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Condensed and Strongly Condensed
Domains

Dedicated to Maryam Fassi Fehri on her twenty-ninth birthday

Abdeslam Mimouni

Abstract. This paper deals with the concepts of condensed and strongly condensed domains. By defi-

nition, an integral domain R is condensed (resp. strongly condensed) if each pair of ideals I and J of R,

I J = {ab/a ∈ I, b ∈ J} (resp. I J = a J for some a ∈ I or I J = Ib for some b ∈ J). More precisely, we

investigate the ideal theory of condensed and strongly condensed domains in Noetherian-like settings,

especially Mori and strong Mori domains and the transfer of these concepts to pullbacks.

1 Introduction

The concept of a condensed domain was introduced by D. F. Anderson and D. E.

Dobbs [4] and further developed in [5]. An integral domain R is condensed if for

each pair of ideals I and J of R, I J = {ab/a ∈ I, b ∈ J}. They showed that a con-

densed domain R has Pic(R) = (0) and that a Noetherian condensed domain R has

dim R ≤ 1. Later, D. F. Anderson, J. T. Arnold and D. E. Dobbs [5] showed that an

integrally closed domain is condensed if and only if it is Bézout. Next, C. Gottlieb

introduced a class of condensed domains, the strongly condensed domains [20]. An

integral domain R is strongly condensed (or SC domain for short) if for each pair of

ideals I and J of R, either I J = a J for some a ∈ I, or I J = Ib for some b ∈ J. In 2003,

D. D. Anderson and T. Dumetriscu developed the concepts of condensed and strongly

condensed domains for various classes of integral domains, namely, Noetherian, in-

tegrally closed and local cases [2, 3]. In this paper, we continue the investigation of

the condensed and strongly condensed domains. The second section is devoted to

the ideal-theoretic of condensed and strongly condensed domains in Noetherian-like

settings, especially Mori and strong Mori domains. We first prove that a condensed

Mori domain R has dim R ≤ 1 and we characterize strongly condensed Mori do-

mains. The third section deals with the transfer of the above concepts to pullbacks in

order to provide original examples.

Throughout R is an integral domain, L its quotient field, R ′ its integral closure and

R̄ its complete integral closure. For nonzero (fractional) ideals I and J of a domain

R, we denote by (I : J) = {x ∈ K/x J ⊆ I} and I−1
= (R : I). The v-closure of I is

defined by Iv = (I−1)−1, and I is said to be a v-ideal (or divisorial) if I = Iv.

A Mori domain is a domain R satisfying the ascending chain condition on v-ideals.

Noetherian and Krull domains are Mori. A nonzero ideal I is said to be stable (or
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Sally–Vasconcelos stable) (respectively strongly stable) if I is invertible (respectively

principal) in its endomorphisms ring E(I) = (I : I), and a domain R is said to be sta-

ble (respectively strongly stable) if each nonzero ideal is stable (respectively strongly

stable). Finally, we recall the following useful result [2, Proposition 3.3]: a domain R
is an SC-domain if and only if R is strongly stable and [R, R̄], the set of rings between

R and R̄, is linearly ordered by inclusion.

2 Condensed and Strongly Condensed Mori Domains

Proposition 2.1 Let R be a domain with the ascending chain condition on principal
ideals. If R is condensed, then every maximal ideal is a t-ideal.

Proof Let M be a maximal ideal of R and suppose that Mt = R. Then there exists an

fg ideal I of R, such that I ⊆ M and I−1
= R. Since R̄ is t-linked over R, (R̄ : IR̄) = R̄

(see [16, Corollary 2.3], we recall that an overring T of a domain R is said to be

t-linked over R if for each fg ideal I of R such that I−1
= R, one has (T : IT) = T).

Hence IR̄(R̄ : IR̄) = IR̄. On the other hand, since R̄ is an integrally closed condensed

domain (as an overring of R), then R̄ is a Bézout domain. So IR̄ is a principal ideal of

R̄ and therefore IR̄(R̄ : IR̄) = R̄. Hence IR̄ = R̄. So 1 =
∑i=n

i=1 bixi , for some bi ∈ I
and xi ∈ R̄. Now, for each i, there is an ideal Ai of R such that xi ∈ (Ai :Ai) (since R̄ =⋃

(F :F), where F ranges over all nonzero (fractional) ideals of R). Set A =
∏i=n

i=1 Ai .

