Condensed and Strongly Condensed Domains

Dedicated to Maryam Fassi Fehri on her twenty-ninth birthday

Abdeslam Mimouni

Abstract

This paper deals with the concepts of condensed and strongly condensed domains. By definition, an integral domain R is condensed (resp. strongly condensed) if each pair of ideals I and J of R, $I J=\{a b / a \in I, b \in J\}$ (resp. $I J=a J$ for some $a \in I$ or $I J=I b$ for some $b \in J$). More precisely, we investigate the ideal theory of condensed and strongly condensed domains in Noetherian-like settings, especially Mori and strong Mori domains and the transfer of these concepts to pullbacks.

1 Introduction

The concept of a condensed domain was introduced by D. F. Anderson and D. E. Dobbs [4] and further developed in [5]. An integral domain R is condensed if for each pair of ideals I and J of $R, I J=\{a b / a \in I, b \in J\}$. They showed that a condensed domain R has $\operatorname{Pic}(R)=(0)$ and that a Noetherian condensed domain R has $\operatorname{dim} R \leq 1$. Later, D. F. Anderson, J. T. Arnold and D. E. Dobbs [5] showed that an integrally closed domain is condensed if and only if it is Bézout. Next, C. Gottlieb introduced a class of condensed domains, the strongly condensed domains [20]. An integral domain R is strongly condensed (or SC domain for short) if for each pair of ideals I and J of R, either $I J=a J$ for some $a \in I$, or $I J=I b$ for some $b \in J$. In 2003, D. D. Anderson and T. Dumetriscu developed the concepts of condensed and strongly condensed domains for various classes of integral domains, namely, Noetherian, integrally closed and local cases [2,3]. In this paper, we continue the investigation of the condensed and strongly condensed domains. The second section is devoted to the ideal-theoretic of condensed and strongly condensed domains in Noetherian-like settings, especially Mori and strong Mori domains. We first prove that a condensed Mori domain R has $\operatorname{dim} R \leq 1$ and we characterize strongly condensed Mori domains. The third section deals with the transfer of the above concepts to pullbacks in order to provide original examples.

Throughout R is an integral domain, L its quotient field, R^{\prime} its integral closure and \bar{R} its complete integral closure. For nonzero (fractional) ideals I and J of a domain R, we denote by $(I: J)=\{x \in K / x J \subseteq I\}$ and $I^{-1}=(R: I)$. The v-closure of I is defined by $I_{v}=\left(I^{-1}\right)^{-1}$, and I is said to be a v-ideal (or divisorial) if $I=I_{v}$.

A Mori domain is a domain R satisfying the ascending chain condition on v-ideals. Noetherian and Krull domains are Mori. A nonzero ideal I is said to be stable (or

[^0]Sally-Vasconcelos stable) (respectively strongly stable) if I is invertible (respectively principal) in its endomorphisms ring $E(I)=(I: I)$, and a domain R is said to be stable (respectively strongly stable) if each nonzero ideal is stable (respectively strongly stable). Finally, we recall the following useful result [2, Proposition 3.3]: a domain R is an SC-domain if and only if R is strongly stable and $[R, \bar{R}]$, the set of rings between R and \bar{R}, is linearly ordered by inclusion.

2 Condensed and Strongly Condensed Mori Domains

Proposition 2.1 Let R be a domain with the ascending chain condition on principal ideals. If R is condensed, then every maximal ideal is a t-ideal.

