of as
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6 One-parameter Exponential Families

functions of μ. We will sometimes write ψ, V , etc. when it’s not necessary
to specify the argument. Notations such as Vμ formally mean Vη(μ).

Note Suppose that ζ is a parameter that can be defined as a function of
either η or μ,

ζ = h(η) = H(μ).

Let ḣ = dh/dη and H′ = dH/dμ. Then

H′ = ḣ
dη
dμ
=

ḣ
V
. (1.16)

Skewness and Kurtosis

The first two moments of a random variable Y describe its expectation and
variance. The third and fourth moments give its skewness and kurtosis,
valuable for higher-order asymptotic approximations. For instance, a first-
order Edgeworth expansion says that

Pr {Y ≤ median (Y)} � 0.5 +
1

6
√

2π
SKEWNESS (Y),

while the second-order approximation also involves Y’s kurtosis.
A pre-computer technology, cumulants2 are certain linear combinations

of moments that are easy to deal with in repeated sampling situations (Sec-
tion 1.3). ψ(η) is the cumulant generating function for g0 and ψ(η) − ψ(η0)
is the CGF for gη0 (y), that is,

eψ(η)−ψ(η0) =

∫
Y

e(η−η0)ygη0 (y)m(dy).

By definition, the Taylor series for ψ(η) − ψ(η0) has the cumulants k j of
gη0 (y) as its coefficients,

ψ(η) − ψ(η0) = k1(η − η0) +
k2

2
(η − η0)2 +

k3

6
(η − η0)3 + · · · .

2 Cumulants add correctly under independent sampling: if X and Y are independent then
the jth cumulant of X + Y is the sum of their jth cumulants, this holding for all j. This
isn’t true for central jth moments E0{Y − μ0} j for j > 3. Cumulants are an algebraic
computational tool for simplifying higher-order moment relationships, but here we will
never go beyond j = 4. Older texts, such as Kendall and Stuart (1958), tabulate the
relations of cumulants and moments up to j = 10.
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1.2 Moment Relationships 7

Equivalently, letting dots indicate derivatives,

ψ̇(η0) = k1 (= μ0), ψ̈(η0) = k2 (= V0),
...
ψ (η0) = k3

(
= E0{Y − μ0}3

)
,

....
ψ (η0) = k4

(
= E0{Y − μ0}4 − 3V2

0

)
,

etc., where k1, k2, k3, k4, . . . are the cumulants of gη0 .
A real-valued random variable Y has skewness and kurtosis defined by

SKEWNESS(Y) =
E(Y − EY)3

(Var(Y))3/2 ≡ “γ” =
k3

k3/2
2

and

KURTOSIS(Y) =
E(Y − EY)4

(Var(Y))2 − 3 ≡ “δ” =
k4

k2
2

.

Putting this together, if Y ∼ gη(·) is an exponential family, then

Y ∼
[

ψ̇, ψ̈1/2,
...
ψ

/
ψ̈3/2,

....
ψ

/
ψ̈2

]
,

↑ ↑ ↑ ↑
expectation standard skewness kurtosis

deviation

(1.17)

where the derivatives are taken at η.
For the Poisson family

ψ = eη = μ,

so all the cumulants equal μ

ψ̇ = ψ̈ =
...
ψ =

....
ψ = μ,

giving

Y ∼
[
μ,

√
μ, 1

/√
μ, 1/μ

]
.

↑ ↑ ↑ ↑
exp st dev skew kurt

(1.18)

A Useful Result

Continuing to use dots for derivatives with respect to η and primes for
derivatives with μ, notice that

γ =

...
ψ

ψ̈3/2
=

V̇
V3/2 =

V ′

V1/2 (1.19)
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8 One-parameter Exponential Families

(using H′ = ḣ/V). Therefore

γ = 2
(√

V
)′
= 2

d
dμ

sdμ, (1.20)

where sdμ = V1/2
μ is the standard deviation of y. In other words, γ/2 is the

rate of change of sdμ with respect to μ; this plays a role in the theory of
bootstrap confidence intervals (Part 5).

Homework 1.4 Show that

(a) δ = V ′′ + γ2 and (b) γ′ =
δ − 3/2γ2

sd
.

Note The classical exponential families – binomial, Poisson, normal, etc.
– are those with closed-form CGFs ψ, yielding neat expressions for means,
variances, skewnesses, and kurtoses.

Modern computing power lets us work with general exponential families
where results like (1.17) can be exploited numerically, no matter what the
form of ψ(η).

Unbiased Estimate of η

By definition y is an unbiased estimate of μ (and, in fact, by completeness
the only unbiased estimate of form t(y)). What about η?

• Let l0(y) = log g0(y) and l′0(y) =
dl0(y)/dy.

• Suppose Y = [y0, y1] (a possibly
infinite interval) and that m(y) =
1 for all y ∈ Y.

Lemma 1.1

Eη
{
−l′0(y)

}
= η −

(
gη(y1) − gη(y0)

)
.

Homework 1.5 Prove Lemma 1.1. (Hint: Integration by parts.)

So, if gη(y) = 0 (or → 0) at the extremes of Y, then −l′0(y) is a unbiased
estimate of η.

Homework 1.6 Numerically calculate values of−l′0(y) to estimate η using
Lemma 1.1 for y ∼ Poi(μ). Does it work?
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1.3 Repeated Sampling 9

1.3 Repeated Sampling

One-parameter exponential families have a crucial property that makes
them simple to deal with, both in theory and practice: in repeated sampling
situations, they retain one-parameter exponential family structure.3

Suppose y1, . . . , yn is an independent and identically distributed (i.i.d.)
sample from an exponential family G:

y1, . . . , yn
iid∼ gη(·), (1.21)

for an unknown value of the parameter η ∈ A. The density of y = (y1, . . . ,
yn) is

n∏
i=1

gη(yi) = e
∑n

1(ηyi−ψ)
n∏

i=1

g0(yi)

= en(ηȳ−ψ)
n∏

i=1

g0(yi),

where ȳ =
∑n

i=1 yi/n. Letting g(n)
η (y) indicate the density of y with respect

to
∏n

i=1 m(dyi),

g(n)
η (y) = en(ηȳ−ψ(η))

n∏
i=1

g0(yi). (1.22)

This is a one-parameter exponential family, with:

• natural parameter η(n) = nη (so η = η(n)/n);
• sufficient statistic ȳ =

∑n
1 yi/n (μ̄ = Eη(n){ȳ} = μ);

• normalizing function ψ(n)(η(n)) = nψ(η(n)/n);
• carrier density

∏n
i=1 g0(yi) (with respect to

∏
m(dyi)).

Homework 1.7 Show that, in the bracket notation of (1.17),

ȳ ∼
⎡⎢⎢⎢⎢⎢⎣μ, √

V
n
,
γ
√

n
,
δ

n

⎤⎥⎥⎥⎥⎥⎦ .
Note In the following, we usually index the parameter space by η rather
than η(n).

3 The older name, “Koopman–Darmois–Pitman” families, came from the separate efforts
of the three authors to show that, under mild conditions, only definition (1.2) allowed
this kind of sufficiency property.
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10 One-parameter Exponential Families

Notice that y is now a vector, and that the tilting factor eη
(n) ȳ is tilt-

ing the multivariate carrier density
∏n

1 g0(yi). This is still a one-parameter
exponential family because the tilting is in a single direction, along 1 =

(1, . . . , 1).
The sufficient statistic ȳ also has a one-parameter exponential family of

densities,

g(n)
η (ȳ) = en(ηȳ−ψ)g(n)

0 (ȳ),

where g(n)
0 (ȳ) is the g0 density of ȳ with respect to m(n)(dȳ), the induced

carrying measure.
The density (1.22) can also be written (ignoring the carrier) as

eηS−nψ, where S =
n∑

i=1

yi.

This moves a factor of n from the definition of the natural parameter to the
definition of the sufficient statistic. For any constant c we can re-express an
exponential family {gη(y) = exp(ηy−ψ)g0(y)} by mapping η to η/c and y to
cy. This tactic will be useful when we consider multiparameter exponential
families.

Homework 1.8 y1, . . . , yn
iid∼ Poi(μ). Describe the distributions of ȳ and

S , and say what are the exponential family quantities (η, y, ψ, g0,m, μ,V)
in both cases.

1.4 Maximum Likelihood Estimation in Exponential Familes

This section briefly reviews some basic results on maximum likelihood
estimation (also with a few words about testing). The methodology is par-
ticularly simple in exponential families, as we will see. A good reference
is Lehmann and Casella (1998), Theory of Point Estimation.

