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Weingarten Type Surfaces in
H2 ×R and S2 ×R
Abigail Folha and Carlos Peñaûel

Abstract. In this article, we study complete surfaces Σ, isometrically immersed in the product spaces
H2 × R or S2 × R having positive extrinsic curvature Ke . Let K i denote the intrinsic curvature of
Σ. Assume that the equation aK i + bKe = c holds for some real constants a /= 0, b > 0, and c. _e
main result of this article states that when such a surface is a topological sphere, it is rotational.

1 Introduction

_e holomorphic Hopf quadratic diòerential, deûned on a surface having a constant
mean curvature inR3, enabledHopf to give a proof that topological spheres inR3 hav-
ing constant mean curvature are rotational. A few years ago, Abresch and Rosenberg
[1,2] discovered a holomorphic quadratic diòerential on constantmean curvature sur-
faces in the homogeneous 3-manifolds. With the aid of this quadratic diòerential, they
extended Hopf ’s result to constant mean curvature topological spheres immersed in
such homogeneous spaces.

In the product spaces H2 × R and S2 × R, Aledo, Espinar, and Gálvez [3] associ-
ated a holomorphic quadratic diòerential with constant intrinsic curvature (Gaussian
curvature) surfaces immersed in such product spaces, which enabled them to extend
the classical Liebmann _eorem that in the euclidean spaceR3 ensure that the round
spheres are the unique complete surfaces of positive constant intrinsic curvature. For
complete surfaces immersed in H2 × R or S2 × R having positive extrinsic curva-
ture, Gálvez, Espinar, and Rosenberg [8] proved that such surfaces are embedded and
homeomorphic to either the euclidean sphere S2 or to the euclidean planeR2. More-
over, they constructed a quadratic diòerential on positive constant extrinsic surfaces
that vanishes identically or its zeros are isolated with negative index. As a conse-
quence, they proved that the complete immersions having positive constant extrinsic
curvature in the product spaces H2 ×R and S2 ×R are rotational spheres.

In this article, we consider complete surfaces Σ, isometrically immersed in the
product spaces H2 ×R or S2 ×R having positive extrinsic curvature (non-constant)
such that aK i + bKe = c, where K i , Ke are the intrinsic and the extrinsic curvatures,
respectively, and a /= 0, b > 0, and c are real constants. Our goal is to prove that
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if Σ is a topological sphere, then Σ is rotational. In order to obtain this result, we
ûrst construct a quadratic diòerential Qdz2 that vanishes identically or its zeros are
isolated with negative index. _is quadratic diòerential exists if a + b /= 0, 2a + b /= 0
(§4.2). Moreover, we obtain vertical and horizontal height estimates which enable us
to realize when Σ is a topological sphere (§4 and §5). In Section 6, we prove the main
theorem.

_e article is organized as follows: in Section 2we give the deûnition ofWeingarten
type surfaces. Section 3 is devoted to the study of rotational examples. In Section 4
we construct a quadratic diòerential on a Weingarten type surface which vanishes
identically or its zeros are isolated with negative index. We also establish horizontal
and vertical height estimates. In Section 5 we study the non-existence of complete
non-compact Weingarten type surfaces. In Section 6 we prove our main theorem.

2 Weingarten Type Surfaces Having Positive Extrinsic Curvature

For є ∈ {−1, 1}, we denote by M2(є) the complete, connected, simply-connected,
two-dimensional space form having sectional curvature є. _at is, for є = 1, M2(є)
denotes the canonical euclidean unit sphere S2 and for є = −1, M2(є) denotes the
complete, connected, simply-connected hyperbolic planeH2 having sectional curva-
ture −1. Also, we denote by M2(є) × R the product space (where R is the real line),
endowed with the product metric.

Recall that the surface Σ is called a Weingarten surface if its two principal curva-
tures k1 and k2 are not independent one of another or, equivalently, if there exists a
relation of the formW(k1 , k2) = 0 for a smooth real functionW ∶D ⊂ R2 → R deûned
on a set D.

In this article, we study complete, connected, surfaces Σ isometrically immersed
in the product space M2(є) × R whose intrinsic and extrinsic curvature are linearly
related.

Deûnition 2.1 Let φ∶Σ → M2(є)×R be an isometric immersion from a connected
surface having intrinsic curvature K i and extrinsic curvature Ke . We say that Σ is
a Weingarten type surface or simply a W-surface if there exist three real numbers,
a /= 0, b > 0, and c such that,

(2.1) aK i + bKe − c = 0.

Remark 2.2 _e assumption b > 0 is not a restriction since we can multiply equa-
tion (2.1) by −1 if necessary.

For simplicity, we treat properties of an immersion φ as those of Σ and denote
merely by Σ the image φ(Σ). For example, we call Σ aW-surface in M2(є)×R instead
of saying that the immersion φ is aW-surface in M2(є) ×R.

Let φ∶Σ → M2(є)×R be an isometric immersion from an orientable surface Σ into
the product space M2(є) ×R. We choose a global unit normal vector ûeld N and, as
usual, we denote by ν = ⟨N , ∂

∂t ⟩ the angle function of Σ. Here ∂
∂t denotes the tangent

vector ûeld to the real line R. From [5], we have that the Gauss equation for such an
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immersed surface into the product space M2(є) ×R is given by

(2.2) K i = Ke + єν2 .

As a consequence of the Gauss equation, we have the following.

Lemma 2.3 Let φ∶Σ → M2(є) × R be an isometric immersion. Assume that Σ is a
complete W-surface having positive extrinsic curvature Ke .
(i) Suppose a + b > 0.

(a) If c ≤ 0, then Σ is not compact,
(b) If є = −1 and c > b, then Σ is closed.
(c) If є = 1 and c > 0, then Σ is closed.

(ii) Suppose a + b < 0.
(a) If c ≥ 0, then Σ is not compact.
(b) If є = −1 and c < 0, then Σ is closed.
(c) If є = 1 and c < −b, then Σ is closed.
(d) If є = 1 and −b ≤ c < 0, then Σ cannot be closed.

(iii) For a + b = 0, the angle function is constant.

Proof As the extrinsic curvature of theW-surface is positive, Σ is orientable and we
choose the unit global normal vector ûeld such that the second fundamental form is
deûnite positive.
For H2 × R, if a + b < 0, it is clear that for c < 0 the intrinsic curvature satisûes

K i ≥ c
a+b > 0. _en from the Bonnet–Myers _eorem, Σ must be compact. On the

other hand, for a+b < 0 and c ≥ 0, if Σ were compact, there would exist a point p ∈ Σ
such that ν(p) = 0. It would imply that the extrinsic curvature satisûes Ke(p) ≤ 0,
which contradicts our assumption. _e proofs of the other cases are similar.
From equations (2.1) and (2.2), we conclude that a + b = 0 implies that the angle

function is constant.