Proof Let M be a maximal ideal of R and suppose that $M_{t}=R$. Then there exists an fg ideal I of R, such that $I \subseteq M$ and $I^{-1}=R$. Since \bar{R} is t-linked over $R,(\bar{R}: I \bar{R})=\bar{R}$ (see [16, Corollary 2.3], we recall that an overring T of a domain R is said to be t-linked over R if for each fg ideal I of R such that $I^{-1}=R$, one has $\left.(T: I T)=T\right)$. Hence $I \bar{R}(\bar{R}: I \bar{R})=I \bar{R}$. On the other hand, since \bar{R} is an integrally closed condensed domain (as an overring of R), then \bar{R} is a Bézout domain. So $I \bar{R}$ is a principal ideal of \bar{R} and therefore $I \bar{R}(\bar{R}: I \bar{R})=\bar{R}$. Hence $I \bar{R}=\bar{R}$. So $1=\sum_{i=1}^{i=n} b_{i} x_{i}$, for some $b_{i} \in I$ and $x_{i} \in \bar{R}$. Now, for each i, there is an ideal A_{i} of R such that $x_{i} \in\left(A_{i}: A_{i}\right)$ (since $\bar{R}=$ $\bigcup(F: F)$, where F ranges over all nonzero (fractional) ideals of R). Set $A=\prod_{i=1}^{i=n} A_{i}$. Then $x_{i} \in(A: A)$ for each $i=1, \ldots, n$. So $1=\sum_{i=1}^{i=n} b_{i} x_{i} \in I(A: A)$. Since R is condensed (and I and $(A: A)$ are fractional ideals of R), $1=a x$ for some $a \in I$ and $x \in(A: A)$. So for each $y \in A, y=a(y x) \in a A$. Hence $A \subseteq a A \subseteq A$ and therefore $A=a A$. By induction on $n, A=a^{n} A$. Hence $A=\bigcap_{n \geq 0} a^{n} A \subseteq \bigcap_{n \geq 0} a^{n} R$. But, since $a \in I$, a is non unit of R, so $\bigcap_{n \geq 0} a^{n} R=(0)$. (Otherwise, if $0 \neq b \in \bigcap_{n \geq 0} a^{n} R$, then for each $n, b=\alpha_{n} a^{n}=\alpha_{n+1} a^{n+1}$ for some α_{n} and α_{n+1} in R. Then $\alpha_{n}=\alpha_{n+1} a$. So the sequence $\left\{\alpha_{n} R\right\}_{n \geq 0}$ is an increasing sequence of principal ideals of R. Then it stabilizes since R satisfies the ascending chain condition on principal ideals. So there exists $s \geq 0$ such that $\alpha_{s} R=\alpha_{n} R$ for each $n \geq s$. In particular, $\alpha_{s} R=\alpha_{s+1} R$. Hence $\alpha_{s+1}=c \alpha_{s}$ for some nonzero $c \in R$. Then $\alpha_{s}=a \alpha_{s+1}=c a \alpha_{s}$. So $1=c a \in I$, a contradiction.) Hence $A=(0)$, which is absurd. It follows that $M=M_{t}$.

We recall that the w-closure of an ideal is defined by $I_{w}:=\bigcup(I: J)$ where the union is taken over all the finitely generated ideals J such that $J^{-1}=R$. An ideal I is said to be a w-ideal if $I=I_{w}$ and a domain R is said to be a strong Mori domain if R satisfies the ascending chain condition on w-ideals. Noetherian and Krull domains are strong Mori, and strong Mori domains are Mori domains.

Corollary 2.2 Let R be a strong Mori domain. If R is condensed, then $\operatorname{dim} R=1$, and so R is Noetherian.

Proof Let M be a maximal ideal of R. By Proposition 2.1, M is t-maximal. So R_{M} is a Notherian domain [1, Corollary 4.3], [17, Theorem 1.9]. Since R_{M} is a condensed domain, then ht $M=\operatorname{dim} R_{M}=1$ [4]. Hence $\operatorname{dim} R=1$ and therefore R is Noetherian [17, Corollary 1.10].

We recall that a domain R is semi-Krull if $R=\bigcap R_{P}$, where P ranges over the set of height one primes of R, the intersection has a finite character, and every nonzero ideal of R_{P} contains a power of $P R_{P}$, for every height one prime ideal P of R [24, Proposition 4.5].

