Canad. Math. Bull. Vol. 51 (3), 2008 pp. 406-412

Condensed and Strongly Condensed Domains

Dedicated to Maryam Fassi Fehri on her twenty-ninth birthday

Abdeslam Mimouni

Abstract. This paper deals with the concepts of condensed and strongly condensed domains. By definition, an integral domain *R* is condensed (resp. strongly condensed) if each pair of ideals *I* and *J* of *R*, $IJ = \{ab/a \in I, b \in J\}$ (resp. IJ = aJ for some $a \in I$ or IJ = Ib for some $b \in J$). More precisely, we investigate the ideal theory of condensed and strongly condensed domains in Noetherian-like settings, especially Mori and strong Mori domains and the transfer of these concepts to pullbacks.

1 Introduction

The concept of a condensed domain was introduced by D. F. Anderson and D. E. Dobbs [4] and further developed in [5]. An integral domain R is condensed if for each pair of ideals *I* and *J* of *R*, $IJ = \{ab/a \in I, b \in J\}$. They showed that a condensed domain R has Pic(R) = (0) and that a Noetherian condensed domain R has dim $R \leq 1$. Later, D. F. Anderson, J. T. Arnold and D. E. Dobbs [5] showed that an integrally closed domain is condensed if and only if it is Bézout. Next, C. Gottlieb introduced a class of condensed domains, the strongly condensed domains [20]. An integral domain R is strongly condensed (or SC domain for short) if for each pair of ideals *I* and *J* of *R*, either IJ = aJ for some $a \in I$, or IJ = Ib for some $b \in J$. In 2003, D. D. Anderson and T. Dumetriscu developed the concepts of condensed and strongly condensed domains for various classes of integral domains, namely, Noetherian, integrally closed and local cases [2,3]. In this paper, we continue the investigation of the condensed and strongly condensed domains. The second section is devoted to the ideal-theoretic of condensed and strongly condensed domains in Noetherian-like settings, especially Mori and strong Mori domains. We first prove that a condensed Mori domain R has dim $R \leq 1$ and we characterize strongly condensed Mori domains. The third section deals with the transfer of the above concepts to pullbacks in order to provide original examples.

Throughout *R* is an integral domain, *L* its quotient field, *R'* its integral closure and \overline{R} its complete integral closure. For nonzero (fractional) ideals *I* and *J* of a domain *R*, we denote by $(I:J) = \{x \in K/xJ \subseteq I\}$ and $I^{-1} = (R:I)$. The *v*-closure of *I* is defined by $I_v = (I^{-1})^{-1}$, and *I* is said to be a *v*-ideal (or divisorial) if $I = I_v$.

A Mori domain is a domain R satisfying the ascending chain condition on v-ideals. Noetherian and Krull domains are Mori. A nonzero ideal I is said to be stable (or

Received by the editors March 26, 2006; revised May 29, 2006.

This work is supported by KEUPM.

AMS subject classification: Primary: 13G05, secondary: 13A15, 13F05, 13E05.

[©]Canadian Mathematical Society 2008.

Sally–Vasconcelos stable) (respectively strongly stable) if *I* is invertible (respectively principal) in its endomorphisms ring E(I) = (I:I), and a domain *R* is said to be stable (respectively strongly stable) if each nonzero ideal is stable (respectively strongly stable). Finally, we recall the following useful result [2, Proposition 3.3]: a domain *R* is an SC-domain if and only if *R* is strongly stable and $[R, \bar{R}]$, the set of rings between *R* and \bar{R} , is linearly ordered by inclusion.

2 Condensed and Strongly Condensed Mori Domains

Proposition 2.1 Let R be a domain with the ascending chain condition on principal ideals. If R is condensed, then every maximal ideal is a t-ideal.