Remark 2.4 Henceforth, since surfaces having constant angle were treated in [6,7],
we omit this case.

3 Complete Rotational Surfaces of Weingarten Type in M2(є) ×R
In this section, we deal with completeW-surfaces having positive extrinsic curvature,
which are invariant under a one-parameter group of rotations of the ambient space
M2(є) × R.
For є ∈ {−1, 1}, let us consider the four-dimensional space R3

є ×R, endowed with
the metric ds2 = єdx2

1 + dx2
2 + dx2

3 + dx2
4 . And let us identify the product space

M2(є) ×R as being the sub-manifold of R3
є ×R, given by

M2(є) ×R = {(x1 , x2 , x3 , x4) ∈ R3
є ×R ∶ єx2

1 + x2
2 + x2

3 = є, and if є = −1, x1 > 0}.

_e rotation in M2(є)×R is a subgroup of the isometry group ofM2(є)×Rwhich
preserves the orientation and ûxes an axis {p} ×R with p ∈ M2(є) × {0}. _is sub-
group can be identiûed with the special orthogonal group SO(2). Up to isometries,
we can assume that the axis is given by {(1, 0, 0)} ×R.
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We consider the plane Π = {(x1 , x2 , 0, x4) ∈ M2(є) ×R, x2 ≥ 0} and the curve

αє(u) =
⎧⎪⎪⎨⎪⎪⎩

(cosh k(u), sinh k(u), 0, h(u)) ⊂ Π if є = −1,
(cos k(u), sin k(u), 0, h(u)) ⊂ Π if є = 1.

Where k(u) ≥ 0 and u is the arclength of α, that is, (k′(u))2 + (h′(u))2 = 1. Here
k′(u) denotes the derivative with respect to the variable u.

In order to obtain a rotational surface, we apply the one-parameter group of ro-
tational isometries to the curve αє . Denoting by S such a generated surface, we can
parametrize S by

φє(u, v) =
⎧⎪⎪⎨⎪⎪⎩

(cosh k(u), sinh k(u) cos v , sinh k(u) sin v , h(u)) if є = −1,
(cos k(u), sin k(u) cos v , sin k(u) sin v , h(u)) if є = 1.

In order to simplify the expressions, we deûne the functions

cosє k =
⎧⎪⎪⎨⎪⎪⎩

cosh k if є = −1,
cos k if є = 1,

and cotє k =
⎧⎪⎪⎨⎪⎪⎩

coth k if є = −1,
cot k if є = 1.

3.1 The First Integral

_e aim of this section is to classify complete rotational W-surfaces having positive
extrinsic curvature. A straightforward computation gives us that the intrinsic and
extrinsic curvature functions of an isometrically immersed surface which is invariant
by rotational isometries in the space M2(є) ×R are given by

K i = є(k′(u))2 − k′′(u) cotє k(u),
Ke = −k′′(u) cotє k(u).

_e Weingarten equation is written as

(3.1) (a + b)k′′(u) cotє k(u) − єa(k′(u))2 = −c,
for real numbers a /= 0, b > 0, and c satisfying a+ b /= 0. It is straightforward to check
that the ûrst integral of the ordinary diòerential equation (ODE ) (3.1) is

(k′(u))2 = є c
a
+ C1(cosє k(u))−

2a
a+b

for some constant C1. Moreover, we can assume that α cuts the axis orthogonally at
t = 0. _en k(0) = 0 and k′(0) = 1. In this case, the ûrst integral is given by

(k′(u))2 = є c
a
+ a − єc

a
(cosє k(u))−

2a
a+b .

Notice that the problem of ûnding all complete rotational W-surfaces that cut the
axis orthogonally consists in determining all the admissible expressions of the proûle
curve αє . We mean that we wish to ûnd all the possible compact (and non-compact)
integral curves of the ODE system

(3.2)
⎧⎪⎪⎨⎪⎪⎩

(k′(u))2 − є ca =
a−єc
a (cosє k(u))−

2a
a+b ,

(k′(u))2 + (h′(u))2 = 1.
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Proposition 3.1 Let S be a complete W-surface isometrically immersed into the prod-
uct space M2(є) × R having positive extrinsic curvature Ke , which is rotationally in-
variant and whose generating curve αє cuts the rotation axis orthogonally. Assume that
a + b /= 0.
(i) For a + b > 0, there are two cases.

(a) If c > 0, then S is a rotational topological sphere.
(b) If c ≤ 0, then S is homeomorphic to R2.

(ii) For a + b < 0, there are four cases.
(a) If c ≥ 0, then S is homeomorphic to R2.
(b) In H2 ×R, if c < 0, then S is a rotational topological sphere.
(c) In S2 ×R, if c < −b, then S is a rotational topological sphere.
(d) In S2×R, if −b ≤ c < 0, then there is no rotational surface Swhose generating

curve cuts the rotation axis orthogonally.

Proof It is known that complete surfaces, isometrically immersed in the product
spaces M2(є) ×R, and having positive extrinsic curvature, are homeomorphic either
to a sphere or to the euclidean plane R2 (see [8, _eorem 3.1], and [9, _eorem 2.4]).
By Lemma 2.3, in order to prove the proposition, we just need to consider two cases.
_e ûrst one is є = −1, a + b > 0, and c > 0, and the second is є = 1, a + b < 0, and
−b ≤ c < 0.
From (3.2), for є = −1, a + b > 0, and c > 0, we have

(3.3) ( dh
dk

) 2 = ( a + c
c

) (cosh k) 2a
a+b − 1

(
√

a+c
c + (cosh k) a

a+b )(
√

a+c
c − (cosh k) a

a+b )
.

_at is, we consider the function h = h(k) as a function of the variable k; notice that
k is the hyperbolic distance to the origin in the sliceH2×{0}. _is function is deûned
on the interval [0, k0], where k0 satisûes

(cosh k0)
a
a+b =

√ a + c
c

.

_e graph of the function h has a vertical tangent line at k0. In order to obtain a rota-
tional topological sphere, we need to show that the height function h(k) is bounded
and it is of class C2 at k = k0.

Up to isometries of the ambient space, we can assume that dhdk ≥ 0. We separate the
proof into two cases, depending on the sign of a (recall we are assuming that a /= 0).