Corollary 2.3 Let R be a semi-Krull domain. If R is condensed, then $\operatorname{dim} R=1$.
Proof By [10, Theorem 1.10], R satisfies the ascending chain condition on principal ideals. By Proposition 2.1, every maximal ideal is t-maximal, that is, $\operatorname{Max}(R)=$ $\operatorname{Max}_{t}(R)$. Now, by [10, Proposition 1.2], $\operatorname{Max}_{t}(R)=X^{1}(R)$, where $X^{1}(R)$ is the set of height-one prime ideals of R. Hence ht $M=1$ for every maximal ideal M of R and therefore $\operatorname{dim} R=1$.

It is well known that for a Mori domain R and a prime ideal P of R, if ht $P=1$, then P is divisorial and if ht $P \geq 2$, then either P is a strongly divisorial ideal or $P^{-1}=R$, i.e., $P_{v}=R[8$, Theorem 3.1]. The following corollary asserts that for a condensed Mori domain, each prime ideal is divisorial.

Corollary 2.4 Let R be a Mori domain. If R is condensed, then each prime ideal of R is divisorial.

Proof Let P be a prime ideal of R. Since R_{P} is a condensed Mori domain, by Proposition 2.1, $P R_{P}$ is a t-maximal ideal of R_{P}. Since R_{P} is a $T V$-domain (i.e., the t - and v-operations are the same [22]), then $P R_{P}$ is divisorial. Now, let $x \in P_{v}=P_{t}$. Then there is an fg ideal I of R such that $I \subseteq P$ and $x \in I_{v}$, that is, $x I^{-1} \subseteq R$. Since I is fg , then $\left(I R_{P}\right)^{-1}=I^{-1} R_{P}$. So $x\left(I R_{P}\right)^{-1}=x I^{-1} R_{P} \subseteq R_{P}$. So $x \in\left(I R_{P}\right)_{v_{1}}=\left(I R_{P}\right)_{t_{1}} \subseteq$ $\left(P R_{P}\right)_{v_{1}}=P R_{P}$, (where t_{1} and v_{1} are the t - and v-operations with respect to R_{P}). Hence $x \in R \cap P R_{P}=P$. It follows that $P_{v}=P$.

Proposition 2.5 Any strongly stable prime ideal is divisorial. In particular, any prime ideal of an SC domain is divisorial.

Proof Let P be a prime ideal of R and suppose that $P \subset P_{v}$. Let $x \in P_{v} \backslash P$. Since $x P^{-1} \subseteq R$, then $x P P^{-1} \subseteq P$. So $P P^{-1} \subseteq P$ and therefore $P P^{-1}=P$. Hence $P^{-1}=(P: P)$. Since P is strongly stable, then $P=a(P: P)$ for some nonzero $a \in P$. So $P=a(P: P)=a P^{-1}$, and then $P^{-1}=a^{-1} P$. Hence $P_{v}=\left(R: P^{-1}\right)=\left(R: a^{-1} P\right)=$ $a(R: P)=a P^{-1}=P$, which is absurd. Hence $P=P_{v}$.

We recall that a domain is divisorial if each ideal is divisorial. W. Heinzer [21] characterized such domains in the context of the integrally closed case; as h-local Prüfer domains, their maximal ideals are finitely generated. Also it is well known that an integrally closed SC domain is a generalized Dedekind domain and such a domain is divisorial. For the convenience of the reader, we include it here as a corollary of Proposition 2.5.

Corollary 2.6 Any integrally closed SC domain is divisorial.

Proof By [2, Theorem 3.7], any nonzero ideal I of R is of the form $I=a P$ for some prime ideal P of R. Since P is divisorial (Proposition 2.5), then so is I. Hence R is divisorial.

Theorem 2.7 Let R be a Mori domain satisfying one of the following conditions:
(i) the conductor $\left(R: R^{\prime}\right)$ is nonzero;
(ii) R is seminormal.