Proof Let *M* be a maximal ideal of *R* and suppose that $M_t = R$. Then there exists an fg ideal *I* of *R*, such that $I \subseteq M$ and $I^{-1} = R$. Since \overline{R} is *t*-linked over *R*, $(\overline{R}:I\overline{R}) = \overline{R}$ (see [16, Corollary 2.3], we recall that an overring T of a domain R is said to be *t*-linked over R if for each fg ideal I of R such that $I^{-1} = R$, one has (T:IT) = T). Hence $I\bar{R}(\bar{R}:I\bar{R}) = I\bar{R}$. On the other hand, since \bar{R} is an integrally closed condensed domain (as an overring of R), then \bar{R} is a Bézout domain. So $I\bar{R}$ is a principal ideal of \bar{R} and therefore $I\bar{R}(\bar{R}:I\bar{R}) = \bar{R}$. Hence $I\bar{R} = \bar{R}$. So $1 = \sum_{i=1}^{i=n} b_i x_i$, for some $b_i \in I$ and $x_i \in \overline{R}$. Now, for each *i*, there is an ideal A_i of R such that $x_i \in (A_i : A_i)$ (since $\overline{R} =$ \bigcup (*F*:*F*), where *F* ranges over all nonzero (fractional) ideals of *R*). Set $A = \prod_{i=1}^{i=n} A_i$. Then $x_i \in (A:A)$ for each $i = 1, \ldots, n$. So $1 = \sum_{i=1}^{i=n} b_i x_i \in I(A:A)$. Since R is condensed (and I and (A:A) are fractional ideals of R), 1 = ax for some $a \in I$ and $x \in (A:A)$. So for each $y \in A$, $y = a(yx) \in aA$. Hence $A \subseteq aA \subseteq A$ and therefore A = aA. By induction on $n, A = a^n A$. Hence $A = \bigcap_{n \ge 0} a^n A \subseteq \bigcap_{n \ge 0} a^n R$. But, since $a \in I$, *a* is non unit of *R*, so $\bigcap_{n \ge 0} a^n R = (0)$. (Otherwise, if $0 \neq b \in \bigcap_{n>0} a^n R$, then for each $n, b = \alpha_n a^n = \alpha_{n+1} a^{n+1}$ for some α_n and α_{n+1} in R. Then $\alpha_n = \alpha_{n+1} a$. So the sequence $\{\alpha_n R\}_{n>0}$ is an increasing sequence of principal ideals of R. Then it stabilizes since R satisfies the ascending chain condition on principal ideals. So there exists $s \ge 0$ such that $\alpha_s R = \alpha_n R$ for each $n \ge s$. In particular, $\alpha_s R = \alpha_{s+1} R$. Hence $\alpha_{s+1} = c\alpha_s$ for some nonzero $c \in R$. Then $\alpha_s = a\alpha_{s+1} = ca\alpha_s$. So $1 = ca \in I$, a contradiction.) Hence A = (0), which is absurd. It follows that $M = M_t$.

We recall that the *w*-closure of an ideal is defined by $I_w := \bigcup (I:J)$ where the union is taken over all the finitely generated ideals J such that $J^{-1} = R$. An ideal I is said to be a *w*-ideal if $I = I_w$ and a domain R is said to be a strong Mori domain if R satisfies the ascending chain condition on *w*-ideals. Noetherian and Krull domains are strong Mori, and strong Mori domains are Mori domains.

Corollary 2.2 Let R be a strong Mori domain. If R is condensed, then dim R = 1, and so R is Noetherian.

Proof Let *M* be a maximal ideal of *R*. By Proposition 2.1, *M* is *t*-maximal. So R_M is a Notherian domain [1, Corollary 4.3], [17, Theorem 1.9]. Since R_M is a condensed domain, then ht $M = \dim R_M = 1$ [4]. Hence dim R = 1 and therefore *R* is Noetherian [17, Corollary 1.10].

We recall that a domain *R* is semi-Krull if $R = \bigcap R_P$, where *P* ranges over the set of height one primes of *R*, the intersection has a finite character, and every nonzero ideal of R_P contains a power of PR_P , for every height one prime ideal *P* of *R* [24, Proposition 4.5].

Corollary 2.3 Let R be a semi-Krull domain. If R is condensed, then dim R = 1.

Proof By [10, Theorem 1.10], *R* satisfies the ascending chain condition on principal ideals. By Proposition 2.1, every maximal ideal is *t*-maximal, that is, $Max(R) = Max_t(R)$. Now, by [10, Proposition 1.2], $Max_t(R) = X^1(R)$, where $X^1(R)$ is the set of height-one prime ideals of *R*. Hence ht M = 1 for every maximal ideal *M* of *R* and therefore dim R = 1.