Then xi ∈ (A : A) for each i = 1, . . . , n. So 1 =
∑i=n

i=1 bixi ∈ I(A : A). Since R is

condensed (and I and (A : A) are fractional ideals of R), 1 = ax for some a ∈ I and

x ∈ (A : A). So for each y ∈ A, y = a(yx) ∈ aA. Hence A ⊆ aA ⊆ A and therefore

A = aA. By induction on n, A = anA. Hence A =
⋂

n≥0 anA ⊆
⋂

n≥0 anR. But,

since a ∈ I, a is non unit of R, so
⋂

n≥0 anR = (0). (Otherwise, if 0 6= b ∈
⋂

n≥0 anR,

then for each n, b = αnan
= αn+1an+1 for some αn and αn+1 in R. Then αn = αn+1a.

So the sequence {αnR}n≥0 is an increasing sequence of principal ideals of R. Then it

stabilizes since R satisfies the ascending chain condition on principal ideals. So there

exists s ≥ 0 such that αsR = αnR for each n ≥ s. In particular, αsR = αs+1R. Hence

αs+1 = cαs for some nonzero c ∈ R. Then αs = aαs+1 = caαs. So 1 = ca ∈ I, a

contradiction.) Hence A = (0), which is absurd. It follows that M = Mt .

We recall that the w-closure of an ideal is defined by Iw :=
⋃

(I : J) where the union

is taken over all the finitely generated ideals J such that J−1
= R. An ideal I is said to

be a w-ideal if I = Iw and a domain R is said to be a strong Mori domain if R satisfies

the ascending chain condition on w-ideals. Noetherian and Krull domains are strong

Mori, and strong Mori domains are Mori domains.

Corollary 2.2 Let R be a strong Mori domain. If R is condensed, then dim R = 1, and
so R is Noetherian.

Proof Let M be a maximal ideal of R. By Proposition 2.1, M is t-maximal. So RM is

a Notherian domain [1, Corollary 4.3], [17, Theorem 1.9]. Since RM is a condensed

domain, then ht M = dim RM = 1 [4]. Hence dim R = 1 and therefore R is Noethe-

rian [17, Corollary 1.10].
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We recall that a domain R is semi-Krull if R =
⋂

RP, where P ranges over the set

of height one primes of R, the intersection has a finite character, and every nonzero

ideal of RP contains a power of PRP, for every height one prime ideal P of R [24,

Proposition 4.5].

Corollary 2.3 Let R be a semi-Krull domain. If R is condensed, then dim R = 1.

Proof By [10, Theorem 1.10], R satisfies the ascending chain condition on principal

ideals. By Proposition 2.1, every maximal ideal is t-maximal, that is, Max(R) =

Maxt (R). Now, by [10, Proposition 1.2], Maxt (R) = X1(R), where X1(R) is the set of

height-one prime ideals of R. Hence ht M = 1 for every maximal ideal M of R and

therefore dim R = 1.

It is well known that for a Mori domain R and a prime ideal P of R, if ht P = 1,

then P is divisorial and if ht P ≥ 2, then either P is a strongly divisorial ideal or

P−1
= R, i.e., Pv = R [8, Theorem 3.1]. The following corollary asserts that for a

condensed Mori domain, each prime ideal is divisorial.

Corollary 2.4 Let R be a Mori domain. If R is condensed, then each prime ideal of R
is divisorial.

Proof Let P be a prime ideal of R. Since RP is a condensed Mori domain, by Propo-

sition 2.1, PRP is a t-maximal ideal of RP. Since RP is a TV -domain (i.e., the t- and

v-operations are the same [22]), then PRP is divisorial. Now, let x ∈ Pv = Pt . Then

there is an fg ideal I of R such that I ⊆ P and x ∈ Iv, that is, xI−1 ⊆ R. Since I is fg,

then (IRP)−1
= I−1RP. So x(IRP)−1

= xI−1RP ⊆ RP. So x ∈ (IRP)v1
= (IRP)t1

⊆
(PRP)v1

= PRP, (where t1 and v1 are the t- and v-operations with respect to RP).

Hence x ∈ R ∩ PRP = P. It follows that Pv = P.

Proposition 2.5 Any strongly stable prime ideal is divisorial. In particular, any prime
ideal of an SC domain is divisorial.

Proof Let P be a prime ideal of R and suppose that P ⊂ Pv. Let x ∈ Pv \ P. Since

xP−1 ⊆ R, then xPP−1 ⊆ P. So PP−1 ⊆ P and therefore PP−1
= P. Hence

P−1
= (P : P). Since P is strongly stable, then P = a(P :P) for some nonzero a ∈ P.

So P = a(P :P) = aP−1, and then P−1
= a−1P. Hence Pv = (R : P−1) = (R : a−1P) =

a(R : P) = aP−1
= P, which is absurd. Hence P = Pv.