Suppose we observe a random sample y = (y1, . . . , yn) from a member
gη(y) of an exponential family G,

yi
iid∼ gη(y), i = 1, . . . , n,

and wish to estimate η. According to (1.22) in Section 1.3, the density of y
is

g(n)
η (y) = en[ηȳ−ψ(η)]

n∏
i=1

g0(yi), (1.23)
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1.4 Maximum Likelihood Estimation in Exponential Familes 11

where ȳ =
∑n

1 yi/n. The log likelihood function lη(y) = log g(n)
η (y), with y

fixed and η varying, is

lη(y) = n
[
ηȳ − ψ(η)

]
,

giving score function l̇η(y) = ∂/∂η lη(y) equaling

l̇η(y) = n(ȳ − μ) (1.24)

(remembering that ψ̇(η) = ∂/∂η ψ(η) equals μ, the expectation parameter).
The maximum likelihood estimate (MLE) of η is the value η̂ satisfying

l̇η̂(y) = 0.

Looking at (1.24), η̂ is that η such that μ = ψ̇(η) equals ȳ, that is,

η̂ : Eη=η̂
{
Y

}
= ȳ.

In other words, the MLE matches the theoretical expectation of Y to the
observed mean ȳ.

We can also take the score function with respect to μ,

∂

∂μ
lη(y) = l̇η(y)

∂η

∂μ
=

l̇η(y)
V
=

n(ȳ − μ)
V

. (1.25)

This gives
∂

∂μ
lη(y)

∣∣∣∣∣
μ=ȳ
= 0,

which shows that the MLE of μ is

μ̂ = ȳ.

But μ = ψ̇(η), a monotone one-to-
one function; since MLEs map in
the obvious way, we get

η̂ = ψ̇−1(ȳ).

For the Poisson η̂ = log ȳ, and for
the binomial, according to what we
will see in Section 1.5,

η̂ = log
(
π̂

1 − π̂

)
, where π̂ =

y
N
.
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12 One-parameter Exponential Families

Fisher information is the expected square of the score function – which,
since the expected score is always zero, is also its variance – denoted

i(n)
η = nV

for the information for η. We write simply iη for the case n = 1. The infor-
mation for μ is

i(n)
η (μ) = n/V,

using (1.25), the notation being understood as the information for μ in a
sample of size n, evaluated for gη(y). As always, V stands for Vη, the vari-
ance of a single observation y from gη(·).

Let ζ = h(η) be any smooth function of η, also expressed as, say,

ζ = H(μ) = h
(
ψ̇−1(μ)

)
.

Then ζ has MLE ζ̂ = h(η̂) = H(μ̂) and score

∂

∂ζ
lη(y) =

l̇η(y)

ḣ(η)
.

Figure 1.2 and Table 1.1 show the MLE and information relationships.
In general, the Fisher information iθ for a one-parameter family fθ(x)

has two expressions in terms of the first and second derivatives of the log
likelihood,

iθ = E

⎧⎪⎪⎨⎪⎪⎩
(
∂lθ
∂θ

)2
⎫⎪⎪⎬⎪⎪⎭ = −E

{
∂2lθ
∂θ2

}
. (1.26)

For i(n)
η , the Fisher information for η in y = (y1, . . . , yn), we have

−l̈η(y) = −
∂2

∂η2 n(ηȳ − ψ) = −
∂

∂η
n(ȳ − μ) = nVη = i(n)

η , (1.27)

so in this case −l̈η(y) gives i(n)
η without requiring an expectation over y.

Homework 1.9 (a) Does

i(n)
η (μ) = −

∂2

∂μ2 lη(y) ?

(b) Does

i(n)
η=η̂(μ) = −

∂

∂μ2 lη(y)
∣∣∣∣∣
η=η̂

(η̂ the MLE) ?
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1.4 Maximum Likelihood Estimation in Exponential Familes 13

Figure 1.2 Maximum likelihood estimates.

Table 1.1 Score functions and Fisher information.

Score functions Fisher information

η : l̇η(y) = n(ȳ − μ) i(n)
η = Varη

[
l̇η(y)

]
= nV = niη

μ :
∂lη(y)
∂μ

=
n(ȳ − μ)

V
i(n)
η (μ) =

n
V
= niη(μ)

ζ :
∂lη(y)
∂ζ

=
n(ȳ − μ)

ḣ(η)
i(n)
η (ζ) =

nV
ḣ(η)2

= niη(ζ)

Cramér–Rao Lower Bound

The Cramér–Rao lower bound (CRLB) for an unbiased estimator ζ̄ of a
general parameter ζ = h(η) is

Varη(ζ̄) ≥
1

i(n)
η (ζ)

=
ḣ(η)2

nVη
. (1.28)

For ζ ≡ the expectation parameter μ we get

Var(μ̄) ≥
V2
η

nVη
=

Vη
n
. (1.29)

In this case the MLE μ̂ = ȳ is unbiased and achieves the CRLB. This
happens only for μ or linear functions of μ, and not for η, for instance. The
regularity conditions necessary for the CRLB are almost always satisfied
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14 One-parameter Exponential Families

in exponential families, exceptions occuring at boundary points η in those
unusual cases where A is a finite or partially finite closed set.

In general, the MLE ζ̂ is not unbiased for ζ = h(η), but the bias is of
order 1/n,

Eη{ζ̂} = ζ + B(η)/n

(see Section 10 of Efron, 1975). A more general form of the CRLB gives

Varη(ζ̂) ≥

(
ḣ(η) + Ḃ(η)/n

)2

nVη
=

ḣ(η)2

nVη
+ O

(
n−2

)
.

Usually ḣ(η)2/(nVη) is a reasonable approximation for Varη(ζ̂).

Delta Method

The delta method uses a first-order Taylor series expansion to calculate
approximate variances. If X has mean μ and variance σ2, then Y = H(X) �
H(μ) + H′(μ)(X − μ) has approximate mean and variance

Y ∼̇
[
H(μ), σ2 (H′(μ))2

]
.

Homework 1.10 Show that if ζ = h(η), then the MLE ζ̂ has delta method
approximate variance

Varη(ζ̂) �
ḣ(η)2

nVη
,

in accordance with the CRLB (i(n)
η (ζ))−1. (In practice one must substitute η̂

for η in order to estimate Varη(ζ̂).)

The simple exponential form of exponential family densities has happy
consequences for hypothesis testing as well as estimation. Suppose we
wish to test the null hypothesis

H0: η = η0 versus H1: η = η1

for values η1 > η0. From (1.23) we get

log
g(n)
η1 (ȳ)

g(n)
η0 (ȳ)

= n
[
(η1 − η0)ȳ − (ψ(η1) − ψ(η0))

]
,

which is an increasing function of ȳ. By the Neyman–Pearson lemma, the
most powerful level α test of H0 (“MPα”) rejects for ȳ ≥ Y

(1−α)
0 , where

Y
(1−α)
0 is the (1 − α)th quantile of Y under H0. But this doesn’t depend on
η1, so the test is uniformly most powerful level α (“UMPα”).
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1.5 Some Important One-parameter Exponential Families 15

For nonexponential familes such as the Cauchy translation family

gη(y) =
1
π

1
1 + (y − η)2 ,

the MPα test depends on η1. Efron (1975) shows that in a certain geomet-
ric sense a one-parameter exponential family is a straight line through the
space of probability distributions, and this accounts for the UMP property.

1.5 Some Important One-parameter Exponential Families

A good first course in statistics will include various distribution families
– normal, Poisson, binomial, gamma – all of which turn out to be one-
parameter exponential families. We introduced the Poisson in Section 1.1.
This section examines other well-known families, and some that are not
so well known. All of these have one important thing in common: their
normalizing function ψ(η), the CGF, has a closed-form expression. Modern
computing ability lets us construct useful exponential families where ψ(η)
is not closed-form, a first example appearing in Section 1.7.

Normal with Variance 1

Normal distributions have played a central role in the evolution of inferen-
tial statistics. We begin with the simplest case, where the observed variable
Y is normal with unknown expectation μ and fixed variance 1, indicated
Y ∼ N(μ, 1). The family G has densities

gμ(y) =
1
√

2π
e−

1
2 (y−μ)2

(μ, y ∈ R1) (1.30)

with respect to Lebesque measure m(dy) = dy. This can be written in ex-
ponential family form as

gμ(y) = eμy−μ
2/2 ·

1
√

2π
e−y2/2.

In terms of the definitions following (1.1), μ is the expectation parameter
Eη{Y}, and

η = μ, y = y, ψ =
1
2
η2, g0(y) =

1
√

2π
e−

1
2 y2

(g0(y), the standard normal density, is often denoted as φ(y)). The variance
function is Vη = 1.
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16 One-parameter Exponential Families

Homework 1.11 Suppose Y ∼ N(μ, σ2) withσ2 fixed and known. Derive
η, y, ψ, and g0.