It is well known that for a Mori domain *R* and a prime ideal *P* of *R*, if ht *P* = 1, then *P* is divisorial and if ht *P* \geq 2, then either *P* is a strongly divisorial ideal or $P^{-1} = R$, *i.e.*, $P_v = R$ [8, Theorem 3.1]. The following corollary asserts that for a condensed Mori domain, each prime ideal is divisorial.

Corollary 2.4 Let R be a Mori domain. If R is condensed, then each prime ideal of R is divisorial.

Proof Let *P* be a prime ideal of *R*. Since R_P is a condensed Mori domain, by Proposition 2.1, PR_P is a *t*-maximal ideal of R_P . Since R_P is a *TV*-domain (*i.e.*, the *t*- and *v*-operations are the same [22]), then PR_P is divisorial. Now, let $x \in P_v = P_t$. Then there is an fg ideal *I* of *R* such that $I \subseteq P$ and $x \in I_v$, that is, $xI^{-1} \subseteq R$. Since *I* is fg, then $(IR_P)^{-1} = I^{-1}R_P$. So $x(IR_P)^{-1} = xI^{-1}R_P \subseteq R_P$. So $x \in (IR_P)_{v_1} = (IR_P)_{t_1} \subseteq (PR_P)_{v_1} = PR_P$, (where t_1 and v_1 are the *t*- and *v*-operations with respect to R_P). Hence $x \in R \cap PR_P = P$. It follows that $P_v = P$.

Proposition 2.5 Any strongly stable prime ideal is divisorial. In particular, any prime ideal of an SC domain is divisorial.

Proof Let *P* be a prime ideal of *R* and suppose that $P \,\subset P_v$. Let $x \in P_v \setminus P$. Since $xP^{-1} \subseteq R$, then $xPP^{-1} \subseteq P$. So $PP^{-1} \subseteq P$ and therefore $PP^{-1} = P$. Hence $P^{-1} = (P:P)$. Since *P* is strongly stable, then P = a(P:P) for some nonzero $a \in P$. So $P = a(P:P) = aP^{-1}$, and then $P^{-1} = a^{-1}P$. Hence $P_v = (R:P^{-1}) = (R:a^{-1}P) = a(R:P) = aP^{-1} = P$, which is absurd. Hence $P = P_v$.

We recall that a domain is divisorial if each ideal is divisorial. W. Heinzer [21] characterized such domains in the context of the integrally closed case; as h-local Prüfer domains, their maximal ideals are finitely generated. Also it is well known that an integrally closed SC domain is a generalized Dedekind domain and such a domain is divisorial. For the convenience of the reader, we include it here as a corollary of Proposition 2.5.

Corollary 2.6 Any integrally closed SC domain is divisorial.

Proof By [2, Theorem 3.7], any nonzero ideal *I* of *R* is of the form I = aP for some prime ideal *P* of *R*. Since *P* is divisorial (Proposition 2.5), then so is *I*. Hence *R* is divisorial.

Theorem 2.7 Let R be a Mori domain satisfying one of the following conditions:

- (i) the conductor (R:R') is nonzero;
- (ii) *R* is seminormal.
- If *R* is condensed, then dim R = 1.

Proof (i) Assume that $A = (R:R') \neq 0$. Then $R' \subseteq (A:A) \subseteq (A_v:A_v) = (AA^{-1})^{-1} = T$. Since *R* is condensed, then *R'* is Bézout. So *T* is Bézout. Since *T* is a Mori domain, then *T* is a Dedekind domain. Now, since $(R:T) = (AA^{-1})_v$ is nonzero, then *T* and *R* have the same complete integral closure, that is, $\overline{R} = \overline{T} = T$ (since *T* is Dedekind, so completely integrally closed). Hence \overline{R} is a Dedekind domain and $(R:\overline{R}) = (AA^{-1})_v$. Hence dim $\overline{R} = 1$. By [11, Corollary 3.4.1], dim R = 1. (Note that \overline{R} is a condensed domain (as an overring of *R*). So Pic(\overline{R}) = (0) and therefore \overline{R} is a *PID*).