(i) If a > 0, then 2a
a+b > 0 and (cosh k) 2a

a+b − 1 > 0. For k > 0, we set

A1(k) =
¿
ÁÁÁÀ( a + c

c
) (cosh k) 2a

a+b − 1

(
√

a+c
c + (cosh k) a

a+b )
,

thus, equation (3.3) implies

(3.4)
dh
dk

= A1(k)
1√√

a+c
c − (cosh k) a

a+b

2( −a
a+b )(cosh k) −ba+b sinh k

2( −a
a+b )(cosh k) −ba+b sinh k

.
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Moreover, if we consider the function

A2(k) = A1(k)
2

( a
a+b )(cosh k) −ba+b sinh k

,

we can write equation (3.4) as

dh
dk

= A2(k)
(−1)( −a

a+b )(cosh k) −ba+b sinh k

2
√√

a+c
c − (cosh k) a

a+b

= A2(k)
d
dk

√√ a + c
c

− (cosh k) a
a+b .

Notice that A1(k) and A2(k) are bounded functions on the interval [0, k0]. _en, for
each 0 < δ < k0, there exist a positive number M > 0, such that, for all k ∈ [k0−δ, k0],
we have

(3.5)
dh
dk

≤ −M d
dk

√√ a + c
c

− (cosh k) a
a+b .

Integrating (3.5), there exists a constant C1 large enough, such that

0 < h(k) ≤ M(C1 −
√√ a + c

c
− (cosh k) a

a+b ) .

_e function h = h(k) is bounded in [k0−δ, k0]. From equation (3.3), its graph has a
vertical tangent line at k = k0. A straightforward computation gives that the function
h is of class C2 at k = k0, that is, its graph has bounded curvature at k = k0. So a�er
a re�ection about the slice t = h(k0), we obtain a complete rotational topological
sphere.

(ii) _e proof for the case a < 0 is analogous, taking into account that in this case
2a
a+b < 0 and (cosh k) 2a

a+b − 1 < 0.
For the case S2 ×R, assume a+ b < 0 and −b ≤ c < 0. If S were a rotational surface

whose generating curve cuts the rotation axis orthogonally, there would exist a point
p ∈ S such that ν2(p) = 1. Our assumption on a, b, and c implies a < −b ≤ c, i.e.,
c−a > 0. _us, in such a point p ∈ S, wewould haveKe(p) = c−a

a+b < 0, a contradiction.
_is completes the proof.

4 Vertical and Horizontal Height Estimates

In this section we consider aW-surface Σ isometrically immersed in M2(є)×R, hav-
ing positive extrinsic curvature. Once the extrinsic curvature is positive, the surface is
orientable and we orient Σ in such way that the second fundamental form is positive
deûnite. Let z be a conformal local parameter for the second fundamental form. In
this parameter the ûrst and second fundamental forms of Σ are written as

I = Edz2 + 2F∣dz∣2 + Edz2 ,(4.1)

II = 2ρ∣dz∣2 ,(4.2)

where ρ is a positive function and z denotes the conjugate of z. _e extrinsic curvature
of Σ is given by Ke = ρ2/D, where D = F2−∣E∣2 > 0, and we denote by K i the intrinsic
curvature of the surface.
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4.1 Some Basic Equations

In this subsection we compute some equations that will be necessary to achieve the
classiûcation of W-surfaces.

Lemma 4.1 Let φ∶Σ → M2(є)×R be an isometric immersion in M2(є)×R. Assume
Σ is aW-surface having positive extrinsic curvature and that a+b is diòerent from zero.
Let N be the global unit normal vector ûeld such that the second fundamental form of Σ
is positive deûnite and let z be a conformal parameter for the second fundamental form.
_en the following equations are satisûed:

Ke =
c − єaν2

a + b(4.3)

ρz
ρ
= −єνα

ρ
− (Γ1

12 − Γ2
22) (Codazzi equation)(4.4)

hzz = νρ + Γ1
12hz + Γ2

12hz(4.5)

hzz = Γ1
11hz + Γ2

11hz(4.6)

νz = −
αKe
ρ

(4.7)

∣T ∣2 = 1 − ν2 = 1
D

(αhz + αhz)(4.8)

∣hz ∣2 = −
∣α∣2
D

+ F∣T ∣2 ,(4.9)

where Γk
i j are the Christoòel symbols associated with z for i , j, k ∈ {1, 2, 3}, E , F, and ρ

are coeõcients of the ûrst and second fundamental forms given by equations (4.1) and
(4.2), and

α ∶= Fhz − Ehz(4.10)

D ∶= F2 − ∣E∣2(4.11)

T = 1
D

(α∂z + α∂z).(4.12)

Proof _is lemma is similar to [4, Lemma 3.1]; for completeness we present a proof
here. _e idea is to write the compatibility equations in terms of the conformal pa-
rameter z. _e compatibility equations for immersions in M2(є) × R are described
in [5].

Let π2∶M2(є) × R → R, π2(p, t) = t be the projection on the second factor. We
write ∂

∂ t
= T + νN , where T is a tangent vector ûeld to Σ. Once ∂

∂ t
is the gradient in

M2(є) × R of the function π2, the vector ûeld T , tangent to Σ, is the gradient of the
height function h ∶= π2∣Σ . _en T = 1

D (α∂z + α∂z).
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Observe that ∣T ∣2 = 1−ν2, and a�er a direct computation, we obtain equation (4.8).
On the other hand, by equation (4.10), hz = 1

D (Eα + Fα). _en

∣hz ∣2 =
1
D2 (∣α∣

2(∣E∣2 + F2) + F(Eα2 + E α2))

= − ∣α∣2
D

+ F
D2 (Eα

2 + 2F∣α∣2 + E α2) = − ∣α∣2
D

+ F∣T ∣2 ,

which proves equation (4.9).
Using the Gauss equation K i = Ke + єν2, the Weingarten equation aK i + bKe = c

becomes

Ke =
c − єaν2

a + b .

_e Codazzi equation is ∇XAY − ∇YAX − A[X ,Y] = єν(⟨Y , T⟩X − ⟨X , T⟩Y),
where A is the shape operator of Σ and X ,Y are tangent vector ûelds to Σ. For X =
∂z ,Y = ∂z , the Codazzi equation is∇∂z

A∂z −∇∂zA∂z = єν(hz∂z − hz∂z). _e scalar
product of this equation with ∂z gives

⟨∇∂z
A∂z , ∂z⟩ − ⟨∇∂zA∂z , ∂z⟩ = єν(hzE − hzF) = −єνα

ρz
ρ
+ (Γ1

12 − Γ2
22) = −

єνα
ρ
,

which is equation (4.4).
Taking the scalar product of the compatibility equation ∇XT = νAX with ∂z , for

X = ∂z , we get
⟨∇∂zT , ∂z⟩ = ν⟨A∂z , ∂z⟩
hzz − ⟨T ,∇∂z∂z⟩ = νρ.