Binomial

Y ∼ Bi(N, π), N known, indicates the number of successes in N indepen-
dent flips of a coin with probability π of success. The density function is

g(y) =
(
N
y

)
πy(1 − π)N−y (y = 0, 1, . . . ,N) (1.31)

with respect to counting measure on {0, 1, . . . ,N}. This can be written as(
N
y

)
e(log π

1−π )y+N log(1−π),

a one-parameter exponential family, with:

• η = log[π/(1 − π)] (so π = (1 + e−η)−1, 1 − π = (1 + eη)−1);
• A = (−∞,∞), Y = {0, 1, . . . ,N};
• y = y;
• expectation parameter μ = Nπ = N(1 + e−η)−1;
• ψ(η) = N log(1 + eη);
• variance function V = Nπ(1 − π) (= μ(1 − μ/N));
• g0(y) =

(
N
y

)
.

Homework 1.12 Show that the binomial has skewness and kurtosis

γ =
1 − 2π

√
Nπ(1 − π)

and δ =
1 − 6π(1 − π)

Nπ(1 − π)
.

Homework 1.13 Notice that A = (−∞,∞) does not include the cases
π = 0 or π = 1. Why not?

Gamma and Chi-squared

The notation

Y ∼ λGN (1.32)

indicates that Y is a scaled gamma variable having positive scale factor λ,
density

g(y) =
yN−1e−y/λ

λNΓ(N)
, for Y = (0,∞), (1.33)
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1.5 Some Important One-parameter Exponential Families 17

and N positive, fixed, and known. With λ the unknown parameter, this is a
one-parameter exponential family,

η = −
1
λ

; μ = Nλ = −
N
η

;

V =
N
η2 =

μ2

N
= Nλ2;

ψ = −N log(−η); γ =
2
√

N
; δ =

6
N
.

(1.34)

Situation (1.32) is denoted Y ∼ Gamma(N, λ), or sometimes Y ∼ Gamma
(N, 1/λ), where r = 1/λ is the rate parameter. Additivity: if Yi

ind∼ λGNi for
i = 1, . . . ,K, then

∑K
1 Yi ∼ λG∑

Ni .

Homework 1.14 Derive the skewness and kurtosis γ and δ.

By definition, a chi-squared random variable with m degrees of freedom
is twice a gamma with N = m/2, written as

Y ∼ χ2
m = 2Gm/2.

Chi-squared distributions apply to estimates of variance from normal ob-
servations. If

xi
ind∼ N(0, σ2), for i = 1, . . . ,m,

then

σ̂2 =

m∑
1

x2
i

m
∼
σ2χ2

m

m
. (1.35)

In this case σ̂2 is an unbiased estimate of σ2, having mean, standard devi-
ation, skewness, and kurtosis, in the notation of (1.17),

σ̂2 ∼
[
σ2,

σ2

√
m/2
,

2
√

m/2
,

12
m

]
. (1.36)

Chi-squared distributions entered statistics from the world of 19th cen-
tury physics. The Maxwell–Boltzmann distribution describes the velocity
of gas molecules. Individual molecules are assumed to have independent,
normal signed speeds in three dimensions,

v1, v2, v3
ind∼ N(0, σ2),

in which case their velocity v = (v2
1 + v2

2 + v2
3)1/2 is distributed as

v ∼ σ
√
χ2

3,
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18 One-parameter Exponential Families

a scaled “chi” distribution with three degrees of freedom. Boltzmann’s the-
ory of kinetic gases says that σ = kBT/mass, where T is temperature, mass
is the molecule’s mass, and kB is Boltzmann’s constant. A surprising fact
says that v is typically in the range of a thousand miles per hour at room
temperature, something to contemplate as you relax on a nice summer’s
day.

Homework 1.15 Derive the Maxwell–Boltzmann density f (v).

The Negative Binomial Distribution

A coin with probability of heads θ is flipped until exactly k heads are ob-
served. Let Y = {# tails observed}. It has density

g(y) =
(
y + k − 1

k − 1

)
(1 − θ)yθk

=

(
y + k − 1

k − 1

)
e[log(1−θ)]y+k log θ,

(1.37)

and sample space Y = {0, 1, 2, . . . }. This is a one-parameter exponential
family with

η = log(1 − θ), ψ(η) = −k log(1 − eη),

μ = k
1 − θ
θ
, V =

μ

θ
.

(1.38)

The negative binomial can be thought of as an overdispersed version of
the Poisson. For a given value of μ, its variance V is always greater than
the Poisson variance μ – as illustrated in Figure 1.3 – making the negative
binomial useful for situations with count data where there are reasons to
suspect overdispersion.4 If k → ∞ with θ changing to keep μ fixed, then
Y → Poi(μ).

For a given value of μ, the ratio V/μ = 1 + μ/k decreases to 1 as

φ ≡ 1/k,

with φ often called the dispersion parameter; distribution (1.37) is denoted
by NB(μ, φ). A minor disadvantage of the negative binomial family is that
it is not exponential in the dispersion parameter φ (or in k). Section 3.9
discusses the “double Poisson” distribution, which is a full two-parameter
exponential family of overdispersed Poisson distributions.

4 As used in the popular algorithm DESeq2 for the analysis of genetic sequence data
(Love et al., 2014).
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Figure 1.3 Poisson(10) and negative binomials with mean 10,
k = 40, 10, and 3.

Homework 1.16 Notice that ψ = kψ0 where ψ0 is the CGF for k = 1.
Give a simple explanation for this. How does this affect the expressions for
μ and V? What about the expression for the skewness γ?

Homework 1.17 Show that if μ is drawn from a gamma distribution and
y ∼ Poi(μ) is observed, then, marginally, y has a negative binomial dis-
tribution. (Another name for the negative binomial is “gamma-Poisson”.)

Inverse Gaussian

Let W(t) be a Wiener process with
drift 1/μ, that is, W(t) ∼ N(t/μ, t)
with Cov[W(t),W(t+d)] = t. Define
Y as the first passage time to W(t) =
1. Then it turns out that Y has the
“inverse Gaussian” or Wald density

g(y) =
1√
2πy3

e−
(y−μ)2

2μ2y
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20 One-parameter Exponential Families

(y and μ in R′). This is an exponential family with:

• η = −(2μ2)−1;
• ψ = −

√
−2η;

• V = μ3.

We might have called the negative binomial the “inverse binomial” in-
stead, since its definition is a discrete version of the first-passage time con-
struction in the diagram above.

Reference Johnson and Kotz (1970a), Continuous Univariate Distribu-
tions Vol. 1, Chapter 15.

Homework 1.18 Show Y ∼ [μ, μ3/2, 3μ1/2, 15μ] as the mean, standard
deviation, skewness, and kurtosis, respectively.

One way to characterize exponential families is by how the variance V
behaves as a function of the expectation μ. Table 1.2 shows Vμ equaling
various powers of μ. There is no family with Vμ ∝ μ1.5, say, but quasi-
likelihood methods (Section 3.9) let us act as if there is. This was a tactic
used in the early history of generalized linear models but will not be ex-
plored here.

Table 1.2 V as a function of μ in some one-parameter exponential
families.

Normal Poisson Scaled Gamma Inverse Normal

Vμ ∝ μ0 μ μ2 μ3

2 × 2 Tables (Tilted Hypergeometric Family)
The diagram at right shows a hypo-
thetical two-by-two table compar-
ing men’s and women’s responses
to a yes/no question, perhaps “Have
you attended a ballet within the last
five years?” The N respondents have
provided counts

X = (X1, X2, X3, X4)

Men

Women

Yes No

Column totals

Row
totals

for the four possible categories – (man, yes); (man, no); (woman, yes);
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1.5 Some Important One-parameter Exponential Families 21

(woman, no) – labeled 1, 2, 3, 4 as shown. As discussed in Section 2.9, X
has a four-category multinomial distribution, with true probabilities

π = (π1, π2, π3, π4)

for the four categories.
Perhaps we would like to answer the question, “Do men and women

differ in their ballet attendance?” The question can be symmetrically stated
in terms of the log odds parameter

θ = log
(
π1/π2

π3/π4

)
, (1.39)

as a test of the null hypothesis H0: θ = 0 (i.e., men and women have
the same probability of answering yes). Karl Pearson suggested the chi-
squared test of H0 in the early 1900s. Fisher’s exact test of H0 (Fisher,
1925) leads to a one-parameter exponential family, the “tilted hypergeo-
metric”.

Testing H0 in terms of X seems awkward since X is four-dimensional.
Fisher suggested conditioning the 2×2 table on its marginal sums (r1, r2, c1,
c2) or equivalently conditioning on (N, r1, c1), since r2 = N − r1 and c2 =

N − c1. With the marginals fixed, we need only know x1 to fill in the 2 × 2
table.

