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Abstract
We establish the Bernstein-centre type of results for the category of mod p representations of GL2 (Q𝑝). We treat
all the remaining open cases, which occur when p is 2 or 3. Our arguments carry over for all primes p. This allows
us to remove the restrictions on the residual representation at p in Lue Pan’s recent proof of the Fontaine–Mazur
conjecture for Hodge–Tate representations of Gal(Q/Q) with equal Hodge–Tate weights.
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1. Introduction

Recently, Lue Pan gave a new proof of the Fontaine–Mazur conjecture for Hodge–Tate representations
of Gal(Q/Q) with equal Hodge–Tate weights [38]. One of the ingredients in his proof are the Bernstein-
centre type of results for the category of mod p representations of GL2(Q𝑝) proved in [39, 41]. This
caused him to impose some restrictions on the Galois representations at p, when 𝑝 = 2 and 𝑝 = 3.
In this paper we remove these restrictions by proving the required finiteness results in these remaining
cases (Theorem 7.3).

Let L be a finite extension of Q𝑝 with ring of integers 𝒪 and residue field k. Let 𝐺 = GL2 (Q𝑝) and
let Modsm

𝐺 (𝒪) be the category of smooth G-representations on 𝒪-torsion modules. Let Modl.fin
𝐺 (𝒪) be

the full subcategory of Modsm
𝐺 (𝒪) consisting of representations which are equal to the union of their

subrepresentations of finite length. This is equivalent to the requirement that every finitely generated
subrepresentation be of finite length, and we call such representations locally finite. We fix a character
𝜁 : 𝑍 → 𝒪× of the centre of G, and let Modl.fin

𝐺,𝜁 (𝒪) be the full subcategory of Modl.fin
𝐺 (𝒪) consisting

of representations with central character 𝜁 . The category Modl.fin
𝐺,𝜁 (𝒪) is locally finite and by general

results of Gabriel [31] decomposes as a product

Modl.fin
𝐺,𝜁 (𝒪) �

∏
𝔅

Modl.fin
𝐺,𝜁 (𝒪)𝔅

of indecomposable subcategories, called blocks. Moreover, each block is antiequivalent to the category
of pseudocompact modules over a pseudocompact ring 𝐸𝔅. The centre of the ring 𝐸𝔅, which we denote
by 𝑍𝔅, is naturally isomorphic to the centre of the category Modl.fin

𝐺,𝜁 (𝒪)𝔅, which by definition is the ring
of natural transformations of the identity functor. This means that 𝑍𝔅 acts functorially on every object
in Modl.fin

𝐺,𝜁 (𝒪). The finiteness result in the title is an analogue of a result of Bernstein in the theory of
smooth representations of p-adic groups on C-vector spaces [5, Proposition 3.3]:

Theorem 1.1. The ring 𝑍𝔅 is Noetherian, and 𝐸𝔅 is a finitely generated 𝑍𝔅-module.

To prove the theorem we use in an essential way the direct connection between the GL2 (Q𝑝)
representations and the representations of the absolute Galois group of Q𝑝 , which we denote by 𝒢Q𝑝 ,
discovered by Colmez in [19], via his celebrated Montreal functor V̌, which we review in Section 4.4.

For each fixed block Modl.fin
𝐺,𝜁 (𝒪)𝔅 there is a finite extension 𝐿 ′ of L with ring of integers𝒪′, such that

Modl.fin
𝐺,𝜁 (𝒪)𝔅 ⊗𝒪 𝒪′ decomposes into a finite product of indecomposable subcategories, each of which

remains indecomposable after a further extension of scalars. Such absolutely indecomposable blocks
have been classified in [40], and they correspond to semisimple representations 𝜌̄ : 𝒢Q𝑝 → GL2(𝑘),
which are either absolutely irreducible or a direct sum of two characters. This bijection realises the
semisimple mod p local Langlands correspondence established in a visionary paper of Breuil [9].