If R is condensed, then $\operatorname{dim} R=1$.
Proof (i) Assume that $A=\left(R: R^{\prime}\right) \neq 0$. Then $R^{\prime} \subseteq(A: A) \subseteq\left(A_{v}: A_{v}\right)=$ $\left(A A^{-1}\right)^{-1}=T$. Since R is condensed, then R^{\prime} is Bézout. So T is Bézout. Since T is a Mori domain, then T is a Dedekind domain. Now, since $(R: T)=\left(A A^{-1}\right)_{v}$ is nonzero, then T and R have the same complete integral closure, that is, $\bar{R}=\bar{T}=T$ (since T is Dedekind, so completely integrally closed). Hence \bar{R} is a Dedekind domain and $(R: \bar{R})=\left(A A^{-1}\right)_{v}$. Hence $\operatorname{dim} \bar{R}=1$. By [11, Corollary 3.4.1], $\operatorname{dim} R=1$. (Note that \bar{R} is a condensed domain (as an overring of R). So $\operatorname{Pic}(\bar{R})=(0)$ and therefore \bar{R} is a PID).
(ii) Assume that R is seminormal and suppose that $\operatorname{dim} R \geq 2$. Let $0 \subset P \subset Q$ be a chain of prime ideals of R with ht $Q \geq 2$. Since R_{Q} is a condensed Mori domain which is also seminormal, without loss of generality, we may assume that R is local with maximal ideal M, ht $M \geq 2$. By Corollary $2.4, M$ is divisorial. Since ht $M \geq 2$, then $M^{-1}=(M: M)[8$, Theorem 3.1]. Set $T=(R: M)=(M: M)$ and let $Q=(P: M)$. Then Q is a prime ideal of T and $P \subseteq Q \subseteq Q+M$. Since $Q \cap R \subseteq M$ (R is local), then $Q+M \subset T$. Otherwise, if $Q+M=T$, then $1=a+m$, where $a \in Q$ and $m \in M$. So $a=1-m \in Q \cap R \subseteq M$, which is absurd. Hence there is a maximal ideal N of T such that $Q+M \subseteq N$. So $0 \subset Q \subset N$ is a chain of prime ideals of T. Then ${h t_{T}} N \geq 2$. By [7, Lemma 2.3], N is not a divisorial ideal of T, which is absurd by Corollary 2.4 , since T is a condensed Mori domain.

Proposition 2.8 Let R be a Mori domain with $(R: \bar{R}) \neq 0$. Then R is condensed if and only if $\operatorname{Pic}(R)=0, R_{M}$ is condensed for each maximal ideal M of R and \bar{R} is a PID.

Proof $(\Rightarrow) \operatorname{By}[4], \operatorname{Pic}(R)=(0)$ and R_{M} is condensed for every maximal ideal M of R. By the proof of Theorem 2.7, \bar{R} is a PID.
(\Leftarrow) By [2, Lemma 2.2], it suffices to show that R is h-local. Since \bar{R} is a PID and $(R: \bar{R}) \neq(0)$, by [11, Corollary 3.4 (1)], $\operatorname{dim} R=\operatorname{dim} \bar{R}=1$. So it suffices to show that R has finite character. Let x be a nonzero non-unit of R and $\left\{M_{\alpha}\right\}_{\alpha \in \Omega}$ the set of all maximal ideals that contain x. Since ht $M_{\alpha}=1$, there exists a prime ideal N_{α} of \bar{R} such that $N_{\alpha} \cap R=M_{\alpha}$ [11, Proposition 1.1]. Since \bar{R} is a PID, $\left\{N_{\alpha}\right\}_{\alpha \in \Omega}$ is finite and so is $\left\{M_{\alpha}\right\}_{\alpha \in \Omega}$, as desired.

The following Theorem is an analogue of [2, Theorem 3.8]. However, we show in Example 2.10 that the last statement of [2, Theorem 3.8] cannot be extended to a Mori domain.
Theorem 2.9 Let R be a Mori domain. Then R is an SC domain if and only if (i) R is is a PID or (ii) $\operatorname{dim} R=1$ and R has a unique non principal maximal ideal M, and R_{M} is an SC domain.