Fisher’s suggestion was to base the test of H0: θ = 0 on the conditional
distribution of x1 given (r1, r2, c1, c2). Under H0, x1 has the hypergeometric
distribution

g0(x1 | r1, r2, c1, c2) =
(
r1

x1

)(
r2

c1 − x1

)/(
N
c1

)
, (1.40)

for x1 in the set of possible integer values consistent with the marginal
constraints

max(0, c1 − r2) ≤ x1 ≤ min(c1, r1); (1.41)

x1 has

expectation =
r1c1

N
and variance =

r1r2c1c2

N2(N − 1)
.

Conditioning has the effect of reducing a four-dimensional testing prob-
lem to one dimension, at the expense of losing whatever information the
marginal totals have on H0, not much in most situations.

What happens if H0 is not true? Beginning with the probabilities (π1, π2,
π3, π4) for the four-category multinomial pictured above, Section 2.8 and
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22 One-parameter Exponential Families

Section 2.9 show that the conditional distribution of x1 given (r1, r2, c1, c2)
forms a one-parameter exponential family

gθ(x1) =
g0(x1)eθx1

(
N
c1

)
C(θ)

, (1.42)

where

C(θ) =
∑

x1

(
r1

x1

)(
r2

c1 − x1

)
eθx1 ,

x1 as in (1.41). That is, we tilt the hypergeometric distribution (1.40) ac-
cording to eθx1 , θ the log odds parameter (1.39), and then renormalize to
make gθ sum to 1.
Reference Lehmann and Romano (2005), Testing Statistical Hypotheses,
Section 4.5.

The Ulcer Data
A clinical trial was held in 41 cities
comparing a new ulcer surgery,
the Treatment, with the standard
surgery, or Control. The 2 × 2 table
at right shows the outcomes for city
14.

5
The obvious estimate of θ is

θ̂ = log
(
9/12
7/17

)
= 0.600.

Treatment

Control

Success Failure

12

7

9

17

29 45

24

21

16

Figure 1.4 graphs the likelihood, i.e., expression (1.42) as a function of θ,
with the data held fixed (normalized so that max{L(θ)} = 1).

Homework 1.19 (a) Compute the likelihood L(θ) = gθ(θ̂) numerically
and verify that it is maximized at θ̂ = 0.600.

(b) Verify numerically that

−
d2 log L(θ)

dθ2

∣∣∣∣∣∣
θ̂

= 2.56.

(Note that the quantity on the left is sometimes called “the observed
Fisher information”, as discussed in Part 4.)

(c) Using this result, guess the variance of θ̂. Hint: Think of the same
calculation if θ̂ ∼ N(θ, σ2).

5 The results for all 41 cities are in the file named ulcdata.
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Figure 1.4 ulcdata #14; likelihood function for log odds ratio
θ; max at θ = 0.600; −l̈ = 2.56.

The Structure of One-parameter Exponential Families

Suppose fθ(x), θ and x possibly vectors, is a family of densities satisfying

log fθ(x) = A(θ)B(x) +C(θ) + D(x),

with A, B,C,D real. Then { fθ(x)} is
a one-parameter exponential family
with:

• η = A(θ);
• y = B(x);
• ψ = −C(θ);
• log g0 = D(x).

A two-way table of log fθ(x) would have additive components C(θ)+D(x),
and an interaction term A(θ)B(x).

Homework 1.20 I constructed a 14 × 9 matrix P with i jth element

pi j = Bi(xi, θ j, 13),
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24 One-parameter Exponential Families

the binomial probability of xi for probability θ j, sample size n = 13, where

xi = i, for i = 0, 1, . . . , 13,

θ j = 0.1, . . . , 0.9.

Then I calculated the singular value decomposition (R function svd) of
log P. How many non-zero singular values did I see? (Equivalently, what
was the rank of log P?)

1.6 Bayes Families

Exponential families play a major role in Bayesian calculations. Suppose
we observe Y = y from a one-parameter exponential family

gη(y) = eηy−ψ(η)g0(y),

where η itself has a prior density

η ∼ π(η)

with respect to Lebesgue measure on a set A. Bayes rule

π(η | y) = π(η)gη(y)/g(y), (1.43)

yields the posterior density of η given y, π(η | y), where g(y) is the marginal
density

g(y) =
∫
A
π(η)gη(y) dη.

(Note that here gη(y) is the likelihood function, with y fixed and η varying.)
Putting all this together gives

π(η | y) = eyη−log(g(y)/g0(y))
(
π(η)e−ψ(η)

)
. (1.44)

We recognize this as a one-parameter exponential family with:

• natural parameter “η” = y;
• sufficient statistic “y” = η;
• CGF ψ = log(g(y)/g0(y));
• carrier g0 = π(η)e−ψ(η).

Homework 1.21 (a) Show that prior π(η) for η corresponds to prior
π(η)/Vη for μ. (b) What is the posterior density π(μ | y) for μ?
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Conjugate Priors

Certain choices of π(η) yield particularly simple forms for π(η | y) or
π(μ | y), and these are called conjugate priors. They play an important
role in modern Bayesian applications. As an example, the conjugate prior
for Poisson is the gamma.

Homework 1.22 (a) Suppose y ∼ Poi(μ) and μ ∼ mGν, a scale multiple
of a gamma with ν degrees of freedom. Show that

μ | y ∼
m

m + 1
Gy+ν.

(b) Also show that

E{μ | y} =
m

m + 1
y +

1
m + 1

(mν)

(compared to E{μ} = mν a priori, so E{μ | y} is a linear combination
of y and E{μ}).

(c) What is the posterior distribution of μ having observed y1, y2, . . . , yn
iid∼

Poi(μ)?

Diaconis and Ylvisaker (1979) provide a general formulation of conju-
gacy: if we observe

y1, . . . , yn
iid∼ gη(y) = eηy−ψ(η)g0(y),

the conjugate prior for μ with respect to Lebesgue measure is

πn0,y0 (μ) = c0en0[ηy0−ψ(η)]/
Vη, (1.45)

where y0 is notionally the average of n0 hypothetical prior observations of
y (c0 is the constant making πn0,y0 (μ) integrate to 1). Prior (1.45) yields a
particularly convenient posterior density for μ:

Theorem 1.2

π(μ | y1, . . . , yn) = πn+,y+(μ),

where

n+ = n0 + n and y+ =
(
n0y0 +

∑n
1 yi

)
n+

.

Moreover,

E{μ | y1, . . . , yn} = y+.
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26 One-parameter Exponential Families

The first result, which justifies the notional interpretation of n0 and y0,
is almost immediate, but the second is more involved and won’t be verified
here.

Homework 1.23 Make the explicit connections between Theorem 1.2
and Homework 1.22.

Binomial Case

Suppose y1, . . . , yn are independent Bernoulli observations,

yi =

⎧⎪⎪⎨⎪⎪⎩0 with probability 1 − π
1 with probability π,

so y =
∑n

i=1 yi is binomial, y ∼ Bi(n, π). As in Section 1.5, y is the sufficient
statistic of a one-parameter exponential family having η = log[π/(1 − π)]
and μ = nπ.

Homework 1.24 Remembering that μ equals π in the binomial case, show
that the conjugate family (1.45) is

πn0,y0 (π) = c0π
s1−1(1 − π)s0−1, (1.46)

where (s1, s0) are the number of 1s and 0s in the hypothetical prior sample
(a “beta” distribution; see Part 2). Theorem 1.2 gives posterior expectation

E{π | y1, . . . , yn} =
s1 + y
n0 + n

. (1.47)

The interpretation of the prior (1.46) is as a hypothetical binomial sam-
ple of size n0, with observed number s1 = n0y0 of successes. Current Bayes
practice favors using small amounts of hypothetical prior information, in
the binomial case maybe s1 = 1 and n0 = 2 (so y0 = 1/2), giving

θ̂ =
1 + y
2 + n

,

pulling θ̂ a little toward 1/2, compared to the MLE y/n.

Tweedie’s Formula

Equation (1.44) gave

π(η | y) = eyη−λ(y)π0(y),
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1.7 Empirical Bayes Inference 27

where

π0(y) = π(η)e−ψ(η) and λ(y) = log
g(y)
g0(y)

,

with g(y) the marginal density of y. Define

l(y) = log g(y) and l0(y) = log g0(y).

We can now differentiate λ(y) with respect to y to get the posterior moments
(and cumulants) of η given y,

E{η | y} = λ′(y) = l′(y) − l′0(y),

Var{η | y} = λ′′(y) = l′′(y) − l′′0 (y).

Homework 1.25 Suppose y ∼ N(μ, σ2), σ2 known, where μ has prior
density π(μ). Show that the posterior mean and variance of μ given y is

μ | y ∼
[
y + σ2l′(y), σ2

(
1 + σ2l′′(y)

)]
. (1.48)

Reference Efron (2011), “Tweedie’s formula and selection bias”, JASA
1602–1614.