(ii) Assume that *R* is seminormal and suppose that dim $R \ge 2$. Let $0 \subseteq P \subseteq Q$ be a chain of prime ideals of *R* with ht $Q \ge 2$. Since R_Q is a condensed Mori domain which is also seminormal, without loss of generality, we may assume that *R* is local with maximal ideal *M*, ht $M \ge 2$. By Corollary 2.4, *M* is divisorial. Since ht $M \ge 2$, then $M^{-1} = (M:M)$ [8, Theorem 3.1]. Set T = (R:M) = (M:M) and let Q = (P:M). Then *Q* is a prime ideal of *T* and $P \subseteq Q \subseteq Q + M$. Since $Q \cap R \subseteq M$ (*R* is local), then $Q + M \subset T$. Otherwise, if Q + M = T, then 1 = a + m, where $a \in Q$ and $m \in M$. So $a = 1 - m \in Q \cap R \subseteq M$, which is absurd. Hence there is a maximal ideal *N* of *T* such that $Q + M \subseteq N$. So $0 \subset Q \subset N$ is a chain of prime ideals of *T*. Then ht_{*T*} $N \ge 2$. By [7, Lemma 2.3], *N* is not a divisorial ideal of *T*, which is absurd by Corollary 2.4, since *T* is a condensed Mori domain.

Proposition 2.8 Let R be a Mori domain with $(R:\overline{R}) \neq 0$. Then R is condensed if and only if Pic(R) = 0, R_M is condensed for each maximal ideal M of R and \overline{R} is a PID.

Proof (\Rightarrow) By [4], Pic(R) = (0) and R_M is condensed for every maximal ideal M of R. By the proof of Theorem 2.7, \overline{R} is a PID.

 (\Leftarrow) By [2, Lemma 2.2], it suffices to show that R is h-local. Since \bar{R} is a PID and $(R:\bar{R}) \neq (0)$, by [11, Corollary 3.4 (1)], dim $R = \dim \bar{R} = 1$. So it suffices to show that R has finite character. Let x be a nonzero non-unit of R and $\{M_{\alpha}\}_{\alpha\in\Omega}$ the set of all maximal ideals that contain x. Since ht $M_{\alpha} = 1$, there exists a prime ideal N_{α} of \bar{R} such that $N_{\alpha} \cap R = M_{\alpha}$ [11, Proposition 1.1]. Since \bar{R} is a PID, $\{N_{\alpha}\}_{\alpha\in\Omega}$ is finite and so is $\{M_{\alpha}\}_{\alpha\in\Omega}$, as desired.

The following Theorem is an analogue of [2, Theorem 3.8]. However, we show in Example 2.10 that the last statement of [2, Theorem 3.8] cannot be extended to a Mori domain.

Theorem 2.9 Let R be a Mori domain. Then R is an SC domain if and only if (i) R is is a PID or (ii) dim R = 1 and R has a unique non principal maximal ideal M, and R_M is an SC domain.

Proof (\Rightarrow) If *R* is a PID, there is nothing to prove. Assume that *R* is not a PID. Let *M* be a maximal ideal of *R*. Since *R*_M is an SC Mori domain, without loss of generality, we may assume that *R* is local with maximal ideal *M*. Two cases are then possible.

- (i) $(R:R') \neq (0)$. By Theorem 2.7, ht $M = \dim R = 1$.
- (ii) (R:R') = (0). By [25, Corollary 4.17], ht $M = \dim R = 1$. It follows that ht M = 1 and so dim R = 1.

Now, since *R* is not a PID, there exists a nonzero ideal *I* of *R* which is not principal. Since *R* is condensed, then Pic(R) = (0). So *I* cannot be invertible, that is, $II^{-1} \subset R$. Then there exists a maximal ideal *M* such that $II^{-1} \subseteq M$. Since II^{-1} is a trace ideal, then so is *M*, that is, $M = MM^{-1}$. So *M* is divisorial and $M^{-1} = (M:M)$. Now, if *N* is a non principal maximal ideal of *R*, then *N* cannot be invertible (since Pic(R) = (0)). Then $N = NN^{-1}$. So *N* is divisorial and $N^{-1} = (N:N)$. Since M^{-1} and N^{-1} are overrings of *R* between *R* and \bar{R} , by [2, Proposition 3.3], M^{-1} and N^{-1} are comparable. If $M^{-1} \subseteq N^{-1}$, then $N = N_v \subseteq M_v = M$ and by maximality M = N. The same holds if $N^{-1} \subseteq M^{-1}$, and therefore *R* has a unique non principal maximal ideal *M*. Clearly R_M is an SC domain as a quotient ring of *R*.