Proof (\Rightarrow) If R is a PID, there is nothing to prove. Assume that R is not a PID. Let M be a maximal ideal of R. Since R_{M} is an SC Mori domain, without loss of generality, we may assume that R is local with maximal ideal M. Two cases are then possible.
(i) $\quad\left(R: R^{\prime}\right) \neq(0)$. By Theorem 2.7 , ht $M=\operatorname{dim} R=1$.
(ii) $\quad\left(R: R^{\prime}\right)=(0)$. By [25, Corollary 4.17], ht $M=\operatorname{dim} R=1$. It follows that ht $M=1$ and $\operatorname{so} \operatorname{dim} R=1$.
Now, since R is not a PID, there exists a nonzero ideal I of R which is not principal. Since R is condensed, then $\operatorname{Pic}(R)=(0)$. So I cannot be invertible, that is, $I I^{-1} \subset R$. Then there exists a maximal ideal M such that $I I^{-1} \subseteq M$. Since $I I^{-1}$ is a trace ideal, then so is M, that is, $M=M M^{-1}$. So M is divisorial and $M^{-1}=(M: M)$. Now, if N is a non principal maximal ideal of R, then N cannot be invertible (since $\operatorname{Pic}(R)=(0))$. Then $N=N N^{-1}$. So N is divisorial and $N^{-1}=(N: N)$. Since M^{-1} and N^{-1} are overrings of R between R and \bar{R}, by [2, Proposition 3.3], M^{-1} and N^{-1} are comparable. If $M^{-1} \subseteq N^{-1}$, then $N=N_{v} \subseteq M_{v}=M$ and by maximality $M=N$. The same holds if $N^{-1} \subseteq M^{-1}$, and therefore R has a unique non principal maximal ideal M. Clearly R_{M} is an SC domain as a quotient ring of R.
(\Leftarrow) If R is a PID, then clearly R is an SC domain. Assume that the assertion (ii) holds. By [2, Theorem 3.4], it suffices to show that $\operatorname{Spec}(R)$ is Noetherian, i.e., R satisfies the ascending chain condition on radical ideals. But, let I be a radical ideal of R and let P be a minimal prime ideal of I. Since $\operatorname{dim} R=1$, then P is divisorial. So $I_{v} \subseteq P$. Hence $I_{v} \subseteq \bigcap\{P / P$ minimal over $I\}=I$. Hence I is a v-ideal. So every radical ideal of R is divisorial and since R is Mori, then R satisfies the ascending chain condition on divisorial ideals and therefore on radical ideals, as desired.

The condition (c) in [2, Theorem 3.8] is not sufficient to make R an SC domain in the case of Mori domain as is shown by the following example.

Example 2.10 Let k be a field and X and Y indeterminates over k. Set $V=$ $k(X)[[Y]]=k(X)+M$, where $M=Y V$ and $R=k+M$. By [18, Theorem 4.18], R is an integrally closed Mori domain which is local and $\operatorname{dim} R=1$. Since R is local, then $\operatorname{Pic}(R)=(0)$ and $R / R^{\prime}=(0)$ is serial. However, R is not even condensed (since R is not Bézout, or even Prüfer).

3 Classical " $D+M$ " Constructions

We start this section with the following result which is a generalization of [2, Proposition 2.6] and which leads us to construct a family of condensed domains. For any D-submodules U and W of K, we denote by $\mathcal{P}(U, W)=\{a b / a \in U$ and $b \in W\}$ and $U W$ the D-submodule of K generated by $\mathcal{P}(U, W)$.

Theorem 3.1 For the classical " $D+M$ " construction, the following conditions are equivalent:
(i) $\quad R$ is condensed;
(ii) $\mathcal{P}(U, W)=U W$ for each D-submodules U and W of K containing D.