1.7 Empirical Bayes Inference

Bayes rule, when applicable, provides a wonderfully satisfying path for
statistical inference. The catch is that the prior density, π(η) in (1.43), is
most often unknown in typical applications. A surprising development,
post-World War II, was that when simultaneously dealing with many simi-
lar inference problems, the data itself may provide an estimate of the prior.
This is the empirical Bayes concept, an approach where exponential fami-
lies have played a central part.

Table 1.3 displays the insurance data, a summary of one year’s record
of claims from a European auto insurance company: 7840 of the 9461 pol-
icyholders made no claims during the year, 1317 made a single claim, 239
made two claims each, going on to the one person, possibly a very bad
driver, who made seven claims. In the notation of Table 1.3,

yx = # {policyholders who made x claims}, (1.49)

for x = 0, 1, . . . , 7.
Suppose the company wants to know how many accident claims it can

expect next year from a driver with x claims this year. A commonly used
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28 One-parameter Exponential Families

Table 1.3 Insurance data counts and claims, and two empirical Bayes
estimates of future claims per driver.

Claims x 0 1 2 3 4 5 6 7

Counts yx 7840 1317 239 42 14 4 4 1
Robbins’ formula 0.168 0.363 0.527 1.33 1.43 6.00 1.25
Gamma MLE 0.164 0.398 0.632 0.87 1.10 1.34 1.57

actuarial model assumes that each driver has a Poisson distribution of an-
nual accidents, gμ(x) = e−μμx/x!, μ varying from driver to driver, and with
μ having some prior density π(μ),

π(μ) −→ μ −→ x ∼ Poi(μ). (1.50)

The insurance company would like to know the Bayes posterior expectation
of μ given x,

E{μ | x} =
∫ ∞

0
μπ(μ | x) dμ =

∫ ∞
0

[e−μμx+1/x!]π(μ) dμ∫ ∞
0

[e−μμx/x!]π(μ) dμ
, (1.51)

but unless they know the prior π(μ) this is out of reach.
Here is where empirical Bayes makes its appearance. Notice that we can

rewrite (1.51) as

E{μ | x} =
(x + 1)

∫ ∞
0

[
e−μμx+1/(x + 1)!

]
π(μ) dμ∫ ∞

0
[e−μμx/x!]π(μ) dμ

=
(x + 1)g(x + 1)

g(x)
,

(1.52)

where g(x) is the marginal density of x,

g(x) =
∫ ∞

0

e−μμx

x!
π(μ) dμ.

Homework 1.26 Give a careful derivation of (1.51)–(1.52).

We don’t know g(·) either but, as the marginal distribution of x, it has an
obvious estimate in terms of the counts yx,

ĝ(x) =
yx

N

(
N =

∑
yx

)
,

N = 9461 here; (1.52) leads to Robbins’ formula (Robbins, 1956)

Ê{μ | x} = (x + 1)
yx+1

yx
. (1.53)
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1.7 Empirical Bayes Inference 29

The third line of Table 1.3 shows Ê = {μ | x = 0} = 0.168, so last year’s
perfect driver can expect about one-sixth of a claim this year, and so on up
the table.

Small values of yx make Ê{μ | x} erratic near the right end of Table 1.3.
We can get a less variable estimate of E{μ | x} by assuming a parametric
model for π(μ) in (1.52). A natural choice is the conjugate prior, the scaled
Gamma,

π(μ) =
μa−1e−μ/b

baΓ(a)
(μ > 0), (1.54)

that is, μ ∼ bGa (1.32) (making the marginal g(x) negative binomial, as in
Homework 1.17). Choosing (a, b) to be the maximum likelihood estimates
based on the counts y0, y1, . . . , yn, and substituting π̂(μ) for π(μ) in (1.52),
gave the estimates Ê{μ | x} in the last row of Table 1.3.

Homework 1.27 What is Robbins’ formula if x is binomial rather than
Poisson in (1.50)?

Robbins’ formula applies to Poisson sampling models (1.50). Suppose
instead we have a normal model,

π(μ) −→ μ −→ y ∼ N(μ, σ2), (1.55)

σ2 known. Tweedie’s formula (1.48) says that

E{μ | y} = y + σ2l′(y), (1.56)

with l′(y) the derivative of the log marginal density g(y); y is the MLE of
μ, the usual frequentist (non-Bayesian) estimate of μ, so (1.56) amounts to

E{μ | y} = MLE + Bayes correction. (1.57)

Empirical Bayes methods come into play when we have many realiza-
tions of (1.55) to deal with at once, say yi ∼ N(μi, σ

2) for i = 1, . . . ,N,
where we can use all the data to estimate the Bayes correction for each
case. In other words, we can enjoy the advantages of Bayesian estimation
without the requisite prior knowledge. A microarray example follows next.
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30 One-parameter Exponential Families

In a study of prostate cancer, n =
102 men each had his genetic ex-
pression level xi j measured on N =
6033 genes,

xi j =

⎧⎪⎪⎨⎪⎪⎩i = 1, . . . ,N genes
j = 1, . . . , n men.

There were:

• n1 = 50 healthy controls;
• n2 = 52 prostate cancer patients.

For genei, let ti equal a two-sample
t statistic comparing patients with
controls and

Men

50 controls   52 patients
G
en
es

zi = Φ
−1 [F100(ti)] (F100 CDF of a t100 distribution);

zi is a z-value, i.e., a statistic having a N(0, 1) distribution under the null
hypothesis that there is no difference in genei expression between patients
and controls.6

A reasonable model for the zis is

zi ∼ N(δi, 1),

where δi is the effect size for gene i. (In terms of our previous notation, z
and δ are playing the roles of y and μ.) The investigators were looking for
genes with large values of δi, either positive or negative. Figure 1.5 shows
the histogram of the 6033 zi values. It is a little wider than aN(0, 1) density,
suggesting some non-null (δi � 0) genes. Which ones and how much?

An empirical Bayes analysis proceeds in four steps:

1. Compute z1, . . . , zN ; N = 6033.
2. Fit a smooth parametric estimate ĝ(z) to histogram (details in Part 2).
3. Numerically differentiate l̂(z) = log ĝ(z) to get l̂′(x).
4. Estimate E{δi | zi} by

E{δi | zi} = zi + l̂′(zi), (1.58)

for i = 1, . . . ,N. Notice that all of the z-values play a role in the estima-
tion of any one δi, through their part in estimating ĝ(·).

6 Since ti ∼ F100 under the null hypothesis that δi = 0, the “probability integral
transformation” F100(ti) has a uniform distribution over [0, 1]; then the inverse
transformation Z = Φ−1(F100(ti)) ∼ N(0, 1).
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Figure 1.5 Prostate data microarray study. 6033 z-values; heavy
curve is ĝ(z) from GLM fit; dashed line is N(0, 1).

Figure 1.6 shows Ê{δ | z}. It is near zero (“nullness”) for |z| ≤ 2. At
z = 3, Ê{δ | z} = 1.31. At z = 5.29, the largest observed zi value (gene
#610), E{δ | z} = 3.94. Even though each zi is unbiased for its δi it isn’t
true that zimax , imax = 610, is unbiased for δimax . The Bayes correction in
(1.57) is quite negative, an example of selection bias or the winner’s curse:
being largest in a group of unbiased estimates involves luck as well as a
genuinely large value of δ, and that’s what empirical Bayes is accounting
for in Figure 1.6.

The purpose of a large-scale study like that for the prostate data is to
weed out the great proportion, say π0, of null genes, those having δi = 0,
in order to focus attention on those with large effect sizes. The local false
discovery rate “fdr(zi)” is the posterior probability of nullness,

fdr(zi) = Pr{δi = 0 | zi}.

Homework 1.28 (a) Show that

fdr(z) = π0g0(z)/g(z), (1.59)

with π0 the prior probability of nullness, g(z) the marginal density of z,
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Figure 1.6 Tweedie estimate of E{μ | z}, prostate study. Dashed
curve is estimated local false discovery rate fdr(z).

and

g0(z) =
e−z2/2σ2

√
2πσ2

.

(b) If π(δ) is the prior density of δ, as in (1.45), show that

E{δ | z} =
d
dz

log fdr(z).

The red dashed curve in Figure 1.6 is f̂dr(z) = g0(z)/ĝ(z), taking π0 = 1
as an upper bound, usually a close one in practice; f̂dr(3) = 0.37 for the
prostate data, so even z = 3 standard deviations away from 0, there is still
substantial probability of δ = 0.

1.8 Deviance and Hoeffding’s Formula

Traditional normal theory methods depend on notions of Euclidean dis-
tance. Deviance is an analogue of Euclidean distance applying to exponen-
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tial families. By definition the deviance D(g1, g2) between g1 and g2 is

D(g1, g2) = 2Eg1

{
log

g1(y)
g2(y)

}
= 2

∫
Y

g1(y)
(
log

g1(y)
g2(y)

)
m(dy).