If 𝜌̄ is absolutely irreducible, then Modl.fin
𝐺,𝜁 (𝒪)𝔅𝜌̄

contains only one irreducible object 𝜋, satisfying
V̌(𝜋∨) � 𝜌̄, where ∨ denotes the Pontryagin dual. Moreover, 𝜋 is not a subquotient of any parabolically
induced representation; such representations are called supersingular.

If 𝜌̄ = 𝜒1⊕𝜒2, where 𝜒1, 𝜒2 : 𝒢Q𝑝 → 𝑘× are characters, then the irreducible objects in Modl.fin
𝐺,𝜁 (𝒪)𝔅𝜌̄

are the irreducible subquotients of the representation

(Ind𝐺𝐵 𝜒1 ⊗ 𝜒2𝜔
−1)sm ⊕ (Ind𝐺𝐵 𝜒2 ⊗ 𝜒1𝜔

−1)sm,

where we consider 𝜒1, 𝜒2 as characters of Q×𝑝 via the Artin map ArtQ𝑝 : Q×𝑝 → 𝒢ab
Q𝑝

, and 𝜔(𝑥) = 𝑥 |𝑥 |
(mod 𝑝) for all 𝑥 ∈ Q×𝑝 corresponds to the cyclotomic character modulo p. (See Section 4.1 for an
explicit list.)

All the blocks, except when p is either 2 or 3 and 𝜌̄ = 𝜒 ⊕ 𝜒𝜔, have been well understood in [39, 41].
These exceptional blocks are the main focus of this paper, but our arguments work for all p and all blocks.
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The action of 𝑍𝔅𝜌̄
induces a functorial ring homomorphism

𝑐𝜏 : 𝑍𝔅𝜌̄
→ End𝐺 (𝜏)

for every object 𝜏 in Modl.fin
𝐺,𝜁 (𝒪)𝔅𝜌̄

. Since V̌ is a functor, it induces a ring homomorphism

End𝐺 (𝜏) → Endcont
𝒢Q𝑝
(V̌(𝜏∨))op, 𝜑 ↦→ V̌(𝜑).

We denote the action of 𝒢Q𝑝 on V̌(𝜏∨) by 𝜌V̌(𝜏∨) .
Let 𝑅ps,𝜁 𝜀

tr 𝜌̄ be the universal deformation ring parameterising pseudorepresentations lifting tr 𝜌̄ with
determinant 𝜁𝜀, where 𝜀 is the p-adic cyclotomic character. We may evaluate the universal pseudorep-
resentation 𝑇 : 𝒢Q𝑝 → 𝑅

ps,𝜁 𝜀
tr 𝜌̄ at 𝑔 ∈ 𝒢Q𝑝 to obtain an element 𝑇 (𝑔) ∈ 𝑅ps,𝜁 𝜀

tr 𝜌̄ .

Theorem 1.2. There is an 𝒪-algebra homomorphism

𝜐 : 𝑅ps,𝜁 𝜀
tr 𝜌̄ → 𝑍𝔅𝜌̄

, (1)

satisfying the following compatibility property with the Colmez’s functor: For all 𝜏 ∈ Modl.fin
𝐺,𝜁 (𝒪)𝔅𝜌̄

and all 𝑔 ∈ 𝒢Q𝑝 , we have

V̌(𝑐𝜏 (𝜐(𝑇 (𝑔)))) = 𝜌V̌(𝜏∨) (𝑔) + 𝜌V̌(𝜏∨) (𝑔
−1)𝜁𝜀(𝑔)

in Endcont
𝒢Q𝑝
(V̌(𝜏∨)).

The construction of the map (1) is the main point of this paper. Outside the exceptional cases, it has
been established in [39, 41] using a different argument from ours. Our main result is the following:

Theorem 1.3. The map (1) makes 𝑍𝔅𝜌̄
and 𝐸𝔅𝜌̄

into finitely generated 𝑅ps,𝜁 𝜀
tr 𝜌̄ -modules.