_en we obtain equation (4.5) hzz = νρ + Γ1
12hz + Γ2

12hz . Similarly, taking the scalar
product of the compatibility equation ∇XT = νAX with ∂z , for X = ∂z , we get equa-
tion (4.6).
From the compatibity equation dν(X) = −⟨AX , T⟩, for X = ∂z , we have

νz = −⟨A∂z ,
α∂z + α∂z

D
⟩ = −αKe

ρ
.

_e equations in Lemma 4.1 enable us to rewrite hzz and νzz in a more suitable
form in the following proposition.

Proposition 4.2 Let φ∶Σ → M2(є)×R be an isometric immersion in M2(є)×R. As-
sume Σ is aW-surface having positive extrinsic curvature and that a+b is diòerent from
zero. Let N be the global unit normal vector ûeld to Σ such that the second fundamental
form is positive deûnite and let z be a conformal parameter for the second fundamental
form. _en

hzz =
νρ

2Ke(a + b)
(2Ke(a + b) − є(2a + b)(1 − ν2)),(4.13)

νzz = −
єaν∣α∣2
(a + b)D − FνKe ,(4.14)

where α and D are deûned in (4.10) and (4.11), respectively.
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Proof We start by proving equation (4.13). Since Σ is a W-surface, taking the deriv-
ative of equation (4.3) with respect to z and using equation (4.7), we obtain

(4.15)
(Ke)z
2Ke

= єaαν
(a + b)ρ .

On the other hand, we have Ke = ρ2

D . _erefore,

(4.16)
(Ke)z
2Ke

= ρz
ρ
− Dz

2D
.

As a consequence of (4.15) and (4.16), we have

(4.17)
ρz
ρ
− Dz

2D
= є aαν

(a + b)ρ .

A direct computation, see [12, Lemma 8], produces

(4.18) Γ1
12 + Γ2

22 =
Dz

2D
.

_e Codazzi equation (4.4) is equivalent to
ρz
ρ
− (Γ2

22 + Γ1
12) + 2Γ1

12 = −
єνα
ρ

(4.19)

by (4.18), which implies

ρz
ρ
− Dz

2D
+ 2Γ1

12 = −
єνα
ρ

by (4.17), which in turn implies

Γ1
12 = −

єαν(2a + b)
2ρ(a + b) .

Since Γ1
12 = Γ2

12, using equation (4.5), we have

hzz = −
єν(2a + b)
2ρ(a + b) (αhz + αhz) + νρ

which implies

hzz = −
єν(2a + b)
2ρ (a + b) (1 − ν2)D + νρ = νρ( 1 − є (2a + b)(1 − ν2)

2Ke (a + b)
)

= νρ
2Ke(a + b)

(2Ke(a + b) − є(2a + b)(1 − ν2)),

which proves equation (4.13).
In order to prove equation (4.14), observe that by equations (4.7), (4.15), and (4.17)

we have

νzz = −αz
Ke
ρ
− 2єaν∣α∣2Ke

ρ2(a + b) + αKe
ρ

( єaαν
ρ(a + b) +

Dz

2D
)(4.20)

= −αz
Ke
ρ
− єaν∣α∣2
D(a + b) +

αKe
ρ
Dz

2D
.
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We claim that

(4.21) αz = α
Dz

D
+ Fνρ.

Let us assume this equation for amoment. _en a direct computation using equations
(4.20) and (4.21) gives equation (4.14), as desired. So, in order to ûnish the proof of
the proposition, we need to prove that equation (4.21) holds. Recall α = Fhz − Ehz .
_en, using equations (4.5) and (4.6), we obtain

αz = ⟨∇∂z∂z , ∂z⟩hz + ⟨∇∂z∂z , ∂z⟩hz − 2⟨∇∂z∂z , ∂z⟩hz + Fhzz − Ehzz

= Γ1
11(Fhz − Ehz) + Γ1

12(Ehz − Fhz) + 2Γ2
12(Fhz − Ehz) + Fνρ,

= Γ1
11α − Γ1

12α + 2Γ2
12α + Fνρ.

A direct computation using equation (4.19) shows that Γ2
12α − Γ1

12α = 0. Moreover,
conjugating equation (4.18), we obtain αz = α(Γ1

11 + Γ2
12) + Fνρ = α( Dz

D ) + Fνρ, as
claimed.

4.2 A Quadratic Differential on Σ

In this section, we will deûne a quadratic diòerential Qdz2 on Σ having the property
that Q vanishes identically or its zeros are isolated with negative index.

Let Σ be aW-surface isometrically immersed inM2(є)×Rhaving positive extrinsic
curvature. Assume that a+b and 2a+b are diòerent from zero. For such aW-surface
we introduce the quadratic diòerential

A ∶= I+ f (1 − ν2)dh2 ,(4.22)

Qdz2 ∶= (E + f (1 − ν2)h2
z)dz2 ,(4.23)

where I is the ûrst fundamental form of Σ given in equations in Lemma 4.1 and
f ∶ [0, 1] → R is the real analytic function given by

(4.24) f (t) = −є(2a + b)(c − єa)t − (c − єa)2 + (c − єa(1 − t)) 2a+b
a (c − єa)− b

a

є(a + b)(c − єa) t2
.

Remark 4.3 We point out that

1 _e quadratic diòerential Qdz2 is the (2, 0)-part of A.
2 _e Taylor series near zero of f is f (t) = ∑n=∞

n=0 an tn , where

an =
єn+1

(a + b)(c − єa)(1+n)(n + 2)!
n+1

∏
j=0

(2a + b − ja).

_e convergence radius of this series is ∣c−єa∣
∣a∣ > 0. So, f is real analytic on [0, 1].
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_e extrinsic curvature of the pair (II,A) is (see [12])

K(II,A) = (F + f (1 − ν2) ∣hz ∣2)2 − ∣E + f (1 − ν2) h2
z ∣2

ρ2(4.25)

= F
2 − ∣E∣2
ρ2 −

f (1 − ν2) (Eh2
z + −2F∣hz ∣2 + Eh2

z)
ρ2

= 1
Ke

+ f (1 − ν2)D(αhz + αhz)
ρ2 (by (4.10))

= 1
Ke

(1 + f (1 − ν2) ∣T ∣2) (by (4.8)).