(⇐) If *R* is a PID, then clearly *R* is an SC domain. Assume that the assertion (ii) holds. By [2, Theorem 3.4], it suffices to show that Spec(*R*) is Noetherian, *i.e.*, *R* satisfies the ascending chain condition on radical ideals. But, let *I* be a radical ideal of *R* and let *P* be a minimal prime ideal of *I*. Since dim R = 1, then *P* is divisorial. So $I_v \subseteq P$. Hence $I_v \subseteq \bigcap \{P/P \text{ minimal over } I\} = I$. Hence *I* is a *v*-ideal. So every radical ideal of *R* is divisorial and since *R* is Mori, then *R* satisfies the ascending chain condition on radical ideals, as desired.

The condition (c) in [2, Theorem 3.8] is not sufficient to make *R* an SC domain in the case of Mori domain as is shown by the following example.

Example 2.10 Let k be a field and X and Y indeterminates over k. Set V = k(X)[[Y]] = k(X) + M, where M = YV and R = k + M. By [18, Theorem 4.18], R is an integrally closed Mori domain which is local and dim R = 1. Since R is local, then Pic(R) = (0) and R/R' = (0) is serial. However, R is not even condensed (since R is not Bézout, or even Prüfer).

3 Classical "D + M" Constructions

We start this section with the following result which is a generalization of [2, Proposition 2.6] and which leads us to construct a family of condensed domains. For any *D*-submodules *U* and *W* of *K*, we denote by $\mathcal{P}(U, W) = \{ab/a \in U \text{ and } b \in W\}$ and *UW* the *D*-submodule of *K* generated by $\mathcal{P}(U, W)$.

Theorem 3.1 For the classical "D + M" construction, the following conditions are equivalent:

(i) *R* is condensed;

(ii) $\mathcal{P}(U, W) = UW$ for each *D*-submodules *U* and *W* of *K* containing *D*.

Proof (i) \Rightarrow (ii) Let *U* and *W* be *D*-submodules of *K*. Let $0 \neq m \in M$ and set $I_1 = m(U + M)$ and $I_2 = m(W + M)$. Let $z \in UW$ and write $z = \sum_{i=1}^{i=n} x_i y_i$, where $x_i \in U$ and $y_i \in W$ for each i = 1, ..., n. So $m^2 z = \sum_{i=1}^{i=n} (mx_i)(my_i) \in I_1 I_2$. Then there is $x = m(a_1 + m_1) \in I_1$ and $y = m(a_2 + m_2) \in I_2$, where $a_1 \in U$, $a_2 \in W$

Condensed and Strongly Condensed Domains

and $m_1, m_2 \in M$ such that $m^2 z = xy = m^2(a_1a_2 + b)$, for some $b \in M$. Hence $z = a_1 a_2 \in \mathcal{P}(U, W)$. It follows that $\mathcal{P}(U, W) = UW$.

(ii) \Rightarrow (i) Let I_1 and I_2 be ideals of R and $x \in I_1I_2$.

Case 1: $M \subset I_1$ and $M \subset I_2$. Set $I_1 = J_1 + M$, and $I_2 = J_2 + M$, for some nonzero ideals J_1 and J_2 of D. Then $M \subset I_1I_2$ (since each ideal of R is comparable to M). If $x \notin M$, then x = a + m for some $0 \neq a \in J_1 J_2$ and $m \in M$. Since D is condensed, then $a = a_1a_2$ for some $0 \neq a_1 \in J_1$ and $0 \neq a_2 \in J_2$. So $x = a + m = a_1a_2 + m =$ $a_1(a_2 + a_1^{-1}m)$, with $a_1 \in I_1$ and $(a_2 + a_1^{-1}m) \in I_2$, as desired. Assume that $x \in M$ and let $0 \neq a \in J_1$. Then $x = a(a^{-1}x)$ with $a \in I_1$ and $a^{-1}x \in M \subseteq I_2$, as desired.