Since 𝑅
ps,𝜁 𝜀
tr 𝜌̄ is known to be Noetherian by the work of Chenevier [18], Theorem 1.3 implies

Theorem 1.1. Moreover, Theorems 1.2 and 1.3 are sufficient to remove the restrictions in Lue Pan’s
paper. Further, we can re-prove most of the results concerning Banach-space representations in [39] (see
Section 6.2 and Corollary 6.16).

To give a flavour of the results on Banach-space representations, we will explain a special case. Let
Banadm

𝐺,𝜁 (𝐿) be the category of admissible unitary L-Banach-space representations of G with central
character 𝜁 . This category is abelian [44]. By [21], Colmez’s functor induces a bijection between the
equivalence classes of absolutely irreducible nonordinary Π ∈ Banadm

𝐺,𝜁 (𝐿) and absolutely irreducible
Galois representations 𝜌 : 𝒢Q𝑝 → GL2 (𝐿). We show that there are no extensions between Π and other
irreducible representations in Banadm

𝐺,𝜁 (𝐿); hence Banadm
𝐺,𝜁 (𝐿)

fl
Π is a direct summand of Banadm

𝐺,𝜁 (𝐿)
fl,

where the superscript ‘fl’ indicates finite length and the subscript Π indicates that all the irreducible
subquotients are isomorphic to Π. We show in Corollary 6.16 that V̌ induces an antiequivalence of
categories between Banadm

𝐺,𝜁 (𝐿)
fl
Π and the category of modules of finite length over 𝑅𝜁 𝜀

𝜌 , the universal
deformation ring of 𝜌 parameterising deformations of 𝜌 with determinant equal to 𝜁𝜀 to local Artinian
L-algebras. Such results were known before for 𝑝 ≥ 5 [39], and under assumptions on the reduction
modulo p of a G-invariant lattice in Π if 𝑝 = 2 or 𝑝 = 3 [41].

Let 𝑅ps,𝜁 𝜀
tr 𝜌̄ 
𝒢Q𝑝�/𝐽 be the largest quotient of 𝑅ps,𝜁 𝜀

tr 𝜌̄ 
𝒢Q𝑝� such that the Cayley–Hamilton theorem
holds for the universal pseudorepresentation with determinant 𝜁𝜀 lifting tr 𝜌̄. Such algebras have been
studied by Bellaïche and Chenevier [3, 18]; they play a key role in this paper. The subscript ‘tf’ will
indicate the maximal 𝒪-torsion-free quotient. Our second main result asserts the following:
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Theorem 1.4. The essential image of Modl.fin
𝐺,𝜁 (𝒪)𝔅𝜌̄

under V̌ is antiequivalent to the category of
pseudocompact (𝑅ps,𝜁 𝜀

tr 𝜌̄ 
𝒢Q𝑝�/𝐽)tf-modules. The map (1) induces an isomorphism

𝑅
ps,𝜁 𝜀
tr 𝜌̄ [1/𝑝] �−→ 𝑍𝔅𝜌̄

[1/𝑝] . (2)

Moreover, if 𝑝 ≠ 2, then 𝑍𝔅𝜌̄
= (𝑅ps,𝜁 𝜀

tr 𝜌̄𝔅 )tf , and if 𝑝 = 2, then the cokernel of map (1) is killed by 2.
Corollary 1.5. 𝑍𝔅𝜌̄

is a complete local Noetherian 𝒪-algebra with residue field k. It is 𝒪-torsion-free,
and 𝑍𝔅𝜌̄