In particular, once ∣Q∣2 = ∣E + f (1− ν2) h2
z ∣2, using the ûrst and fourth lines of (4.25),

we have

(4.26) ∣Q∣2 = (F + f (1 − ν2) ∣hz ∣2)2 − D(1 + f (1 − ν2) ∣T ∣2).

_e next result is the key lemma, which gives an estimate of ∣Qz ∣ in terms of the
function ∣Q∣.

Lemma 4.4 Let φ∶Σ → M2(є) × R be an isometric immersion in M2(є) × R. We
assume Σ is a W-surface having positive extrinsic curvature. We also suppose that a +
b and 2a + b are diòerent from zero. Let z be a conformal parameter for the second
fundamental form. _en

∣Qz ∣ ≤
2∣νρh3

z f ′(1 − ν2)∣
D

∣Q∣,

where Q and D are deûned in (4.23) and (4.11), respectively, and f ′(t) is the derivative
of f at t.

Proof _e derivative of the function Q with respect to z is

(4.27) Qz = Ez + 2 f (1 − ν2)hzhzz − 2ννz f ′(1 − ν2)h2
z .

Let us determine the expression of Ez . Observe that the Christoòel symbols with
respect to the conformal parameter z satisûes, Γ1

12 = Γ2
12. Using equations (4.19) and

(4.10), we have

Ez = ∂z⟨∂z , ∂z⟩ = 2(Γ1
12E + Γ2

12F) = −
є ν(2a + b)
ρ(a + b) (αE + αF)

= −є ν(2a + b)
ρ(a + b) D hz .

_en, since Ke = ρ2

D , we obtain

(4.28) Ez = −
є ν(2a + b)ρ hz

Ke(a + b)
.
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By equations (4.13), (4.7), (4.27), and (4.28), we have

Qz = νρhz(−
є(2a + b)
Ke(a + b)

+ f (1 − ν2)( 2Ke(a + b) − є(2a + b)(1 − ν2)
Ke(a + b)

)

+ f ′(1 − ν2)2αKehz

ρ2 ) .

A direct computation shows that for 2a + b /= 0,

− є(2a + b)
Ke(a + b)

+ f (1 − ν2)(2Ke(a + b) − є(2a + b)(1 − ν2)
Ke(a + b)

) = −(1 − ν2) f ′(1 − ν2).

Using this, we obtain

Qz = ν ρ hz f ′(1 − ν2)(−(1 − ν2) + 2α hz

D
)

= ν ρ hz f ′(1 − ν2)( α hz − α hz

D
) (by (4.8))

= ν ρ hz f ′(1 − ν2)
D

(Eh2
z − Eh2

z) (by (4.10))

= ν ρ hz f ′(1 − ν2)
D

((Q − f (1 − ν2) h2
z) h2

z − (Q − f (1 − ν2) h2
z) h2

z )

(by (4.23))

= ν ρ hz f ′(1 − ν2)
D

(Qh2
z − Qh2

z).

_en

∣Qz ∣ ≤
2∣ν ρ h3

z f ′(1 − ν2)∣
D

∣Q∣,

as desired.

Lemma 4.4 is used to apply [11, Lemma 2.7.1] and obtain an important property of
the function Q.

Proposition 4.5 Let φ∶Σ → M2(є) × R be an isometric immersion in M2(є) × R.
Assume Σ is aW-surface having positive extrinsic curvature. Moreover, we suppose a+b
and 2a+b are diòerent from zero. Consider Σ as a Riemann surface with the conformal
structure induced by its second fundamental form. _en the quadratic diòerential Qdz2,
where Q∶Σ → C is deûned in (4.23), vanishes identically or its zeros are isolated with
negative index.

A direct consequence of Proposition 4.5 is the following.

Proposition 4.6 Let φ∶Σ → M2(є) × R be an isometric immersion in M2(є) × R.
Assume Σ is aW-surface having positive extrinsic curvature. Moreover, we suppose a+b
and 2a+b are diòerent from zero. Consider Σ as a Riemann surface with the conformal
structure induced by its second fundamental form. If Σ is a topological sphere, then the
function Q is identically null on Σ.
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4.3 Vertical Height Estimates

_is section is devoted to giving vertical height estimates for some W-surfaces.

_eorem 4.7 (Vertical height estimates) Let φ∶Σ → H2 ×R be a compact graph on
a domain Ω ⊂ H2 whose boundary is contained in the slice H2 × {0}. Assume Σ is
a W-surface having positive extrinsic curvature. Moreover, suppose 2a + b is diòerent
from zero, a + b > 0, and c > 0. _en there exists a constant C0 which depends only on
Ke , a, b, c such that the height function h satisûes h(p) ≤ C0 for all p in Σ.

Proof _e idea of this proof is to construct a sub-harmonic function ϕ = h + g(ν)
on Σ having non-positive boundary values where g∶ [−1, 0] → R is to be determined.
In order to compute ϕzz , we calculated (g(ν))zz . Taking into account equations (4.3),
(4.14), (4.7), and (4.9), we obtain

(g(ν))zz = (νz g′(ν))z = νzz g′(ν) + ∣νz ∣2 g′′(ν)

= ∣α∣2
D

( aν
(a + b) g′(ν) + Ke g′′(ν)) − FνKe g′(ν)

= F(( aν (1 − ν2)
(a + b) − νKe) g′(ν) + Ke(1 − ν2)g′′(ν) )

+ ∣hz ∣2(−
aν

(a + b) g′(ν) − Ke g′′(ν))

= Ke(F((
aν(1 − ν2)
(c + aν2) − ν) g′(ν) + (1 − ν2)g′′(ν))

+ ∣hz ∣2(−
aν

(c + aν2) g′(ν) − g′′(ν))) .

Let g∶ [−1, 0] → R be a real function whose derivative is given by

g′(t) = M

¿
ÁÁÀ ( c+a

c+at2 )
a+b
a − 1

(1 − t2)(c + a t2) ,

where M is a constant depending only on a, b, c deûned by

M =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
ν∈[−1,0]

( 1 + (2a + b)(1 − ν2)
2(c + a ν2) )

min
ν∈[−1,0]

(

¿
ÁÁÀ 1

c + a ν2 ( c + a
c + aν2 )

a+b
a

)

if max
ν∈[−1,0]

( 1 + (2a + b)(1 − ν2)
2(c + a ν2) ) > 0;

1 if max
ν∈[−1,0]

( 1 + (2a + b)(1 − ν2)
2(c + a ν2) ) ≤ 0.