Case 2: $M \subset I_1$ and $I_2 \subseteq M$. Then set $I_1 = J + M$ for some nonzero ideal J of D. If I_2 is an ideal of V, then let $0 \neq a \in J$. Since $a^{-1} \in K$ and $x \in I_1 I_2 \subseteq I_2$, then $xa^{-1} \in I_2$. So $x = a(xa^{-1})$ with $a \in I_1$ and $xa^{-1} \in I_2$, as desired. Assume that I_2 is not an ideal of V. Then $I_2 = c(W + M)$ for some D-submodule W of K with $D \subseteq$ $W \subset K$. Write $x = \sum_{i=1}^{i=n} x_i y_i$, where $x_i = a_i + m_i \in I_1$ and $y_i = c(b_i + m'_i) \in I_2$, with $a_i \in J, b_i \in W$, and $m_i, m'_i \in M$ for each i = 1, ..., n. Then $x = c(\sum_{i=1}^{i=n} a_i b_i + m)$ for some $m \in M$. If $\sum_{i=1}^{i=n} a_i b_i = 0$, then x = cm, with $m \in M \subseteq I_1$ and $c \in I_2$, as desired. Assume that $\sum_{i=1}^{i=n} a_i b_i \neq 0$. Since $\mathcal{P}(J, W) = JW$, then $\sum_{i=1}^{i=n} a_i b_i = ab$ for some nonzero $a \in J$ and $b \in W$. Hence $x = c(ab + m) = ac(b + a^{-1}m)$, with $a \in I_1$ and $c(b + a^{-1}m) \in I_2$, as desired.

Case 3: $I_1 \subseteq M$ and $I_2 \subseteq M$. Then three subcases are possible.

(i) I_1 and I_2 are ideals of V. Then the result follows from the fact that V is condensed.

(ii) Neither I_1 nor I_2 is an ideal of V. Then $I_1 = c(U + M)$ and $I_2 = d(W + M)$, where U, W are D-submodules of K with $D \subseteq U$ (resp. W) $\subset K$ and $c \in I_1, d \in I_2$. Write $x = \sum_{i=1}^{i=n} x_i y_i$, where $x_i = c(a_i + m_i) \in I_1$ and $y_i = d(b_i + m'_i) \in I_2$, with $a_i \in U, b_i \in W$, and $m_i, m'_i \in M$ for each i = 1, ..., n. Then $x = cd(\sum_{i=1}^{i=n} a_i b_i + m)$ for some $m \in M$. If $\sum_{i=1}^{i=n} a_i b_i = 0$, then x = cdm, with $c \in I_1$ and $dm \in I_2$, as desired. Assume that $\overline{\sum_{i=1}^{i=n}} a_i b_i \neq 0$. Since $\mathcal{P}(U, W) = UW$, then $\sum_{i=1}^{i=n} a_i b_i = ab$ for some nonzero $a \in U$ and $b \in W$. So $x = cd(ab + m) = (ca)d(b + a^{-1}m)$ with $ca \in I_1$ and $d(b + a^{-1}m) \in I_2$, as desired.

(iii) One of them is an ideal of V while the other is not. Assume that I_1 is an ideal of V and I_2 is not an ideal of V. Then $I_2 = c(W + M)$ for some nonzero $c \in I_2$ and W a D-submodule of K with $D \subseteq W \subset K$. Since $x \in I_1I_2 \subseteq I_2$, then $xc^{-1} \in W + M \subseteq V$. If $xc^{-1} \notin I_1$, then $I_1 \subset xc^{-1}V$. So $cx^{-1}I_1 \subseteq M$. Hence $cx^{-1}I_1I_2 \subseteq I_2M = I_2VM = cM$. Since $x \in I_1I_2$, then $c = cx^{-1}x \in cM$. So $1 \in M$, which is absurd. Hence $xc^{-1} \in I_1$ and therefore $x = (xc^{-1})c$, as desired. It follows that R is condensed.

We recall that a domain R is conducive if for each overring T of R other than L (quotient field of *R*), the conductor $(R:T) = \{x \in L/xT \subseteq R\}$ is nonzero.

Corollary 3.2 Let D be a conducive domain which is condensed, K its quotient field and V a valuation domain of the form V = K + M (for instance V = K[[X]], or $K[X]_{(X)}$ and R = D + M. Then R is condensed.