[1/𝑝] is normal.
If we are not in the exceptional cases, then Theorem 1.3 is proved in [39, 41] essentially by computing

first 𝐸𝔅 and then its centre 𝑍𝔅. Moreover, it is proved there that map (1) is an isomorphism and
𝑅

ps,𝜁 𝜀
tr 𝜌̄ 
𝒢Q𝑝�/𝐽 is 𝒪-torsion-free. The argument in this paper, sketched in Section 1.1, is different: We

do not compute 𝐸𝔅.
Our original strategy for proving formula (2) in this paper was to use an argument of Gabber in [34,

Appendix]. We showed that 𝑅ps,𝜁 𝜀
tr 𝜌̄ [1/𝑝] is normal, 𝑍𝔅 [1/𝑝] is reduced, and map (1) induces a bijection

on maximal spectra m-Spec 𝑍𝔅 [1/𝑝] → m-Spec 𝑅ps,𝜁 𝜀
tr 𝜌̄ [1/𝑝] and an isomorphism of the residue fields.

However, this is replaced by a different argument in the final version, which also proves the first part
of Theorem 1.4. One important ingredient in the proof is results of Colmez, Dospinescu and the first
author [21, 22] which imply that the universal framed deformation of 𝜌̄ with determinant 𝜁𝜀 lies in the
image of V̌. We show in Appendix A that (𝑅ps,𝜁 𝜀

tr 𝜌̄ 
𝒢Q𝑝�/𝐽)tf acts faithfully on this representation using
the theory of Cayley–Hamilton algebras [43].

The normality of the ring 𝑅ps,𝜁 𝜀
tr 𝜌̄ [1/𝑝] is proved in Appendix A, where we show that if the generic

fibre of the framed deformation ring 𝑅�𝜌̄ [1/𝑝] is normal, then 𝑅ps,𝜁 𝜀
tr 𝜌̄ [1/𝑝] and the corresponding rigid

analytic space (Spf 𝑅ps,𝜁 𝜀
tr 𝜌̄ )rig are normal. The same applies to the deformation rings without the fixed-

determinant condition. In fact, we prove this statement not only for 𝒢Q𝑝 but for any profinite group
satisfying Mazur’s finiteness condition at p. We then show that 𝑅�𝜌̄ [1/𝑝] is normal for all 2-dimensional
semisimple representations of 𝒢Q𝑝 ; the hard cases are precisely those corresponding to the exceptional
blocks. If 𝑝 = 2, then the assertion has been shown in [22], and if 𝑝 = 3, then we give a proof in
Appendix A based on Böckle’s explicit description of the framed deformation ring in [7]. We note
that the argument of [22] has been generalised by Iyengar [33], showing that when 𝜌̄ is the trivial d-
dimensional representation of the absolute Galois group of a p-adic field, containing a 4th root of unity
if 𝑝 = 2, then 𝑅�𝜌̄ [1/𝑝] is normal, so our results also apply in this setting. We expect1 the rings 𝑅�𝜌̄ [1/𝑝]
to be normal for any d-dimensional representation 𝜌̄ of 𝒢𝐹 , where F is a finite extension of Q𝑝 .

1.1. A sketch of the proof

We will now explain the construction of the map (1). To fix ideas we will discuss a special case: 𝑝 = 2,
𝜌̄ = 1 ⊕ 𝜔 and 𝜁 = 1. Since the cyclotomic character is trivial modulo 2, 𝜌̄ = 1 ⊕ 1. The corresponding
block has two irreducible representations: the trivial 1 and the smooth Steinberg representation Sp.
Instead of working with representations on 𝒪-torsion modules, it is more convenient to use Pontryagin
duality and work with representations of G on compact 𝒪-modules. We denote by ℭ(𝒪)𝔅 the category
antiequivalent to Modl.fin

𝐺,𝜁 (𝒪)𝔅 under Pontryagin duality.
Let 𝑃1∨ and𝑃Sp∨ be projective envelopes of 1∨ and Sp∨ inℭ(𝒪)𝔅, respectively. Then𝑃𝔅 := 𝑃1∨⊕𝑃Sp∨

is a projective generator of ℭ(𝒪)𝔅, and by results of Gabriel [31] the category ℭ(𝒪)𝔅 is equivalent to the
category of pseudocompact modules of 𝐸𝔅 := Endℭ (𝒪) (𝑃𝔅). The equivalence is induced by the functors

𝑁 ↦→ Homℭ (𝒪) (𝑃𝔅, 𝑁), m ↦→ m ⊗̂𝐸𝔅 𝑃𝔅.