Proof (i) \Rightarrow (ii) Let U and W be D-submodules of K. Let $0 \neq m \in M$ and set $I_{1}=m(U+M)$ and $I_{2}=m(W+M)$. Let $z \in U W$ and write $z=\sum_{i=1}^{i=n} x_{i} y_{i}$, where $x_{i} \in U$ and $y_{i} \in W$ for each $i=1, \ldots, n$. So $m^{2} z=\sum_{i=1}^{i=n}\left(m x_{i}\right)\left(m y_{i}\right) \in I_{1} I_{2}$. Then there is $x=m\left(a_{1}+m_{1}\right) \in I_{1}$ and $y=m\left(a_{2}+m_{2}\right) \in I_{2}$, where $a_{1} \in U, a_{2} \in W$
and $m_{1}, m_{2} \in M$ such that $m^{2} z=x y=m^{2}\left(a_{1} a_{2}+b\right)$, for some $b \in M$. Hence $z=a_{1} a_{2} \in \mathcal{P}(U, W)$. It follows that $\mathcal{P}(U, W)=U W$.
(ii) \Rightarrow (i) Let I_{1} and I_{2} be ideals of R and $x \in I_{1} I_{2}$.

Case 1: $M \subset I_{1}$ and $M \subset I_{2}$. Set $I_{1}=J_{1}+M$, and $I_{2}=J_{2}+M$, for some nonzero ideals J_{1} and J_{2} of D. Then $M \subset I_{1} I_{2}$ (since each ideal of R is comparable to M). If $x \notin M$, then $x=a+m$ for some $0 \neq a \in J_{1} J_{2}$ and $m \in M$. Since D is condensed, then $a=a_{1} a_{2}$ for some $0 \neq a_{1} \in J_{1}$ and $0 \neq a_{2} \in J_{2}$. So $x=a+m=a_{1} a_{2}+m=$ $a_{1}\left(a_{2}+a_{1}^{-1} m\right)$, with $a_{1} \in I_{1}$ and $\left(a_{2}+a_{1}^{-1} m\right) \in I_{2}$, as desired. Assume that $x \in M$ and let $0 \neq a \in J_{1}$. Then $x=a\left(a^{-1} x\right)$ with $a \in I_{1}$ and $a^{-1} x \in M \subseteq I_{2}$, as desired.

Case 2: $M \subset I_{1}$ and $I_{2} \subseteq M$. Then set $I_{1}=J+M$ for some nonzero ideal J of D. If I_{2} is an ideal of V, then let $0 \neq a \in J$. Since $a^{-1} \in K$ and $x \in I_{1} I_{2} \subseteq I_{2}$, then $x a^{-1} \in I_{2}$. So $x=a\left(x a^{-1}\right)$ with $a \in I_{1}$ and $x a^{-1} \in I_{2}$, as desired. Assume that I_{2} is not an ideal of V. Then $I_{2}=c(W+M)$ for some D-submodule W of K with $D \subseteq$ $W \subset K$. Write $x=\sum_{i=1}^{i=n} x_{i} y_{i}$, where $x_{i}=a_{i}+m_{i} \in I_{1}$ and $y_{i}=c\left(b_{i}+m_{i}^{\prime}\right) \in I_{2}$, with $a_{i} \in J, b_{i} \in W$, and $m_{i}, m_{i}^{\prime} \in M$ for each $i=1, \ldots, n$. Then $x=c\left(\sum_{i=1}^{i=n} a_{i} b_{i}+m\right)$ for some $m \in M$. If $\sum_{i=1}^{i=n} a_{i} b_{i}=0$, then $x=c m$, with $m \in M \subseteq I_{1}$ and $c \in I_{2}$, as desired. Assume that $\sum_{i=1}^{i=n} a_{i} b_{i} \neq 0$. Since $\mathcal{P}(J, W)=J W$, then $\sum_{i=1}^{i=n} a_{i} b_{i}=a b$ for some nonzero $a \in J$ and $b \in W$. Hence $x=c(a b+m)=a c\left(b+a^{-1} m\right)$, with $a \in I_{1}$ and $c\left(b+a^{-1} m\right) \in I_{2}$, as desired.