Heremaxs∈[s0 ,s1](u(s)) andmins∈[s0 ,s1](u(s)) are themaximum andminimumof the
function u(s) for s in [s0 , s1].
A direct computation shows that

(4.29) ( aν(1 − ν2)
(c + aν2) − ν) g′(ν) + (1 − ν2)g′′(ν) = − νg′(ν)

1 + (1 − ν2) f (1 − ν2) ,
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where the real function f (t) is deûned in (4.24). We also have

(4.30) − aν
(c + aν2) g′(ν) − g′′(ν) = f (1 − ν2)(− νg′(ν)

1 + (1 − ν2) f (1 − ν2)) .

_en by (4.29) and (4.30),

(4.31) gzz = −
ν Ke g′(ν)

1 + (1 − ν2) f (1 − ν2)(F + ∣hz ∣2 f (1 − ν2)).

Observe that (F + ∣hz ∣2 f (1 − ν2)) is positive on Σ. In fact, since the extrin-
sic curvature K(II,A) on equation (4.25) of the pair (II,A) is positive, the qua-
dratic diòerential A is positive deûnite or negative deûnite which implies that either
(F + ∣hz ∣2 f (1 − ν2)) is positive in Σ or it is negative everywhere. At the highest point
hz = 0 and we have that (F + ∣hz ∣2 f (1 − ν2)) = F is positive, so we conclude that
(F + ∣hz ∣2 f (1 − ν2)) is positive in Σ.

In order to compute ϕzz , it is worth writing g′(t) as

g′(t) = M

¿
ÁÁÀ 1 + (1 − t2) f (1 − t2)

Ke((c + a t2) − (a + b)(1 − t2)(1 + (1 − t2) f (1 − t2))) .

Keeping this in mind and using equations (4.13), (4.31), and (4.26), we obtain

(ϕ)zz = ν( ρ + ρ(2a + b)(1 − ν2)
2Ke(a + b)

− Ke g′(ν)
1 + (1 − ν2) f (1 − ν2)(F + ∣hz ∣2 f (1 − ν2)))

(4.32)

= ν( ρ + ρ(2a + b)(1 − ν2)
2Ke(a + b)

− Ke g′(ν)
1 + (1 − ν2) f (1 − ν2)

√
∣Q∣2 + ρ2(1 + (1 − ν2) f (1 − ν2))

Ke
)

≥ νρ( 1 + (2a + b)(1 − ν2)
2Ke(a + b)

− Ke g′(ν)
1 + (1 − ν2) f (1 − ν2)

√
1 + (1 − ν2) f (1 − ν2)

Ke
)

= νρ( 1 + (2a + b)(1 − ν2)
2Ke(a + b)

−M
√

1
(c + a ν2) − (a + b)(1 − ν2)(1 + (1 − ν2) f (1 − ν2)))

= νρ( 1 + (2a + b)(1 − ν2)
2(c + a ν2) −M

√
1

c + aν2 (
c + a
c + a ν2 )

a+b
a ) .

So the deûnition of M implies that ϕzz ≥ 0. Taking g(ν) = ∫
ν
0 g′(t) dt, we have

∆II(h + g(ν)) = 2
ρ (h + g(ν))zz ≥ 0 in Σ, where ∆II is the laplacian with respect to

the second fundamental form. Moreover, h+ g(ν) is non-positive on the boundary of
Σ. Once g′(ν) is non-negative and ν ≤ 0, then we have that h + g(ν) is non-positive
everywhere. In particular, the maximum of the function h is C0 = ∫

0
−1 g

′(t) dt.
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Remark 4.8 Observe that the height estimate C0 is not reached. In fact, let φ∶Σ →
H2 ×R be a compact graph on a domain Ω ⊂ H2 whose boundary is contained in the
sliceH2 ×{0}. If there exists a point p0 on the interior of Ω such that h(p0) = C0, the
maximum principle applied to the subharmonic map ϕ would imply that ϕ ≡ 0 which
would imply that ϕzz ≡ 0. On the other hand, we observe that the function on ν2

1 + (2a + b)(1 − ν2)
2(c − єaν2) −M

√
1

c + aν2 (
c + a
c + aν2 )

a+b
a

is not constant, and cannot be identically null. So using the inequality (4.32), we
conclude that ϕzz cannot be identically zero. So such a point p0 does not exist.

4.4 Horizontal Height Estimates

In this section we will see that the horizontal height for a class of compact embedded
W-surfaces in H2 ×R with boundary on a vertical plane is bounded.

Let φ∶Σ → M2(є) ×R be an isometric immersion from a oriented surface Σ. Re-
call that Σ is a W-surface if the Weingarten function Ke − c−aєν2

a+b vanishes identically.
Observe that we may regard Ke − c−aєν2

a+b = 0 as a second order partial diòerential
equation. From this point of view, once ν depends only on the ûrst derivative of the
immersion, it can be shown that the partial diòerential equation Ke − c−aєν2

a+b = 0 is
absolutely elliptic if Ke > 0. So if Σ is aW-surface having positive extrinsic curvature,
the interior and the boundary maximum principle, in the sense of Hopf, hold.

Let φ j ∶Σ j → M2(є) × R, j = 1, 2, be two isometric immersions. Assume Σ j is a
W-surface having positive extrinsic curvature. LetN j be the global unit normal vector
ûeld to Σ j such that the second fundamental form is positive deûnite. Let p ∈ Σ1 ∩Σ2
and assume that N1(p) = N2(p). Once N1(p) = N2(p), there is a neighbourhood
U j ⊂ Σ j of p such thatU j is a graph in exponential coordinates of a function f j deûned
in a neighbourhoodD of the origin of TpΣ1 = TpΣ2 (TpΣ j is the tangent plane of Σ j at
p). Since the extrinsic curvature of Σ j is positive, f j is a positive function (forD small
enough). We say that Σ1 is above Σ2, which we denote by Σ1 ≥ Σ2, in a neighborhood
of p if f1 ≥ f2 in D.

Under this notation, we have the following important theorem.

_eorem 4.9 (Hopf Maximum Principle, [10]) Let φ j ∶Σ j → M2(є) ×R, j = 1, 2, be
two isometric immersions. Assume Σ j is aW-surface having positive extrinsic curvature.
Let N j be the global unit normal vector ûeld toΣ j such that the second fundamental form
associated with Σ j is positive deûnite.