(1.60)

We will also write D(η1, η2), D(μ1, μ2), or just D(1, 2) as convenient. If
g1(y) and g2(y) are densities gη1 (y) and gη2 (y) in an exponential family, then
it is easy to verify that

D(1, 2) = 2
[
(η1 − η2)μ1 − (ψ(η1) − ψ(η2))

]
.

Homework 1.29 Show that D(1, 2) ≥ 0, with strict inequality unless the
two densities are identical.

Note In general, D(1, 2) � D(2, 1).

The “Kullback–Leibler distance”, using an older name for the same
idea, equals D(η1, η2)/2. Information theory uses “mutual information” for
D( f (x, y), f (x) f (y))/2, where f (x, y) is a bivariate density and f (x) and
f (y) its marginals.

Homework 1.30 Verify these formulas for the deviance.

Normal Y ∼ N(μ, 1): D(μ1, μ2) = (μ1 − μ2)2

(This motivates the factor 2 in (1.60).)

Poisson Y ∼ Poi(μ): D(μ1, μ2) = 2μ1

[
log

(
μ1

μ2

)
−

(
1 −
μ2

μ1

)]
Binomial Y ∼ Bi(N, π): D(π1, π2) = 2N

[
π1 log

(
π1

π2

)
+(1 − π1) log

(
1 − π1

1 − π2

)]
Gamma Y ∼ λGN : D(λ1, λ2) = 2N

[
log

(
λ2

λ1

)
+

(
λ1

λ2
− 1

)]
= 2N

[
log

(
μ2

μ1

)
+

(
μ1

μ2
− 1

)]
Negative binomial (1.37): D(θ1, θ2) = k

[(
1 − θ1
θ1

)
log

(
1 − θ1
1 − θ2

)
+ log

(
θ1
θ2

)]
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34 One-parameter Exponential Families

Hoeffding’s Formula

An exponential family of densities G = {gη(y) = exp(ηy − ψ(η))} can be
rewritten in a form that is particularly helpful in discussing maximum like-
lihood estimation:

Lemma 1.3 (Hoeffding, 1965) Let η̂ be the MLE of η and μ̂ = y the MLE
of μ. Then

gη(y) = gη̂(y)e−D(η̂,η)/2 (1.61)

or, reparameterizing G in terms of μ (and recalling that μ̂ = y),

gμ(y) = gy(y)e−D(y,μ)/2. (1.62)

This says that a plot of the log likelihood log gμ(y) declines from its maxi-
mum at μ = y according to the deviance,

log gμ(y) = log gy(y) −
D(y, μ)

2
.

In our applications of the deviance, the first argument will always be the
data, the second a proposed value of the unknown parameter.

Proof The deviance in an exponential family is

D(η1, η2)
2

= Eη1

{
log

gη1 (y)
gη2 (y)

}
= Eη1 {(η1 − η2)y − ψ(η1) + ψ(η2)}

= (η1 − η2)μ1 − ψ(η1) + ψ(η2),

and
gη(y)
gη̂(y)

=
eηy−ψ(η)

eη̂y−ψ(η̂) = e(η−η̂)y−ψ(η)+ψ(η̂) = e(η−η̂)μ̂−ψ(η)+ψ(η̂).

Taking η1 = η̂ and η2 = η above, this last is e−D(η̂,η)/2. �

Repeated Sampling

If y = (y1, . . . , yn) is an i.i.d. sample from gη(·) then the deviance based on
y, say D(n)(η1, η2), is

D(n)(η1, η2) = 2Eη1

⎧⎪⎪⎨⎪⎪⎩log
g(n)
η1 (y)

g(n)
η2 (y)

⎫⎪⎪⎬⎪⎪⎭ = 2Eη1

⎧⎪⎪⎨⎪⎪⎩log
n∏

i=1

gη1 (yi)
gη2 (yi)

⎫⎪⎪⎬⎪⎪⎭
= 2

n∑
i=1

Eη1

{
log

gη1 (yi)
gη2 (yi)

}
= nD(η1, η2).
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1.8 Deviance and Hoeffding’s Formula 35

(This shows up in the binomial, Poisson, gamma, and negative binomial
cases of Homework 1.30.) Hoeffding’s formula (1.61) applied to y is

g(n)
η (y) = g(n)

η̂ (y)e−nD(η̂,η)/2. (1.63)

For η2 near η1, the deviance is related to the Fisher information iη1 = Vη1

(in a single observation y, for η1 and at η1):

D(η1, η2) = iη1 (η2 − η1)2 + O(η2 − η1)3.

Proof

∂

∂η2
D(η1, η2) =

∂

∂η2
2

[
(η1 − η2)μ1 − (ψ(η1) − ψ(η2))

]
= 2(−μ1 + μ2)

= 2(μ2 − μ1).

Also
∂2

∂η2
2

D(η1, η2) = 2
∂μ2

∂η2
= 2Vη2 .

Therefore

∂

∂η2
D(η1, η2)

∣∣∣∣∣
η2=η1

= 0 and
∂2

∂η2
2

D(η1, η2)

∣∣∣∣∣∣
η2=η1

= 2Vη1 ,

so a Taylor expansion gives

D(η1, η2) = 2Vη1

(η2 − η1)2

2
+ O(η2 − η1)3. �

Homework 1.31 What is ∂3D(η1, η2)/∂η3
2? Give an improved version of

the relationship above.

Reference Efron (1978), “The geometry of exponential families”, Ann.
Stat. 362–376.

An Informative Picture

We know that ψ(η) is a convex function of η since ψ̈(η) = Vη > 0. Figure 1.7
shows ψ(η) passing through (η1, ψ(η1)) at slope μ1 = ψ̇(η1). The difference
between ψ(η2) and the linear bounding line ψ(η1) + (η2 − η1)μ1 is ψ(η2) −
ψ(η1) + (η1 − η2)μ1 = D(η1, η2)/2.
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Figure 1.7 Convex function ψ(η) passing through (η1, ψ(η1)) at
slope μ1 = ψ̇(η1).

Unlike our other results, Figure 1.7 depends on parameterizing the de-
viance as D(η1, η2). A version that uses D(μ1, μ2) depends on the dual func-
tion φ(y) to ψ(y),

φ(y) = max
η
{ηy − ψ(η)} .

Homework 1.32 Show that:

(a) φ(μ) = ημ − ψ(η), where μ = ψ̇(η);
(b) φ(μ) is convex as a function of μ;
(c) dφ(μ)/dμ = η.

Now verify the diagram here.

Homework 1.33 Parametric bootstrap: We resample y∗ from gη̂(·), η̂ the
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MLE based on y. Show that, given y and η̂,

gη(y∗) = gη̂(y∗)e(η−η̂)(y∗−y)−D(η̂,η)/2.

Deviance Residuals

The idea here is that if D(y, μ) is the exponential family analogue of (y−μ)2

in a normal model, then

sign(y − μ)
√

D(y, μ)

should be the exponential family analogue of the normal residual y − μ.
We will work in the repeated sampling framework

yi
iid∼ gμ(·), i = 1, . . . , n,

with MLE μ̂ = ȳ and total deviance D(n)(μ̂, μ) = nD(ȳ, μ). The deviance
residual, of μ̂ = ȳ from true mean μ, is defined to be

R = sign(ȳ − μ)
√

D(n)(ȳ, μ). (1.64)

The hope is that R will be nearly N(0, 1), at least closer to normal than the
more obvious “Pearson residual”

RP =
ȳ − μ√

Vμ/n

(called “zi” later). Our hope is bolstered by the following theorem, verified
in Appendix C of McCullagh and Nelder (1983).

Theorem 1.4 The asymptotic distribution of R as n → ∞ is

R ∼̇ N
[
−an, (1 + bn)2

]
, (1.65)

where an and bn are defined in terms of the skewness γμ and kurtosis δμ of
the original (n = 1) exponential family,

an =
γμ/6√

n
and bn =

(7/36) γ2
μ − δμ

n
.

The normal approximation in (1.65) is accurate through Op(n−1), with er-
rors of order Op(n−3/2), for instance,

Pr
{

R + an

1 + bn
> 1.96

}
= 0.025 + O

(
n−3/2

)
(so-called “third-order accuracy”).
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Corollary

D(n)(ȳ, μ) = R2 ∼̇
⎛⎜⎜⎜⎜⎝1 +

5γ2
μ − 3δμ
12n

⎞⎟⎟⎟⎟⎠ · χ2
1,

where χ2
1 is a chi-squared random variable with degrees of freedom 1.

Since, according to Hoeffding’s formula,

D(n)(ȳ, μ) = 2 log
g(n)
μ̂ (y)

g(n)
μ (y)

,

this is an improved version of Wilks’ theorem: 2 log(gμ̂/gμ) → χ2
1 in one-

parameter situations.