Case 3: $I_{1} \subseteq M$ and $I_{2} \subseteq M$. Then three subcases are possible.
(i) I_{1} and I_{2} are ideals of V. Then the result follows from the fact that V is condensed.
(ii) Neither I_{1} nor I_{2} is an ideal of V. Then $I_{1}=c(U+M)$ and $I_{2}=d(W+M)$, where U, W are D-submodules of K with $D \subseteq U$ (resp. $W) \subset K$ and $c \in I_{1}, d \in I_{2}$. Write $x=\sum_{i=1}^{i=n} x_{i} y_{i}$, where $x_{i}=c\left(a_{i}+m_{i}\right) \in I_{1}$ and $y_{i}=d\left(b_{i}+m_{i}^{\prime}\right) \in I_{2}$, with $a_{i} \in U, b_{i} \in W$, and $m_{i}, m_{i}^{\prime} \in M$ for each $i=1, \ldots, n$. Then $x=c d\left(\sum_{i=1}^{i=n} a_{i} b_{i}+m\right)$ for some $m \in M$. If $\sum_{i=1}^{i=n} a_{i} b_{i}=0$, then $x=c d m$, with $c \in I_{1}$ and $d m \in I_{2}$, as desired. Assume that $\sum_{i=1}^{i=n} a_{i} b_{i} \neq 0$. Since $\mathcal{P}(U, W)=U W$, then $\sum_{i=1}^{i=n} a_{i} b_{i}=a b$ for some nonzero $a \in U$ and $b \in W$. So $x=c d(a b+m)=(c a) d\left(b+a^{-1} m\right)$ with $c a \in I_{1}$ and $d\left(b+a^{-1} m\right) \in I_{2}$, as desired.
(iii) One of them is an ideal of V while the other is not. Assume that I_{1} is an ideal of V and I_{2} is not an ideal of V. Then $I_{2}=c(W+M)$ for some nonzero $c \in I_{2}$ and W a D-submodule of K with $D \subseteq W \subset K$. Since $x \in I_{1} I_{2} \subseteq I_{2}$, then $x c^{-1} \in W+M \subseteq V$. If $x c^{-1} \notin I_{1}$, then $\overline{I_{1}} \subset x c^{-1} V$. So $c x^{-1} I_{1} \subseteq \bar{M}$. Hence $c x^{-1} I_{1} I_{2} \subseteq I_{2} M=I_{2} V M=c M$. Since $x \in I_{1} I_{2}$, then $c=c x^{-1} x \in c M$. So $1 \in M$, which is absurd. Hence $x c^{-1} \in I_{1}$ and therefore $x=\left(x c^{-1}\right) c$, as desired. It follows that R is condensed.

We recall that a domain R is conducive if for each overring T of R other than L (quotient field of R), the conductor $(R: T)=\{x \in L / x T \subseteq R\}$ is nonzero.

Corollary 3.2 Let D be a conducive domain which is condensed, K its quotient field and V a valuation domain of the form $V=K+M$ (for instance $V=K[[X]]$, or $\left.K[X]_{(X)}\right)$ and $R=D+M$. Then R is condensed.

Proof Since D is conducive, each D-submodule W of K (with $W \subset K$) is a fractional ideal of D. Since D is condensed, for all factional ideals I and J of $D, \mathcal{P}(I, J)=I J$. So for all D-submodules U and W of K (that are fractional ideals of D), $\mathcal{P}(U, W)=$ UW.

Acknowledgment I would like to express my sincere thanks to the referee for helpful suggestions.