We recall that a domain is divisorial if each ideal is divisorial. W. Heinzer [21]

characterized such domains in the context of the integrally closed case; as h-local

Prüfer domains, their maximal ideals are finitely generated. Also it is well known that

an integrally closed SC domain is a generalized Dedekind domain and such a domain

is divisorial. For the convenience of the reader, we include it here as a corollary of

Proposition 2.5.

Corollary 2.6 Any integrally closed SC domain is divisorial.

Proof By [2, Theorem 3.7], any nonzero ideal I of R is of the form I = aP for some

prime ideal P of R. Since P is divisorial (Proposition 2.5), then so is I. Hence R is

divisorial.
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Theorem 2.7 Let R be a Mori domain satisfying one of the following conditions:

(i) the conductor (R : R ′) is nonzero;
(ii) R is seminormal.

If R is condensed, then dim R = 1.

Proof (i) Assume that A = (R : R ′) 6= 0. Then R ′ ⊆ (A : A) ⊆ (Av :Av) =

(AA−1)−1
= T. Since R is condensed, then R ′ is Bézout. So T is Bézout. Since

T is a Mori domain, then T is a Dedekind domain. Now, since (R : T) = (AA−1)v is

nonzero, then T and R have the same complete integral closure, that is, R̄ = T̄ = T
(since T is Dedekind, so completely integrally closed). Hence R̄ is a Dedekind do-

main and (R : R̄) = (AA−1)v. Hence dim R̄ = 1. By [11, Corollary 3.4.1], dim R = 1.

(Note that R̄ is a condensed domain (as an overring of R). So Pic(R̄) = (0) and

therefore R̄ is a PID).

(ii) Assume that R is seminormal and suppose that dim R ≥ 2. Let 0 ⊂ P ⊂ Q be a

chain of prime ideals of R with ht Q ≥ 2. Since RQ is a condensed Mori domain which

is also seminormal, without loss of generality, we may assume that R is local with

maximal ideal M, ht M ≥ 2. By Corollary 2.4, M is divisorial. Since ht M ≥ 2, then

M−1
= (M :M) [8, Theorem 3.1]. Set T = (R : M) = (M :M) and let Q = (P :M).

Then Q is a prime ideal of T and P ⊆ Q ⊆ Q + M. Since Q ∩ R ⊆ M (R is local),

then Q + M ⊂ T. Otherwise, if Q + M = T, then 1 = a + m, where a ∈ Q and

m ∈ M. So a = 1 − m ∈ Q ∩ R ⊆ M, which is absurd. Hence there is a maximal

ideal N of T such that Q + M ⊆ N . So 0 ⊂ Q ⊂ N is a chain of prime ideals of T.

Then htT N ≥ 2. By [7, Lemma 2.3], N is not a divisorial ideal of T, which is absurd

by Corollary 2.4, since T is a condensed Mori domain.

Proposition 2.8 Let R be a Mori domain with (R : R̄) 6= 0. Then R is condensed if
and only if Pic(R) = 0, RM is condensed for each maximal ideal M of R and R̄ is a PID.

Proof (⇒) By [4], Pic(R) = (0) and RM is condensed for every maximal ideal M of

R. By the proof of Theorem 2.7, R̄ is a PID.

(⇐) By [2, Lemma 2.2], it suffices to show that R is h-local. Since R̄ is a PID and

(R : R̄) 6= (0), by [11, Corollary 3.4 (1)], dim R = dim R̄ = 1. So it suffices to show

that R has finite character. Let x be a nonzero non-unit of R and {Mα}α∈Ω the set of

all maximal ideals that contain x. Since ht Mα = 1, there exists a prime ideal Nα of

R̄ such that Nα ∩ R = Mα [11, Proposition 1.1]. Since R̄ is a PID, {Nα}α∈Ω is finite

and so is {Mα}α∈Ω, as desired.

The following Theorem is an analogue of [2, Theorem 3.8]. However, we show

in Example 2.10 that the last statement of [2, Theorem 3.8] cannot be extended to a

Mori domain.

Theorem 2.9 Let R be a Mori domain. Then R is an SC domain if and only if (i) R is
is a PID or (ii) dim R = 1 and R has a unique non principal maximal ideal M, and RM

is an SC domain.

Proof (⇒) If R is a PID, there is nothing to prove. Assume that R is not a PID. Let M
be a maximal ideal of R. Since RM is an SC Mori domain, without loss of generality,

we may assume that R is local with maximal ideal M. Two cases are then possible.
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(i) (R : R ′) 6= (0). By Theorem 2.7, ht M = dim R = 1.

