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Anallagmatic Curves. 1.

By CuarLes Tweepig, M.A., B.Sc.

1. The theory of Inversion presents one of the simplest
examples of those Birational Transformations of plane figures,
whose general theory is due to Cremona.* It has a distinguishing
feature to which it owes its name. If the point P “inverts” into
Q, then Q inverts into P. It is therefore a simple case of these
involutive point transformations much of the general theory of
which was developed by the late Admiral de Jonquiéres in a paper t
printed as late as 1864 in the Nouwvelles Annales, but which had
originally been addressed to the Institute of France in 1859. This
memoir is not only highly interesting, but is eminently readable
and very ingenious.

In such an involutive point transformation if the point P is
transformed into Q, then the repetition of the same transformation
transforms Q into P. Well-known examples are the Hirst trans-
formation in which to a point P corresponds the point in which
the line PO joining P to a fixed point O cuts the polar of P with
respect to a fixed conic 8 (Hirst, Proc. R. 8. L., 1865), and the
Beltrami transformation in which to a point P corresponds the
intersection of the polars of P with respect to two fixed conics
(Beltrami, Mem. della Acad. di Bologna, Tomo. IT., 1863).

The number of simple involutive transformations is by no means
thereby exhausted, but these are the only cases of involutive point
transformations in which the points of a straight line are transformed
into a curve of the second degree (Bertini, Annali di Mat., 11., 8;
Tweedie, Trans., R.S.E., Vol. XL.).

2. The analytical characteristic of such a transformation is that

* Cremona, Mem. sulle transf. geom. delle figure plane, Mem. di Bologna,
1863 and 1865.

t Jonquiéres ; De la transf. géom. des figures planes, Nouv. Annales, 1864,
also, Giorn. di Matem., 23, 1885.

https://doi.org/10.1017/50013091500032910 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500032910

77

it P, Q are the points (x, y), (£, %), and if the corresponding
operational equations give

b, y)=£; Y= y)=n

where ¢ and i are rational functions of their arguments, then must

D& M=2, Y& ) =y.

The self-corresponding points, if any, are given by the equations
b y)==, Y= y)=y.

Thus in the case of inversion we have, for a circle of inversion
of radius unity, the equations
x _. Y
24y e
3 n
S =T .
Evn " Faq O
while the self-corresponding points are the common solutions to
d Y

AP T

i.e., the points on 2*+3?-1=0.

3. In any such transformation the question may be asked: Are
there any curves which, though not transforming into themselves
point for point, may still be transformed into themselves on the
whole? In the case of inversion any circle cutting the circle of
inversion orthogonally has this property. Another familiar example
of the same is the Right Strophoid (the pedal of a parabola with
respect to the pole which is the point of intersection of directrix and
axis). In the latter case the centre of inversion is the point of
contact of the tangent which is parallel to the real asymptote.

To this class of curves belong all the Bicircular Quartics.

It was Moutard who first suggested that curves (and surfaces)
possessing this property of invariability by a particular inversion,
should be called Anallagmatic: ‘“Je propose de leur donner le nom
d’anallagmatique; ’a privatif;’‘adaoow, je change” (Nouv. Ann.,1864).
It is surprising how local, even in these days, the development of
any special branch of mathematics may be. The researches of men
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like Moutard, Laguerre,* Darboux, upon these curves have
enriched geometrical science with many interesting theorems which
form part of the stock-in-trade of any French writer on analytical
geometry (Niewenglowski, Picquet, Koenigs), and even enter into
their Traités d’Analyse (e.g., Laurent, who dedicates his Traité to
“ M. Moutard, mon Beaupére ”).

On the other hand, so far as I know, they have been comparatively
neglected in English text-books. On this account I venture to give
an account of the most fundamental properties of anallagmatic
curves, referring for more detailed information to Koenigs, Le¢ons
de I’ Agrégation Classique de Mathématiques, where a very exhaustive
treatment is given.

4. A good method of obtaining an anallagmatic is given by the
following theorem (Maleyx, Propriétés dela Strophoide, Nouv. Ann.,
1875).

TuEoreM 1. The inverse of any curve possessing a line of symmetry
18, in general, anallagmatic. The centre of inversion jfor the latter is
the inverse by the first transformation of the image of the first centre
of inversion in the line of symmetry.

Let L be the line of symmetry, P’ the image of P in L; O the
given centre of inversion, O’ its image in L. (Fig. 14.)

The quadrilateral OPP'O’ is clearly cyclic, and therefore the
inverse of the circle OPP'O’ for O as pole, is a straight line. Hence
the inverses @, IL, I of O’, P, P’ are in a straight line. The inverse
of the straight line PP’ is a circle tangent at O to the parallel
line O0’. Hence QII.QII'=020% which is constant. Therefore,
etc. Q.E.D.

If, however, O is on L, the inverse remains symmetrical only.

Cor. 1. Conversely any anallagmatic may be inverted into a
figure which has a given straight line for line of symmetry.

Cor. 2. The inverse of a central conic is in general anallagmatic
in at least two different ways, for a central conic possesses two lines

* Laguerre, Mém. sur l'emploi des imaginaires dans la Géométrie de
Pespace, Nou. Ann., 1872,

t+ Darboux, Mém. sur une classe remarquable de Courbes et Surfaces
Algébriques et sur la théorie des imaginaires, Mém. de Bordeaux, 1873.
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of symmetry; and so is the pedal of a conic, for the pedal is in
general the inverse of another conic. (A curve is often anallagmatic
in several different ways.)

5. TaeoreM I1. More generally, the inverse of any anallagmatic
curve is in general anallagmatic.

Let the curve be anallagmatic with respect to the centre O, and
let P and Q be corresponding points. (Fig. 15.)