References

[1] D. D. Anderson, Star-operations induced by overrings. Comm. Algebra 16(1988), no. 12, 2535-2553.
[2] D. D. Anderson and T. Dumetriscu, Condensed domains. Canad. Math. Bull. 46(2003), no. 1, 3-13.
[3] \longrightarrow Condensed local domains which are not strongly condensed. Math. Rep. 5(55)(2003), no. 3, 205-209.
[4] D. F. Anderson and D. E. Dobbs, On the product of ideals. Canad. Math. Bull, 26(1983), no. 1, 106-114.
[5] D. F. Anderson, J. T. Arnold and D. E. Dobbs, Integrally closed condensed domains are Bézout. Canad. Math. Bull, 28(1985), no. 1, 98-102.
[6] V. Barucci, Strongly divisorial ideals and complete integral closure of an integral domain. J. Algebra 99(1986), no. 1, 132-142.
[7] \longrightarrow Seminormal Mori domains. In: Commutative Ring Theory. Lecture Notes in Pure and Appl. Math. 153, Dekker, New York, 1994, pp. 163-170.
[8] Mori domains. In: Non-Noetherian Commutative Ring Theory. Math. Appl. 520 Kluwer, Dordrecht, 2000, pp. 57-73.
[9] V. Barucci, D. E. Dobbs, and M. Fontana, Conducive integral domains as pullbacks. Manuscripta Math. 54(1986), no. 3, 261-277.
[10] V. Barucci, S. Gabelli, and M. Roitman, On semi-Krull domains. J. Algebra 145(1992), 306-328.
[11] V. Barucci and E. Houston, On the prime spectrum of a Mori domain. Comm. Algebra, 24(1996), no. 11, 3599-3622.
[12] E. Bastida and R. Gilmer, Overrings and divisorial ideals of rings of the form $D+M$. Michigan Math. J. 20(1973), 79-95.
[13] J. W. Brewer and E. A. Rutter, $D+M$ constructions with general overrings. Michigan Math. J. 23(1976), 33-42.
[14] D. Costa, J. L. Mott, and M. Zafrullah, The construction $D+X D_{s}[X]$. J. Algebra 53(1978), no. 2, 423-439.
[15] D. E. Dobbs and R. Fedder, Conducive integral domains. J. Algebra 86(1984), no. 2, 494-510.
[16] D. E. Dobbs, E. G. Houston, T. G. Lucas, and M. Zafrullah, t-linked overrings and Prüfer v-multiplication domains. Comm. Algebra 17(1989), no. 11, 2835-2852.
[17] W. Fanggui and R. L. McCasland, On strong Mori domains. J. Pure Appl. Algebra 135(1999), no. 2, 155-165.
[18] S. Gabelli and E. Houston, Coherentlike conditions in pullbacks. Michigan Math. J. 44(1997), no. 1, 99-123.
[19] R. Gilmer, Multiplicative Ideal Theory. Pure and Applied Mathematics 12, Marcel Dekker, New York, 1972.
[20] C. Gottlieb, On condensed Noetherian integral domains whose integral closures are discrete valuation rings. Canad. Math. Bull. 32(1989), no. 2, 166-168.
[21] W. Heinzer, Integral domains in which each non-zero ideal is divisorial. Mathematika 15(1968), 164-170.
[22] E. G. Houston and M. Zafrullah, Integral domains in which each t-ideal is divisorial. Michigan. Math. J. 35(1988), no. 2, 291-300.
[23] I. Kaplansky, Commutative Rings. The University of Chicago Press, Chicago, 1974.
[24] E. Matlis, Some properties of commutative ring extensions. Illinois J. Math. 31(1987), no. 3, 374-418.
[25] B. Olberding, On the structure of stable domains. Comm. Algebra 30(2002), no. 2, 877-895.

Department of Mathematical Sciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
e-mail: amimouni@kfupm.edu.sa

[^0]: Received by the editors March 26, 2006; revised May 29, 2006.
 This work is supported by KEUPM.
 AMS subject classification: Primary: 13G05, secondary: 13A15, 13F05, 13E05.
 (C)Canadian Mathematical Society 2008.