The centre 𝑍𝔅 of the category ℭ(𝒪)𝔅 is naturally isomorphic to the centre of the ring 𝐸𝔅.

1This has now been proved in [8, Corollary 4.22].
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Colmez’s functor kills all objects on which SL2(Q𝑝) acts trivially, and these form a thick subcategory.
Thus V̌ factors through the quotient category, which we denote by 𝔔 (𝒪)𝔅; let 𝒯 : ℭ(𝒪)𝔅 → 𝔔 (𝒪)𝔅 be
the quotient functor. Moreover, V̌ induces an equivalence of categories between 𝔔 (𝒪)𝔅 and its essential
image under V̌. To prove this, one needs to show that V̌ sends nonsplit extensions to nonsplit extensions;
such arguments are originally due to Colmez, and in the case 𝑝 = 2 this has been shown by the second
author [47].

Since𝒯(1∨) = 0, then𝒯(Sp∨) is the only irreducible object in𝔔 (𝒪)𝔅 up to isomorphism. Moreover,
it is shown in [39] that 𝒯(𝑃Sp∨) is a projective envelope of 𝒯(Sp∨), and 𝒯 induces an isomorphism

𝐸 ′𝔅 := Endℭ (𝒪) (𝑃Sp∨) � End𝔔 (𝒪) (𝒯𝑃Sp∨).

Since 𝒯(Sp∨) is the only irreducible object in 𝔔 (𝒪)𝔅, then 𝒯(𝑃Sp∨) is a projective generator of
𝔔 (𝒪)𝔅, and thus 𝔔 (𝒪)𝔅 is equivalent to the category of pseudocompact 𝐸 ′𝔅-modules. This implies
that 𝒯(𝑃Sp∨) – and hence, by equivalence of categories, V̌(𝑃Sp∨) – is flat over 𝐸 ′𝔅. Since V̌(Sp∨) is
a 1-dimensional representation of 𝒢Q𝑝 , in fact the trivial representation with our normalisations, an
application of Nakayama’s lemma shows that V̌(𝑃Sp∨) is a free 𝐸 ′𝔅-module of rank 1. The action of𝒢Q𝑝

on V̌(𝑃Sp∨) commutes with the action of 𝐸 ′𝔅 and so induces a homomorphism

𝛼 : 𝒪
𝒢Q𝑝� → End𝐸′𝔅 (V̌(𝑃Sp∨)) � (𝐸 ′𝔅)
op.

We show that this map is surjective. In general, the argument is carried out in Section 2 in an abstract
setting, and then in Proposition 4.18 we verify that the conditions of the abstract setting are satisfied.
However, in the special case under consideration, the argument is easier: Since V̌ induces an equivalence
of categories between 𝔔 (𝒪)𝔅 and its essential image, the 𝐸 ′𝔅-cosocle and 𝒪
𝒢Q𝑝�-cosocle of V̌(𝑃Sp∨)
coincide. This implies that there is 𝑣 ∈ V̌(𝑃Sp∨), which is a generator of V̌(𝑃Sp∨) as both an 𝐸 ′𝔅- and
an 𝒪
𝒢Q𝑝�-module. This implies that 𝛼 is surjective.