(ii) (R : R ′) = (0). By [25, Corollary 4.17], ht M = dim R = 1. It follows that

ht M = 1 and so dim R = 1.

Now, since R is not a PID, there exists a nonzero ideal I of R which is not principal.

Since R is condensed, then Pic(R) = (0). So I cannot be invertible, that is, I I−1 ⊂ R.

Then there exists a maximal ideal M such that I I−1 ⊆ M. Since I I−1 is a trace

ideal, then so is M, that is, M = MM−1. So M is divisorial and M−1
= (M :M).

Now, if N is a non principal maximal ideal of R, then N cannot be invertible (since

Pic(R) = (0)). Then N = NN−1. So N is divisorial and N−1
= (N : N). Since

M−1 and N−1 are overrings of R between R and R̄, by [2, Proposition 3.3], M−1 and

N−1 are comparable. If M−1 ⊆ N−1, then N = Nv ⊆ Mv = M and by maximality

M = N . The same holds if N−1 ⊆ M−1, and therefore R has a unique non principal

maximal ideal M. Clearly RM is an SC domain as a quotient ring of R.

(⇐) If R is a PID, then clearly R is an SC domain. Assume that the assertion (ii)

holds. By [2, Theorem 3.4], it suffices to show that Spec(R) is Noetherian, i.e., R
satisfies the ascending chain condition on radical ideals. But, let I be a radical ideal

of R and let P be a minimal prime ideal of I. Since dim R = 1, then P is divisorial.

So Iv ⊆ P. Hence Iv ⊆
⋂
{P/P minimal over I} = I. Hence I is a v-ideal. So every

radical ideal of R is divisorial and since R is Mori, then R satisfies the ascending chain

condition on divisorial ideals and therefore on radical ideals, as desired.

The condition (c) in [2, Theorem 3.8] is not sufficient to make R an SC domain

in the case of Mori domain as is shown by the following example.

Example 2.10 Let k be a field and X and Y indeterminates over k. Set V =

k(X)[[Y ]] = k(X) + M, where M = YV and R = k + M. By [18, Theorem 4.18],

R is an integrally closed Mori domain which is local and dim R = 1. Since R is local,

then Pic(R) = (0) and R/R ′
= (0) is serial. However, R is not even condensed (since

R is not Bézout, or even Prüfer).

3 Classical “D + M” Constructions

We start this section with the following result which is a generalization of [2, Propo-

sition 2.6] and which leads us to construct a family of condensed domains. For any

D-submodules U and W of K, we denote by P(U ,W ) = {ab/a ∈ U and b ∈ W}
and UW the D-submodule of K generated by P(U ,W ).

Theorem 3.1 For the classical “D + M” construction, the following conditions are
equivalent:

(i) R is condensed;
(ii) P(U ,W ) = UW for each D-submodules U and W of K containing D.

Proof (i) ⇒ (ii) Let U and W be D-submodules of K. Let 0 6= m ∈ M and set

I1 = m(U + M) and I2 = m(W + M). Let z ∈ UW and write z =
∑i=n

i=1 xi yi , where

xi ∈ U and yi ∈ W for each i = 1, . . . , n. So m2z =
∑i=n

i=1(mxi)(myi) ∈ I1I2. Then

there is x = m(a1 + m1) ∈ I1 and y = m(a2 + m2) ∈ I2, where a1 ∈ U , a2 ∈ W
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and m1, m2 ∈ M such that m2z = xy = m2(a1a2 + b), for some b ∈ M. Hence

z = a1a2 ∈ P(U ,W ). It follows that P(U ,W ) = UW .

(ii) ⇒ (i) Let I1 and I2 be ideals of R and x ∈ I1I2.

Case 1: M ⊂ I1 and M ⊂ I2. Set I1 = J1 + M, and I2 = J2 + M, for some nonzero

ideals J1 and J2 of D. Then M ⊂ I1I2 (since each ideal of R is comparable to M). If

x 6∈ M, then x = a + m for some 0 6= a ∈ J1 J2 and m ∈ M. Since D is condensed,

then a = a1a2 for some 0 6= a1 ∈ J1 and 0 6= a2 ∈ J2. So x = a + m = a1a2 + m =

a1(a2 + a−1
1 m), with a1 ∈ I1 and (a2 + a−1

1 m) ∈ I2, as desired. Assume that x ∈ M
and let 0 6= a ∈ J1. Then x = a(a−1x) with a ∈ I1 and a−1x ∈ M ⊆ I2, as desired.