Suppose that
(i) Σ1 and Σ2 are tangent at an interior point p ∈ Σ1 ∩ Σ2, or
(ii) there exists p ∈ ∂Σ1 ∩ ∂Σ2 such that both TpΣ1 = TpΣ2 and Tp∂Σ1 = Tp∂Σ2.
Furthermore, suppose that the unit normal vector ûelds of Σ1 and Σ2 coincide at p. If
Σ1 ≥ Σ2 in a neighbourhood U j ⊂ Σ j of p, then Σ1 = Σ2 in U1 = U2.

In order to state the horizontal height estimate, recall that a vertical plane inH2×R
is the product γ ×R of a complete geodesic γ ⊂ H2 with the real line R.
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_eorem 4.10 (Horizontal height estimates) Let φ∶Σ → H2 × R be an isometric
immersion. Suppose Σ is a compact embedded W-surface having positive extrinsic cur-
vature whose boundary is contained in a vertical plane P. Moreover, assume a + b > 0
and c > 0. _en the distance from Σ to P is bounded, i.e., there exists a constant c0
depending on a, b, c, independent of Σ, such that dist(q, P) ≤ c0, for all q ∈ Σ.

Once the interior and boundary maximum principle hold for W-surfaces Σ iso-
metrically immersed in M2(є) × R having positive extrinsic curvature, the proof of
[8, _eorem 6.2] applies to our setting with the exception that the proof used the
maximum principle to compare Σ to a surface Σ0 that in our case is the rotational
topological sphere presented in Section 3.1.

5 Properly Embedded W-surfaces With Finite Topology and
One Top End

We begin this section with the following deûnition.

Deûnition 5.1 Let φ∶Σ → M2(є) ×R be an isometric immersion from a complete
surface.

● We say that Σ has a top end E (respectively, a bottom end) if for any divergent
sequence {q j} ⊂ E, the height function goes to +∞ (respectively, −∞).

● For the case H2 × R, we say that Σ has a simple end if the boundary at inûnity of
the projection on the ûrst factor π1(Σ) ⊂ H2 × {0} is a unique point θ0 and in
addition, for each vertical plane P whose boundary at inûnity does not contain θ0,
the intersection of P and Σ is either empty or a compact set. Here we are denoting
by π1∶M2(є) ×R → M2(є), π1(p, t) = p, the projection on the ûrst factor, and, as
usual, we identify the base space M2(є) with its horizontal li� M2(є) × {0}.

Recall that there is no properly embedded complete surface inH2 ×R having pos-
itive constant extrinsic curvature with ûnite topology and one top (or bottom) end
[8, _eorem 7.2]. In this section we extend this result to some W-surfaces.
For ûxed real numbers a, b, and c such that a + b > 0 and c > 0, we denote

by Sc(a, b) the rotational topological sphere in H2 × R whose intrinsic and positive
extrinsic curvatures satisfy the equation aK i + bKe = c (such rotational topological
sphere was given in §3.1). We denote by c1 = 2κ0 the horizontal diameter of Sc(a, b),
where κ0 satisûes (cosh κ0)

a
a+b =

√
a+c
c .

_e following lemma extends the Plane Separation Lemma given in [13, Lem-
ma 2.4] to a properly embeddedW-surface having positive extrinsic curvature. Using
the Maximum Principle (_eorem 4.9), the proof of Lemma 5.2 is similar to the one
of [13, Lemma 2.4], so we will not present a proof here.

Lemma 5.2 (Plane Separation Lemma) Let φ∶Σ → H2 ×R be an isometric properly
embedded W-surface having positive extrinsic curvature. Assume Σ has ûnite topology
and a top (or bottom) end. Moreover, suppose a+b > 0 and c > 0. Let P+1 and P+2 be two
disjoint half-spaces determined by vertical planes P1 and P2, respectively. If the distance
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between P1 and P2 is larger than the horizontal diameter c1 of the rotational topological
sphere Sc(a, b). _en either Σ ∩ P+1 or Σ ∩ P+2 consists entirely of compact components.

As a consequence of the Plane Separation Lemma and horizontal height estimates,
we have the following theorem.

_eorem 5.3 Let φ∶Σ → H2 × R be an isometric immersion. Assume Σ is a com-
plete W-surface having positive extrinsic curvature and ûnite topology with a top (or a
bottom) end. Moreover, suppose a + b > 0 and c > 0. _en Σ is contained in a vertical
cylinder α ×R in H2 ×R, where α ⊂ H2 × {0} is a circle.

Proof First, observe that, since Σ has positive extrinsic curvature, Σ is properly em-
bedded [8, _eorem 3.1]. We take the disk model for the hyperbolic plane H2. Up to
an isometry of the ambient space, we can assume that the point O = (0, 0) belongs
to Σ. Here 0 denotes the origin of H2. Let γ∶ [0,+∞) → H2 × R be any horizontal
geodesic starting at O parameterized by arc length. We denote by P(s), s ∈ [0,+∞),
the vertical plane passing through γ(s) orthogonal to γ.

Claim _ere exists a constant c2, independent of γ, such that, if s0 > c2, then the
half-space determined by P(s0) that does not contain the point O is disjoint from Σ.

To prove this, we choose R > max{c0 , c1}, where c0 and c1 are the constant given
by_eorem 4.10 and Lemma 5.2, respectively. Denote by P+(R) the half-space deter-
mined by P(R) containing the point O and by P−(2R) the half-space determined by
P(2R) which does not contain the point O. By Lemma 5.2 applied to Σ, we have one
of
(a) Σ ∩ P+(R) has only compact components,
(b) Σ ∩ P−(2R) has only compact components.
By _eorem 4.10, if (a) were true, the distance between the plane P(R) and the point
O ∈ Σ ∩ P+(R) would be at most c0. Once this horizontal distance is R > c0, (a)
cannot occur. So (b) holds. Again, by _eorem 4.10, the maximum distance between
Σ∩P−(2R) and the plane P(2R) is at most c0; hence Σ is disjoint from the half-space
determined by P(2R+c0), which does not contain the pointO. Choosing the constant
c2 = 2max{c0 , c1} + c0, the claim is proved.

_e claim guarantees that Σ is contained in the vertical cylinder α ×R. Here α is
a circle centered at the origin ofH2 × {0} having radius c2.

We ûnalize this section with a non-existence theorem.

_eorem 5.4 _ere is no complete non-compact W-surface of positive extrinsic cur-
vature in H2 ×R with a + b > 0 and c > 0.