We also show in Section 3 that the natural map

𝛽 : 𝒪
𝒢Q𝑝� → 𝑅
ps,𝜁 𝜀
tr 𝜌̄ 
𝒢Q𝑝�/𝐽

is surjective, where 𝑅
ps,𝜁 𝜀
tr 𝜌̄ 
𝒢Q𝑝�/𝐽 is the largest quotient of 𝑅ps,𝜁 𝜀

tr 𝜌̄ 
𝒢Q𝑝� such that the Cayley–
Hamilton theorem holds for the universal pseudorepresentation with determinant 𝜁𝜀 lifting tr 𝜌̄.

The idea is to show that Ker𝛼 contains Ker 𝛽, since this implies that the action of 𝒢Q𝑝 on V̌(𝑃Sp∨)
induces surjections:

𝒪
𝒢Q𝑝�� 𝑅
ps,𝜁 𝜀
tr 𝜌̄ 
𝒢Q𝑝�/𝐽 � 𝐸 ′𝔅. (3)

This is proved using the results of Berger and Breuil [4] on universal unitary completions of locally
algebraic principal series and density arguments already used in [21] and also in [46]. Morally, the argu-
ment should be that V̌(𝑃Sp∨) injects into the product of all 2-dimensional crystabelline representations
of 𝒢Q𝑝 with mod p reduction isomorphic to 𝜌̄ and determinant 𝜁𝜀; then an element in Ker 𝛽 would kill
this product, and hence V̌(𝑃Sp∨). In reality the argument is technically a bit more complicated: We also
have to consider deformations of such representations to local Artinian L-algebras (see Section 5).

Wang-Erickson proved in [48] that 𝑅ps,𝜁 𝜀
tr 𝜌̄ 
𝒢Q𝑝�/𝐽 is a finitely generated 𝑅

ps,𝜁 𝜀
tr 𝜌̄ -module. The

surjection (3) implies that the image of 𝑅ps,𝜁 𝜀
tr 𝜌̄ is contained in the centre of 𝐸 ′𝔅, which we denote by 𝑍 ′𝔅.

Moreover, both 𝐸 ′𝔅 and 𝑍 ′𝔅 are finite 𝑅ps,𝜁 𝜀
tr 𝜌̄ -modules. We show that formula (3) induces an isomorphism

(𝑅ps,𝜁 𝜀
tr 𝜌̄ 
𝒢Q𝑝�/𝐽)tf

�−→ 𝐸 ′𝔅

by showing that the universal framed deformation of 𝜌̄ with determinant 𝜁𝜀 lies in the image of V̌ using
[21, 22], and (𝑅ps,𝜁 𝜀

tr 𝜌̄ 
𝒢Q𝑝�/𝐽)tf acts faithfully on it (see Proposition A.11). The assertions about the
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centre in Theorem 1.4, with 𝑍 ′𝔅 instead of 𝑍𝔅, are proved by studying the centre of (𝑅ps,𝜁 𝜀
tr 𝜌̄ 
𝒢Q𝑝�/𝐽)tf .

This argument is carried out in Appendix A for d-dimensional representations of any profinite group,
satisfying Mazur’s finiteness condition at p.

We then transfer this result from 𝐸 ′𝔅 and 𝑍 ′𝔅 to 𝐸𝔅 and 𝑍𝔅. Let 𝑀𝔅 be the kernel of 𝑃𝔅 →
(𝑃𝔅)SL2 (Q𝑝) . We show that

Endℭ (𝒪) (𝑀𝔅) � Endℭ (𝒪) (𝑃𝔅) = 𝐸𝔅

by examining various exact sequences and showing that certain Ext-groups vanish. We also show that
the cosocle of 𝑀𝔅 is a direct sum of finitely many copies of Sp∨. Thus 𝑀𝔅 is a quotient of (𝑃′𝔅)

⊕𝑛

for some 𝑛 ≥ 1. This allows us to conclude that Endℭ (𝒪) (𝑀𝔅) and its centre are finitely generated 𝑍 ′𝔅-
modules, which finishes the proof of Theorem 1.3. The arguments showing the finiteness of 𝐸𝔅 and 𝑍𝔅
over 𝑍 ′𝔅 are carried out in Section 4.3. Then with some more effort we are able to show that 𝑍 ′𝔅 = 𝑍𝔅
(Corollary 6.15).