Proof Since *D* is conducive, each *D*-submodule *W* of *K* (with $W \subset K$) is a fractional ideal of *D*. Since *D* is condensed, for all factional ideals *I* and *J* of *D*, $\mathcal{P}(I, J) = IJ$. So for all *D*-submodules *U* and *W* of *K* (that are fractional ideals of *D*), $\mathcal{P}(U, W) = UW$.

Acknowledgment I would like to express my sincere thanks to the referee for helpful suggestions.

References

- [1] D. D. Anderson, Star-operations induced by overrings. Comm. Algebra 16(1988), no. 12, 2535–2553.
- D. D. Anderson and T. Dumetriscu, *Condensed domains*. Canad. Math. Bull. 46(2003), no. 1, 3–13.
 Condensed local domains which are not strongly condensed. Math. Rep. 5(55)(2003), no. 3, 205–209.
- [4] D. F. Anderson and D. E. Dobbs, On the product of ideals. Canad. Math. Bull, 26(1983), no. 1, 106–114.
- [5] D. F. Anderson, J. T. Arnold and D. E. Dobbs, *Integrally closed condensed domains are Bézout*. Canad. Math. Bull, 28(1985), no. 1, 98–102.
- [6] V. Barucci, Strongly divisorial ideals and complete integral closure of an integral domain. J. Algebra 99(1986), no. 1, 132–142.
- [7] _____, Seminormal Mori domains. In: Commutative Ring Theory. Lecture Notes in Pure and Appl. Math. 153, Dekker, New York, 1994, pp. 163–170.
- [8] _____, Mori domains. In: Non-Noetherian Commutative Ring Theory. Math. Appl. 520 Kluwer, Dordrecht, 2000, pp. 57–73.
- [9] V. Barucci, D. E. Dobbs, and M. Fontana, *Conducive integral domains as pullbacks*. Manuscripta Math. 54(1986), no. 3, 261–277.
- [10] V. Barucci, S. Gabelli, and M. Roitman, On semi-Krull domains. J. Algebra 145(1992), 306–328.
- [11] V. Barucci and E. Houston, On the prime spectrum of a Mori domain. Comm. Algebra, 24(1996), no. 11, 3599–3622.
- [12] E. Bastida and R. Gilmer, *Overrings and divisorial ideals of rings of the form* D + M. Michigan Math. J. **20**(1973), 79–95.
- [13] J. W. Brewer and E. A. Rutter, D + M constructions with general overrings. Michigan Math. J. 23(1976), 33–42.
- [14] D. Costa, J. L. Mott, and M. Zafrullah, *The construction* $D + XD_s[X]$. J. Algebra **53**(1978), no. 2, 423–439.
- [15] D. E. Dobbs and R. Fedder, Conducive integral domains. J. Algebra 86(1984), no. 2, 494–510.
- [16] D. E. Dobbs, E. G. Houston, T. G. Lucas, and M. Zafrullah, *t-linked overrings and Prüfer v-multiplication domains*. Comm. Algebra 17(1989), no. 11, 2835–2852.
- [17] W. Fanggui and R. L. McCasland, On strong Mori domains. J. Pure Appl. Algebra 135(1999), no. 2, 155–165.
- [18] S. Gabelli and E. Houston, Coherentlike conditions in pullbacks. Michigan Math. J. 44(1997), no. 1, 99–123.
- [19] R. Gilmer, *Multiplicative Ideal Theory*. Pure and Applied Mathematics 12, Marcel Dekker, New York, 1972.
- [20] C. Gottlieb, On condensed Noetherian integral domains whose integral closures are discrete valuation rings. Canad. Math. Bull. 32(1989), no. 2, 166–168.
- [21] W. Heinzer, Integral domains in which each non-zero ideal is divisorial. Mathematika 15(1968), 164–170.
- [22] E. G. Houston and M. Zafrullah, Integral domains in which each t-ideal is divisorial. Michigan. Math. J. 35(1988), no. 2, 291–300.
- [23] I. Kaplansky, Commutative Rings. The University of Chicago Press, Chicago, 1974.
- [24] E. Matlis, Some properties of commutative ring extensions. Illinois J. Math. 31(1987), no. 3, 374–418.
- [25] B. Olberding, On the structure of stable domains. Comm. Algebra 30(2002), no. 2, 877–895.

Department of Mathematical Sciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

e-mail: amimouni@kfupm.edu.sa