Proof Let us assume that such a surface Σ exists and we will obtain a contradiction.
By hypothesis Σ is complete and has positive extrinsic curvature, so by [8, _eorem
3.1] Σ is topologically either a sphere or a plane and in this case Σ has a horizontal end
or it is a vertical graph.
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We ûrst observe that Σ is non-compact so it is not topologically a sphere. On the
other hand, by horizontal estimates in_eorem 4.10 we conclude that Σ does not have
a simple end. So Σ is a vertical graph. _eorem 3.1 in [8] says that Σ bounds a strictly
convex domain, so the vertical projection on the ûrst factor π(Σ) ∶= Ω ⊂ H × {0} is
a strictly convex domain.

Let Π be a vertical plane which intersects Σ transversally and let γ = Σ ∩ Π. Note
that γ is a strictly convex curve in Π [8, Proposition 3.1]. We parametrize γ by s ↦
(β(s), h(β(s))) ⊂ Σ∩Π andwe assume β is parametrized by arc-length. _eorem5.3
guarantees that Σ is contained in a vertical cylinder, so if γ ⊂ Σ∩Π is bounded by two
vertical lines of Π, then γ must go up or down. _at is, the height function restricted
to γ, h(β(s)) is a convex function that goes to +∞ and is bounded from below or
goes to −∞ and is bounded from above. We assume that h(β(s)) is bounded from
below. Once γ is bounded by two parallel lines in Π and h(β(s)) goes to +∞, the
normal vector to Σ becomes uniformly horizontal when h tends to +∞. _is implies
that the angle function converges uniformly to zero when h tends to +∞. By the
Weingarten equation (2.1) and the Gauss equation (2.2), when h(β(s)) converges to
+∞, we have K i = c−bν2

a+b →
c
a+b > 0. _en the intrinsic curvature is bounded from

below by a positive constant as long as the angle function is small enough. It means
that, outside a suõciently large compact set B ⊂ Σ, the intrinsic curvature is larger
than a positive constant. _e completeness of Σ enables us to apply the Bonnet–Myers
_eorem to Σ ∖ B and conclude that the intrinsic distance from any point p ∈ Σ ∖ B
to the boundary of Σ ∖ B is uniformly bounded, which contradicts that Σ is a proper
graph homeomorphic to R2.

6 The Main Theorem

_eorem 6.1 Let φ∶Σ → M2(є) ×R be an isometric immersion. Assume Σ is a com-
plete W-surface having positive extrinsic curvature. We suppose that 2a + b is diòerent
from zero. _en Σ is a topological rotational sphere described in Section 3.1 if

(i) either a + b > 0 and c > 0,
(ii) or for a + b < 0,

(a) є = 1 and c < −b;
(b) є = −1 and c < 0.

Proof From [8,_eorem3.1] and [9,_eorem2.4], once Σ has positive extrinsic cur-
vature, Σ is either homeomorphic toR2 or homeomorphic toS2. So, using Lemma2.3,
_eorem 4.10, and_eorem 5.4, if (i) or (ii) is satisûed, then Σ is a topological sphere.
As a consequence, Proposition 4.6 says that the quadratic diòerentialQ vanishes iden-
tically over Σ.

Let (u, v) be local doubly orthogonal coordinates for the ûrst and second funda-
mental form. In these coordinates I = Edu2 +Gdv2 and II = κ1Edu2 +κ2Gdv2, where
κ1 , κ2 are the principal curvatures of Σ. _ese coordinates are available on the inte-
rior of the set of umbilical points and also on a neighborhood of non umbilical points.
So, the set of points where the coordinates (u, v) are available is dense on Σ. _us,
properties obtained on this set are extended to Σ by continuity.
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Since Q vanishes on Σ, the quadratic diòerential A, deûned in (4.22), is conformal
to the second fundamental form II. It implies that huhv = 0. Without lost of generality,
wemay assume that hu = 0 in the neighborhood where (u, v) is available. _en, since
A and II are conformal and hu = 0, A = Edu2 + (G + h2

v)dv2 = 1
κ1

II.
First we prove that Σ is invariant under a one parameter group of isometries. _en

we show that an orbit of this one parameter group of isometry is a circle.
Proceeding as in Lemma 4.1, we write some compatibility equations with respect

to the coordinates (u, v), and we obtain

νu = 0,(6.1)
Ev

2E
(κ2 − κ1) = єνhv + (κ1)v ,(6.2)

Gu

2G
(κ2 − κ1) = −(κ2)u ,(6.3)

huv = 0 = Gu

2G
hv .(6.4)

From equation (6.1) we obtain that ν does not depend on u. As the extrinsic cur-
vature of Σ is positive, no open neighbourhood of Σ is contained in a slice, therefore,
hv does not vanish in any open set where (u, v) are available, so equation (6.4) im-
plies Gu = 0. _us, by the Codazzi equation (6.3), (κ2)u = 0. Since the extrinsic
curvature is Ke = c−єaν2

a+b and ν does not depend on u, neither does Ke . On the other
hand, Ke = κ1κ2 which implies that (κ1)u = 0. _e variables (u, v) are available in the
interior set of umbilical points and on a neighborhood of non umbilical points. Let us
assume for a moment that we are working on a neighbohood free of umbilical points.
_en, by the Codazzi equation (6.2), we may write E = E1(u)E2(v). Considering
the new variables x ∶=

√
E1(u)du and y ∶= v, we conclude that the ûrst and second

fundamental forms of Σ, h, and ν depend only on y. _en φ(x , y) and φ(x + x0 , y)
only diòer by an isometry of the ambient space. In other words, the immersion is
invariant under one parameter group of isometries of the ambient space, given by the
transformation (x , y) ↦ (x + t, y), [5]. Once we know that Σ is a topological sphere,
we conclude that Σ is invariant by the group of rotations of M2(є).

It remains to analyse the case where the coordinates (u, v) are deûned on a neigh-
bourhood in the interior of umbilical points. In this case,

I = Edu2 +Gdv2 , II = κ1(Edu2 +Gdv2),

A = Edu2 + (G + f (1 − ν2)h2
v)dv2 = 1

κ1
II.

In particular, G + f (1 − ν2)h2
v = G which implies that hv vanishes identically in this

neighborhood. _en, once we are working on a neighborhood of umbilical points, we
conclude that the height function is constant, which implies that Σ is contained in a
slice. _is gives a contradiction, since the extrinsic curvature of the surface is positive.
_en there is no such neighborhood of umbilical points.
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