The constants an and bn are called “Bartlett corrections”. The theorem
says that

R ∼̇
Z + an

1 + bn
, where Z ∼ N(0, 1).

Since an = O(n−1/2) and bn = O(n−1), the expectation correction in (1.65)
is more important than the variance correction.

Homework 1.34 Consider the gamma case, y ∼ λGN with N fixed (N
can be thought of as n).

(a) Show that the deviance residual sign(y − λN)
√

D(y, λN) has the same
distribution for all choices of λ.

(b) What is the skewness of the Pearson residual (y − λN)/λ(N1/2)?
(c) Use our previous results to show that

D(n)(ȳ, μ) � R2
P +

γ

6
√

n
R3

P + OP

(
n−1

)
.

As an example, Figure 1.8 is a simulation showing 2000 replications
of ȳ =

∑5
1 yi, where the yi are independent G1 variates; that is, standard

one-sided exponentials, as in the Gamma case of Homework 1.30 with
λ = N = 1. This makes ȳ ∼ G5/5, so that the deviance residual R in
(1.64) is calculated as in Homework 1.30 again, now with N = 5. The qq-
plot shows the deviance residuals (black) much closer to N(0, 1) than the
Pearson residuals (red).

https://doi.org/10.1017/9781108773157.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108773157.003


1.8 Deviance and Hoeffding’s Formula 39

*
*

* * * *
****

*****
*****

********
***************

************************
******************

******************************
************************************

******************************************************
**********************************************************************

*************************************************************************
*********************************************************************

****************************************************************************************
***************************************************************************

*******************************************************************************
***************************************************************************************************

****************************************************************************************************
************************************************************************************************

**************************************************************************************************
***********************************************************************************************************

****************************************************************************************************
*****************************************************************************

**********************************************************************************************************
********************************************************************************

******************************************************************
*****************************************************************

***********************************************************************
**************************************************

***************************************
******************************************

************************
*******************

**************************
********************

************
************

********
************

**
****

* * * * *
*

−3 −2 −1 0 1 2 3

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

z value

m
pi

ric
al

 d
ia

tri
bu

tio
n 

* * * * * *************
*******************

**********************************************
*************************************************

***************************************************************************
**********************************************************************************************************************

********************************************************************************************
********************************************************************************************************************

************************************************************************************************
*****************************************************************************************************************

*************************************************************************************************************
**************************************************************************************************

****************************************************************************************************
*************************************************************************************************************

*********************************************************************************************
***************************************************************************

*********************************************************************************************
********************************************************************************

*********************************************************
***********************************************************

**********************************************
************************************************************

**************************************
********************************

******************************
********************************

***************
***************
***************

*******************
**********
**************

*********
**********

*****
*******

****
********

****
**

Figure 1.8 qq comparison of deviance residuals (black) with
Pearson residuals (red); gamma N = 1, λ = 1, n = 5; B = 2000
simulations.

An Example of Deviance Analysis

Reference Thisted and Efron (1987), “Did Shakespeare write a newly
discovered poem?”, Biometrika 445–455.

On November 14, 1985, Gary Taylor, a respected Shakespearean scholar,
found a short poem of 429 words in the Bodleian Library that he attributed
to Shakespeare. This was a controversial stance, as no “new” text by Shake-
speare had been discovered in centuries. A word-count analysis was car-
ried out comparing the poem with Shakespeare’s attributed works (the
“canon”). Table 1.4 shows a small proportion of the results that involved
deviance residuals:

• The analysis focused on rare words, that didn’t appear often in the canon.
Column “y” of the table shows 9 distinct words in the poem that had
never appeared in the canon, “Prev” = 0; 7 that had previously appeared
once each; 5 twice each; and so on, up to 5 that had appeared 80 to 99
times each.

• Column “ν” gives predictions for the y values assuming Shakespearean
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40 One-parameter Exponential Families

authorship (based on an empirical Bayes Poisson theory relating to Rob-
bins’ formula).

• “Dev” and “R” show the Poisson deviance and deviance residuals (1.64)
between the counts y and predictions ν.

• an is the leading Bartlett correction factor in (1.65), and “RR” the par-
tially corrected residual R + an.

Table 1.4 Word-count deviance analysis of newly discovered poem.
# Prev y ν Dev R an RR

0 9 6.97 0.5410 0.736 0.0631 0.799
1 7 4.21 1.5383 1.240 0.0812 1.321
2 5 3.33 0.7247 0.851 0.0913 0.943

3–4 8 5.36 1.1276 1.062 0.0720 1.134
5–9 11 10.24 0.0551 0.235 0.0521 0.287

10–19 10 13.96 1.2478 −1.117 0.0446 −1.072
20–29 21 10.77 7.5858 2.754 0.0508 2.805
30–39 16 8.87 4.6172 2.149 0.0560 2.205
40–59 18 13.77 1.1837 1.088 0.0449 1.133
60–79 8 9.99 0.4257 −0.652 0.0527 −0.600
80–99 5 7.48 0.9321 −0.965 0.0609 −0.904

The RRs should be approximately N(0, 1) under a hypothesis of Shake-
spearean authorship. There are some suspicious discrepancies, for instance
RR = 2.805 for the 20–29 category. The sum of the Dev’s is 19.98, mod-
erately large compared to a chi-squared distribution with 11 degrees of
freedom,

Pr{χ2
11 > 19.98} = 0.046.

Nevertheless, compared with the same analysis applied to known non-
Shakespeare poems, the authors felt that Taylor’s poem had at least some
chance of being genuine. It remains controversial, and is not usually in-
cluded in the canon.

1.9 The Saddlepoint Approximation

Suppose we observe a random sam-
ple of size n from some member of
an exponential family G,

y1, . . . , yn
iid∼ gμ(·)
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(now indexed by expectation parameter μ), and wish to approximate the
density under g(n)

μ of the sufficient statistic μ̂ = ȳ for a value of μ̂ perhaps
far removed from μ. Let g(n)

μ (μ̂) denote this density.
The normal approximation

g(n)
μ (μ̂) �

√
n

2πVμ
e−

1
2

n
Vμ

(μ̂−μ)2

(1.66)

is likely to be inaccurate if μ̂ is, say, several standard errors away from μ.
Hoeffding’s formula (1.62) provides a much better result, called the sad-
dlepoint approximation. We write

g(n)
μ (μ̂) = g(n)

μ̂ (μ̂)e−nD(μ̂,μ)/2. (1.67)

For μ = μ̂, ȳ is approximately N(μ̂, V̂/n), where V̂ = ψ̈(μ̂) is the variance
of a single y under gμ̂, giving g(n)

μ̂ (μ̂) � [n/(2πV̂)]1/2 and, substituting in
(1.67), the saddlepoint approximation

g(n)
μ (μ̂) �

√
n

2πV̂
e−nD(μ̂,μ)/2. (1.68)

Because (1.68) only involves applying the central limit theorem at the
center of the g(n)

μ̂ (·) distribution, just where it is most accurate, the error in
(1.68) is a factor of only 1 + O(n−1), compared to 1 + O(n−1/2) for (1.66).
There is an enormous literature of extensions and improvements to the sad-
dlepoint approximation, a good review article being Reid (1988).

Let

Ly(μ) = g(n)
μ (y)

be the likelihood function having observed data y, expressed in terms of
the expectation parameter μ. Hoeffding’s formula (1.62), (1.63), gives

e−nD(μ̂,μ)/2 =
Ly(μ)
Ly(μ̂)

,

so the saddlepoint approximation can be expressed as

g(n)
μ (μ̂) �

√
n

2πV̂

Ly(μ)
Ly(μ̂)

,

which provides an expression for the density of ȳ = μ̂ in terms of the
likelihood function.

Since dμ̂/dη̂ = V̂ , there is an equivalent expression for the density of η̂,
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42 One-parameter Exponential Families

say g(n)
η (η̂) (abusing notation somewhat),

g(n)
η (η̂) �

√
nV̂
2π

Ly(η)
Ly(η̂)

. (1.69)

Barndorff-Nielsen (1980) showed approximation (1.69) holding in a vari-
ety of situations, including curved exponential families (Part 4), and it is
sometimes known as his “magic formula”.

The Lugananni–Rice Formula
The saddlepoint formula can be in-
tegrated to give an approximation to
α(μ), the attained significance level
or “p-value” of parameter value μ
having observed ȳ = μ̂:

α(μ) =
∫ ∞

μ̂

g(n)
μ (t)m(dt).