Invert with respect to £. Then the circle QPQ inverts into
0,P,Q,, and O into the point O,. The quadrilateral OO,P,P is
cyclic, and so is PQQ,P,. Hence 06,P1=QfP,=QQ\IPl. Hence
0,P,Q,2 is cyclic, and C,0,.C,2=C,P,.C,Q,. But C,, O,, Q are
fixed, and therefore C,P,.C,Q, is constant. Hence the locus of P,
is anallagmatic with respect to C,.*

6. The distinction between symmetrical curves and anallagmatic
curves is more apparent than real, and the latter may be considered
as including the former. To see this, let P, Q be inverse points with
respect to a centre O, and let PQ cut the circle of inversion in M, M".
Then M and M’ are harmonic conjugates with respect to P and Q.
When O is at infinity on OPQ, the point M is the middle point of
PQ and the circle of inversion is the line through it perpendicular
to PQ. Since ‘the transformation by inversion is a contact trans-
formation which also leaves angles unaltered, the preceding theorems
are really included in the following theorems of Moutard.

7. TreorEM III. Any andallagmatic is the envelope of a series of
circles which are orthogonal to a fixed circle (the director circle), while
their centres lie on a curve (the first deferente).

Let P, Q be two infinitely near points on the curve, P’ and Q'
their correspondents ; then the quadrilateral PP'Q'Q is cyclic since
OP.OP =0Q.0Q =4

Hence the circle through these points touches the anallagmatic
at P and P'; and it cuts the circle of inversion orthogonally, for
OP.OP =42

* This is not the proof given by Maleyx.

https://doi.org/10.1017/50013091500032910 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500032910

80

8. ThHeorem IV. Conversely: If a variable circle be subjected to
move orthogonal to a fixed circle, while its centre traces out a given
curve, its envelope is anallagmatic. (Fig. 16.)

Let the fixed circle be

2+y=k - - - - (D
and the locus of the centre the curve
y=f@ - - - - @

Let C be any point (o, f(a)) on (2). The circle of the system
whose centre is C is the circle

- 2ax+7y* - 2f (Q)y+K=0 - - (3)
The envelope is found by eliminating « between (3) and
z+f (a)y=0 SR )

The equations (3) and (4) show that there correspond to a given
value of a two points P and P, and (4) shows that they are in a
line with the origin O. Hence OP,OP' =47 and the locus of P
(or P’) is anallagmatic. Equation (4) also shows that the tangent
to the deferente at C is orthogonal to OPP", for the latter is inclined

at the angle tan™! ) to the z-axis. The tangent at C to the

( L
S (@)
deferente therefore bisects PP’ in the point M.

9. Hence is deduced a means of determining the equation to an
anallagmatic. Let M’ be the inverse of M, then the locus of M’ is
the polar of the first deferente, and is called the second deferente.
Let (&, n) be the coordinates of M'. It is not difficult to show that
the coordinates of P and P’ are given by the equations

£=2%/(x* + 1 + K*)

n=2Wy/(at+ g+ ).
Hence, if f(£, 1) =0 be any curve, the anallagmatic which has this
curve as second deferente is

f( 2k 2k%y ) -0
SR B2+

In this way the anallagmatic curve is associated with its second
deferente, and through the latter with its first deferente.
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10. There are other ways of associating with a given curve another
which shall be anallagmatic, some of which I wish to indicate.

Let P and P, be the inverses of each other with respect to the
origin. Let the perpendicular bisector of PP, meet the axes in
(¢ 0) (0, 7). (Fig. 17)

The circles orthogonal to the circle of inversion whose centres are
the points (£, 0), (0, ) and which pass through P and P, are given

by
2+ -2l + =0 - - - D
e+y -2+ =0 - - - (2).
The equations (1) and (2) give

wf=ym - - - - @)

Hence the coordinates of P and P, may be denoted by
=y + Vo) - - (9
v=Le 0+ VEED - - ©
ay =Y(§, 1) - "/¢(£! 1) - - (6)
n=fwen-viED - - o

If P trace out some curve f(z, y)=0, its equation in terms of
£ and 7 is of the form
A(g )+ B D) N 1) =0,
and the locus of P, is given by

A ) =B ) VoG m) =0
Hence if the curve f(x, y¥)=0 is anallagmatic with respect to
the origin, then must B(¢, n) =0, and conversely.
We have here a fresh means of obtaining anallagmatic curves.
If a curve is anallagmatic, then the corresponding equation in
£ and % iy rational, and when it is not rational the corresponding

rationalised equation in £ and % clearly corresponds to the result
obtained by taking the equation

S, y) xf(x, 1) =0.

From this point of view curves that are not anallagmatic are in
a sense degenerate, as is obvious from geometrical considerations.
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More generally, any symmetric function of f(x, y) and f(x,, ¥,)
when equated to zero will give rise to a curve which is anallagmatic.

Denote the equivalent of f(x,, ¥;) as a function of x and y by £.
The equation SA(S S =0
can be expressed rationally in terms of ¢ and 7, and therefore

corresponds to an anallagmatic curve. It will not, however, in
general be a degenerate curve, when the parent curve is so.

11. In the preceding paragraph the case ¢(£, 7) =0 was neglected.
It corresponds to the discriminant of

a:“’(] -'I-gz) -2+ k=0
n
and therefore corresponds to
&n" - K€ +7") =0,
a curve in (£, ) which is doubly symmetrical.

The corresponding anallagmatic is given by
(x2+ yz _ k")”: 0,
1.e., is the circle of inversion.

It may also be noted that no finite point (£, 1) can coincide with
the corresponding point (z, y).

https://doi.org/10.1017/50013091500032910 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500032910

