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AN INVERSION THEOREM
FOR SET-VALUED MAPS

D. AZE

The aim of this paper is to give an inversion theorem for set-valued maps involving both
some known results for functions and set-valued maps. To do this we introduce a notion
of strict differentiability for set-valued maps and we use a Newton like method assuming
the derivative to be surjective. Moreover we prove the pseudo-Lipschitz regularity of the
inverse.

1. INTRODUCTION

In this note, we prove an open mapping and inversion theorem for set-valued maps
which involves the results of [15] and [23]. To do this we introduce a notion of differ-
entiability for set-valued maps similar to the one given in [8] (see also [6], [13], [19],
[20] and [22]). Some inversion theorems for multifunctions have already been proved
in particular in [3], [5], [11] and also [20], [23]. The favourable situation occurs when
the multifunction takes on its values in a finite dimensional space. When this is not. the
case the problem is slightly different. In the particular case of functions, it is proved
(see [7], [12]) that the assumption of Halkin's Theorem [16] (surjectivity of the deriva-
tive) is not sufficient to obtain the open mapping and local inversion theorem. In this
case some uniformity is needed near the point where the inversion is studied. When
working with set-valued maps, this uniformity is obtained by introducing a notion of
strict differentiability and the inversion result is proved with the help of an iteration
procedure of Newton type quite similar to the one used in the proof of the Ljusternik -
Graves Theorem ([15], [18] and also [1]).

2. STATEMENT AND PROOF OF THE RESULT

In the sequel X , Y denote Banach spaces with closed unit balls Bx , By • For any
non-void subsets C, D of a metric space (E, d), the Hausdorff excess of C into D is
denned by e(C,D) = supd(x,D) where d(x,D) - inf d(x,y). We also set e(0,£M = O

zee y£D

and e(G',0) = +oo if C ^ 0. A multifunction or set-valued map F: X =?}'" is a subset
o{ X xY. For x G X, F(x) := {y G Y;(x,y) G F} , the domain of F is the set
dom F = {x G X,F{x) ^ 0}. A convex process is a multifunction L: X^Y such
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that £ is a convex cone (see [24] for instance). The closed convex processes play the

role of continuous linear maps in the theory of differentiability of multifunctions. A

multifunction F^Y is said to be pseudo-Lipschitzian at (xo,t/o) € F if there exists

t ^ 0 and neighbourhoods U of Xo and V of yo such that U C dom F and, for each

DEFINITION. We say that the multifunction F: X^Y is strictly differentiable
at XQ G dom F if there exists a closed convex process L: X^Y such that, for each
e > 0, there exist r > 0, a > 0 such that

(1) Vx G xo + rBx, Vw G aBx, e(L(u) D By + F(x), F(x+u)) < e\\u\\.

REMARK: The process L is not unique since every subprocess V C L (in partic-

ular V - {(0,0)} also satisfies (1).

EXAMPLES: 1. A map f:U—*Y,UCX open, which is strictly differentiable at
x0 € U is also strictly differentiable as a multifunction at x 0 . More generally,

2. Let f'U —> Y be strictly differentiable at x0 • If w e define F(x) =

f(x) + K where K is a convex closed cone, then F is strictly differentiable at XQ

with L(u) = f'{xo){u) + K. Indeed e{f'(xo){u) + K + f{x) + K,f{x+u) + K) <

3. A closed convex process L is strictly differentiable at every x0 € dom L.
The following inversion theorem extends both Theorem 1 of [23] and Theorem 1 of [15].

THEOREM. Assume that the multifunction F is closed and strictly differentiable
at xo G dom F and that L is onto, then there exist r > 0, 77 > 0 sucii that

(2) F(xo) + T1BYCF(xo+rBx).

Moreover, F~x is pseudo-Lipschitz near (yo,xo) for each j/o £ ^(^o) that is there exist
Vo, i~0, (0 > 0 such that Vt/!, y2 G t/0 +

(3) e(F-J(y!) n (x0 + r0Bx), f 1 " 1 ^ ) n (x0 + 2r0Bx)) < «o||yi - Stoll-

PROOF: We follow the lines of [1, Theorem 2.1]. As L is onto, there exists (see
[4, Corollary 3 p. 132]) 7 > 0 such that By Q L(-yBx)- Thus, for each v G Y,
there exists u £ X with v £ L(u) and ||u|| < ~f\\v\\, we write u = L~1(v). Consider
now 0 < e < 1 and r, a associated with - by (1). Let us choose 77 > 0 such that

T] < inf ( l , f, -^~*M • Using (1) we derive that

(4) Vv G T/5y, Vx G x0 + r 5 x , e(v + F(x), F(x
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Let us consider yg £ F(XQ) a n c l V € J/o + '?-0y • We set x_j — xo and we assume that ,

for n £ N and i £ [0,n]

(5) Xi £ xQ+rBx, yi £ F(xi), \\xt - x;_j || ^ 7 | | y - y o l l ^ " 1 , hi ~V\\ *£ e'Hjfo ~V\\-

Replacing in (4) v by 77 — yn, x by x n and using the fact tha t yn £ F(xn)

we obtain rf(j/, F(xn + L~l(y - yn))) < e\\y-yn\\. Thus there exists y,l+1 £

F(x,, + L~l{y -</„)) such that \\yn+i -y\\ s* e||yn - y|| • Let us set xn+1 = xn +

I'Hy-Vr,), then ||Kn+1 - x n | | <7l |y-yn | | ^ l\\y - Vohn • Hence (5) holds for n + 1.

The sequences (xn)and (yn) converge respectively to x € XQ + j~^°''.B;y Q ô + r-B̂ Y

and to y. As j / n € F(xn) and F is closed, one has y £ F(x) and (2) holds. R

Lipschitz dependence.

Let us assume now that 77 < inf ( l , —, r 2 ~ ' ) • Thanks to the first step of the

proof, there exists, for i/i € J/o + f By an element x\ € ^o + %Bx such that J/J £

F(x!). Consider y2 £ 3/0 + f BY , one has y2 £ yx + r)BY , yy £ F{xi) and, by (4)

Vt> £ ?75y , Vx £ xi + ^Bx , e(v + F(x), F(x + L " 1 ^ ) ) ) < e||v||. Hence, by using

the same device as in the first step, there exists X2 £ -X" such that y2 £ F(x2) and

11*2 - *i | | < T^llli/2 - ViW , then (3) holds with T?0 = 'j , rQ - § , Co = ^ .
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