Case 2: M ⊂ I1 and I2 ⊆ M. Then set I1 = J + M for some nonzero ideal J of

D. If I2 is an ideal of V , then let 0 6= a ∈ J. Since a−1 ∈ K and x ∈ I1I2 ⊆ I2, then

xa−1 ∈ I2. So x = a(xa−1) with a ∈ I1 and xa−1 ∈ I2, as desired. Assume that I2 is

not an ideal of V . Then I2 = c(W + M) for some D-submodule W of K with D ⊆
W ⊂ K. Write x =

∑i=n
i=1 xi yi , where xi = ai + mi ∈ I1 and yi = c(bi + m ′

i ) ∈ I2, with

ai ∈ J, bi ∈ W , and mi, m ′
i ∈ M for each i = 1, . . . , n. Then x = c(

∑i=n
i=1 aibi + m)

for some m ∈ M. If
∑i=n

i=1 aibi = 0, then x = cm, with m ∈ M ⊆ I1 and c ∈ I2, as

desired. Assume that
∑i=n

i=1 aibi 6= 0. Since P( J,W ) = JW , then
∑i=n

i=1 aibi = ab for

some nonzero a ∈ J and b ∈ W . Hence x = c(ab + m) = ac(b + a−1m), with a ∈ I1

and c(b + a−1m) ∈ I2, as desired.

Case 3: I1 ⊆ M and I2 ⊆ M. Then three subcases are possible.

(i) I1 and I2 are ideals of V . Then the result follows from the fact that V is con-

densed.

(ii) Neither I1 nor I2 is an ideal of V . Then I1 = c(U + M) and I2 = d(W + M),

where U ,W are D-submodules of K with D ⊆ U (resp. W )⊂ K and c ∈ I1, d ∈ I2.

Write x =
∑i=n

i=1 xi yi , where xi = c(ai + mi) ∈ I1 and yi = d(bi + m ′
i ) ∈ I2, with

ai ∈ U , bi ∈ W , and mi , m ′
i ∈ M for each i = 1, . . . , n. Then x = cd(

∑i=n
i=1 aibi + m)

for some m ∈ M. If
∑i=n

i=1 aibi = 0, then x = cdm, with c ∈ I1 and dm ∈ I2, as

desired. Assume that
∑i=n

i=1 aibi 6= 0. Since P(U ,W ) = UW , then
∑i=n

i=1 aibi = ab
for some nonzero a ∈ U and b ∈ W . So x = cd(ab + m) = (ca)d(b + a−1m) with

ca ∈ I1 and d(b + a−1m) ∈ I2, as desired.

(iii) One of them is an ideal of V while the other is not. Assume that I1 is an

ideal of V and I2 is not an ideal of V . Then I2 = c(W + M) for some nonzero

c ∈ I2 and W a D-submodule of K with D ⊆ W ⊂ K. Since x ∈ I1I2 ⊆ I2, then

xc−1 ∈ W + M ⊆ V . If xc−1 6∈ I1, then I1 ⊂ xc−1V . So cx−1I1 ⊆ M. Hence

cx−1I1I2 ⊆ I2M = I2V M = cM. Since x ∈ I1I2, then c = cx−1x ∈ cM. So 1 ∈ M,

which is absurd. Hence xc−1 ∈ I1 and therefore x = (xc−1)c, as desired. It follows

that R is condensed.

We recall that a domain R is conducive if for each overring T of R other than L
(quotient field of R), the conductor (R : T) = {x ∈ L/xT ⊆ R} is nonzero.

Corollary 3.2 Let D be a conducive domain which is condensed, K its quotient field
and V a valuation domain of the form V = K + M (for instance V = K[[X]], or
K[X](X)) and R = D + M. Then R is condensed.
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Proof Since D is conducive, each D-submodule W of K (with W ⊂ K) is a fractional

ideal of D. Since D is condensed, for all factional ideals I and J of D, P(I, J) = I J.

So for all D-submodules U and W of K (that are fractional ideals of D), P(U ,W ) =

UW .

Acknowledgment I would like to express my sincere thanks to the referee for helpful

suggestions.

References

[1] D. D. Anderson, Star-operations induced by overrings. Comm. Algebra 16(1988), no. 12, 2535–2553.
[2] D. D. Anderson and T. Dumetriscu, Condensed domains. Canad. Math. Bull. 46(2003), no. 1, 3–13.
[3] , Condensed local domains which are not strongly condensed. Math. Rep. 5(55)(2003), no. 3,

205–209.
[4] D. F. Anderson and D. E. Dobbs, On the product of ideals. Canad. Math. Bull, 26(1983), no. 1,

106–114.
[5] D. F. Anderson, J. T. Arnold and D. E. Dobbs, Integrally closed condensed domains are Bézout.
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