Numerical integration is required to compute α(μ) from the saddlepoint
formula itself, but the Lugananni–Rice formula provides a highly accurate
closed-form approximation:

α(μ) � 1 − Φ(R) − ϕ(R)
(

1
R
−

1
Q

)
+ O

(
n−3/2

)
,

where Φ and ϕ are the standard normal CDF and density,

R = sign(μ̂ − μ)
√

nD(μ̂, μ)

the deviance residual, and

Q =
√

nV̂ · (η̂ − η)

the crude form of the Pearson residual based on the canonical parameter
η, not on μ. (Remember that ŝd(η̂) � (nV̂)−1/2, so Q = (η̂ − η)/ŝd(η̂).)
Reid (1988) is also an excellent reference here, giving versions of the
Lugananni–Rice formula that apply not only to exponential family situ-
ations but also to general distributions of ȳ. See also Section 6 of Daniels
(1983).

Homework 1.35 Suppose we observe y ∼ λGN , GN gamma df = N, with
N = 10 and λ = 1. Use the Lugananni–Rice formula to calculate α(μ) for
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1.9 The Saddlepoint Approximation 43

y = μ̂ = 15, 20, 25, 30, and compare the results with the exact values. (You
can use any expression above for R.)

Homework 1.36 Another version of the Lugananni–Rice formula is

1 − α(μ) � Φ(R′),

where

R′ = R +
1
R

log
Q
R
.

How does this relate to the first form?

Large Deviations and the Chernoff Bound

In a generic “large deviations” problem, we observe an i.i.d. sample

y1, . . . , yn
iid∼ g0(·)

from a known density g0 having mean and standard deviation yi ∼ (μ0, σ0).
We wish to compute

αn(μ1) = Prg0{ȳ ≥ μ1}

for some fixed value μ1 > μ0. As n → ∞, the number of standard errors√
n(μ1 − μ0)/σ0 gets big, rendering the central limit theorem useless.

Homework 1.37 (“Chernoff bound”) Let gη(y) = eηy−ψ(η)g0(y) (“the ex-
ponential family through g0”).

(a) For any λ > 0 show that αn(μ1) = Prg0{ȳ ≥ μ1} satisfies

αn(μ1) ≤ βn(μ1) ≡
∫
Y

enλ(ȳ−μ1)g(n)
0 (ȳ) dȳ.

(b) Show that βn(μ1) is minimized at λ equal the value η̂ such that

ψ̇(η̂) = μ1.

(c) Finally, verify Chernoff’s large deviation bound

Prg0{ȳ ≥ μ1} ≤ e−nD(μ1,0)/2, (1.70)

where D(μ1, 0) is the deviance between gη̂(y) and g0(y).

Notice that for fixed μ1, neither η̂ nor D(μ1, 0) depends on n, so αn(μ1) → 0
exponentially fast, which is typical for large deviation results.
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1.10 Transformation Theory

Reference DiCiccio (1984), “On parameter transformations and interval
estimation”, Biometrika 477–485.

Reference Efron (1982), “Transformation theory: How normal is a fam-
ily of distributions?”, Ann. Stat. 323–339.

Reference Hougaard (1982), “Parametrizations of nonlinear models”, JR
SS-B 244–252.

Power transformations are used to make exponential families more like
the standard normal translation family Y ∼ N(μ, 1). For example, Y ∼
Poi(μ) has variance Vμ = μ depending on the expectation μ, while the
transformation

Z = H(Y) = 2
√

Y

yields, approximately, Var(Z) = 1 for all μ. In a regression situation with
Poisson responses y1, . . . , yn, we might first change to zi = 2yi

1/2 and then
employ standard linear model methods. (That’s not how we will proceed in
Part 3, where generalized linear model techniques are discussed. The intro-
duction of GLMs reduced, but did not eliminate, interest in transformation
theory.)

Table 1.5, credited to unpublished work by R. Wedderburn, encompasses
a considerable number of special transformations for one-parameter expo-
nential families. Let ζ be a transformation of μ,

ζ = H(μ) and ζ̂ = H(μ̂),

where μ̂ is the MLE of μ based on observing a single y ∼ gμ(·). If we make
the derivative H′(μ) satisfy

H′(μ) = Vδ−1
μ , (1.71)

then various choices of δ result in ζ̂ = H(μ̂) satisfying the properties shown
in Table 1.5, as explained next.

Table 1.5 Wedderburn’s transformations (1.71) and their results.
δ 0 1/3 1/2 2/3 1

Result Canonical Normal Stabilized Normal Expectation
parameter η likelihood variance density parameter μ
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The choice δ = 0 has

dζ
dμ
= H′(μ) =

1√
Vμ
.

But dη/dμ = 1/Vμ, so in this case ζ = η. At the other end of the scale,
δ = 1 has H′(μ) = 1, that is, ζ = μ.

The stabilized variance result, δ = 1/2, follows from the delta method:

ζ̂ = H(μ̂), with H′(μ) =
1√
Vμ
,

implies that

sdμ(ζ̂) �
sdμ(μ̂)√

Vμ
= 1.

For the Poisson family, with Vμ = μ,

H′(μ) =
1
√
μ

gives

H(μ) = 2
√
μ + any constant,

as above. For Y ∼ Poi(μ), the usual approximation for expectation and
variance is

2
√

Y ∼̇
(
2
√
μ, 1

)
. (1.72)

Homework 1.38 Numerically calculate how well (1.72) works for μ =
5, 8, 12, 18, 25.

Small adjustments to the δ = 1/2 formula are known to improve variance
stabilization. For the binomial case

p ∼ Bi(N, π)/N,

Anscombe’s transformation

ζ̂ = 2
√

N sin−1

⎛⎜⎜⎜⎜⎜⎜⎜⎝
√

N p + 3/8

N + 3/4

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (1.73)

does a good job of making Varπ(ζ̂) � 1 for n say 15 or more.

Homework 1.39 Ignoring correction terms 3/8 and 3/4, show that (1.71)
with δ = 1/2 gives (1.73).
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Normal density, δ = 2/3, means that ζ̂ = H(μ̂) is approximately N(H(μ),
1). (This is not the same as δ = 1/2 in Table 1.5, where the emphasis is on
constant variance rather than normality.) Its rationale is based on asymp-
totic expansions. Working in a repeated sampling framework, y1, . . . , yn

iid∼
gμ(·), where μ̂ = ȳ, define

zn =
ȳ − μ
√

V/n
(V = Vμ),

so that zn has expectation 0, variance 1, and skewness γ · n−1/2, where γ
is the skewness for a single yi, as in Homework 1.7. A two-term Cornish–
Fisher expansion suggests that the distribution of zn can be normalized by
the transformation

Z = zn −
γ

6
√

n
(z2

n − 1), (1.74)

which makes the skewness of Z approximately 0.
We want to show that ζ̂ = H(μ̂), with δ = 2/3 in (1.71), asymptotically

agrees with (1.74), at least through two terms. The Taylor expansion

ζ̂ � H(μ) + H′(μ)(μ̂ − μ) + H′′(μ)
(μ̂ − μ)2

2

= H(μ) + H′(μ)

√
V
n

zn + H′′(μ)
V
2n

z2
n

gives ζ̂ approximate expectation and standard deviation

Eμ
{
ζ̂

}
= H(μ) + H′′(μ)

V
2
,

sdμ
{
ζ̂

}
= H′(μ)

√
V
n

(assuming H′(μ) > 0). Therefore

ζ̂ − Eμ
{
ζ̂

}
sdμ

{
ζ̂

} � zn +
H′′(μ)
2H′(μ)

√
V
n

(z2
n − 1). (1.75)

Expansion (1.75) agrees with (1.74) if

H′′(μ)
H′(μ)

√
V = −

γ

3
,

or equivalently if
d log H′(μ)

dμ
= −

γ

3
√

V
.
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However, γ = V ′ · V−1/2 is an exponential family (1.19), so in order to get
agreement we need

d log H′(μ)
dμ

= −
V ′

3V
=

d
dμ

log V−1/3

or

H′(μ) = cV−1/3,

i.e, δ = 2/3, as in Table 1.5.

Normal likelihood, δ = 1/3,
means that the transformation ζ̂ =
H(μ̂) results in

∂3lμ(y)
∂ζ3

∣∣∣∣∣∣
ζ̂

= 0, (1.76)

where lμ(y) = log gμ(y). This makes
the log likelihood look parabolic
near its maximum at ζ = ζ̂. Efron
(1982) gives an argument connect-
ing H′(μ) = V−2/3

μ and (1.76).

For the Poisson case Y ∼ Poi(μ), the three choices δ = 1/3, 1/2, or 2/3

correspond to the transformations 3/2Y2/3, 2Y1/2, or 3Y1/3. All three have
been referred to in the literature as “the” Poisson transformation.

Homework 1.40 We observe independent χ2 variables

σ̂2
i ∼
σ2

i χ
2
νi

νi
,

the νi being known degrees of freedom, and wish to regress σ̂2
i versus some

known covariates. Two frequently suggested transformations are log(σ̂2
i )

and (σ̂2
i )1/3, the latter being the “Wilson–Hilferty” transformation. Discuss

the two transformations in terms of Table 1.5.
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