1.2. What is left to do?

Although we believe that our results will suffice for most number-theoretic applications – for example,
[38] – to complete the programme started in [39], one would have to compute the ring 𝐸𝔅 in the
exceptional cases. This will be harder than [39, Section 10.5], which is already quite involved. We
expect that the map (3) induces isomorphisms

𝑅
ps,𝜁 𝜀
tr 𝜌̄ 
𝒢Q𝑝�/𝐽

�−→ 𝐸 ′𝔅, 𝑅
ps,𝜁 𝜀
tr 𝜌̄

�−→ 𝑍𝔅.

This is known to hold for all blocks except for the exceptional ones. Theorem 1.4 implies that to
prove this result, it would be enough to show that 𝑅ps,𝜁 𝜀

tr 𝜌̄ 
𝒢Q𝑝�/𝐽 is 𝒪-torsion-free, and for the second
isomorphism in the case 𝑝 = 3 it would be enough to show2 that 𝑅ps,𝜁 𝜀

tr 𝜌̄ is 𝒪-torsion-free.
It seems likely that using the results of this paper, one can remove the restriction on the prime p in Lue

Pan’s work [37] on the Fontaine–Mazur conjecture in the residually reducible case, which generalises
the work of Skinner and Wiles. We hope to return to these questions in future work.

2. Endomorphism rings

Let E be a pseudocompact 𝒪-algebra and let PC(𝐸) be the category of left pseudocompact E-modules
(see [12], [31, Section IV.3]. Let Irr(𝐸) be the set of equivalence classes of irreducible objects in PC(𝐸).

Let M be in PC(𝐸). We assume that we are given a continuous E-linear action of a profinite group
𝒢 on M, which makes M into a pseudocompact module over the completed group algebra 𝒪
𝒢�. The
action induces a homomorphism of 𝒪-algebras 𝒪
𝒢� → Endcont

𝐸 (𝑀). In this section we will study
when this map is surjective, as well as its kernel.

If N is a pseudocompact E-module, which is finitely generated as an E-module, then we may present
it as ∏

𝑖∈𝐼
𝐸 → 𝐸 ⊕𝑛 → 𝑁 → 0.

By applying Homcont
𝐸 (∗, 𝑀) we obtain an exact sequence

0→ Homcont
𝐸 (𝑁, 𝑀) → 𝑀 ⊕𝑛 → ⊕𝑖∈𝐼𝑀.

We thus may identify Homcont
𝐸 (𝑁, 𝑀) with a closed submodule of 𝑀 ⊕𝑛, which makes Homcont

𝐸 (𝑁, 𝑀)
into a pseudocompact left 𝒪
𝒢�-module.

2This follows from [8, Corollary 5.11].
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Lemma 2.1. Let N be a finitely generated projective E-module and let m be a right pseudocompact
𝒪
𝒢�-module. Then the natural map

m ⊗̂𝒪
𝒢�Homcont
𝐸 (𝑁, 𝑀) → Homcont

𝐸 (𝑁,m ⊗̂𝒪
𝒢� 𝑀) (4)

is an isomorphism.

Proof. Since N is finitely generated and projective, we may present it as

𝐹
𝑒−→ 𝐹 → 𝑁 → 0,

where 𝐹 � 𝐸 ⊕𝑛 and e is an idempotent. In particular, N is a pseudocompact E-module. The map (4) is
induced by a continuous bilinear map

(𝑣, 𝜙) ↦→ [𝑤 ↦→ 𝑣 ⊗̂ 𝜙(𝑤)] .

It is an isomorphism if 𝑁 = 𝐹. The general case follows by applying the idempotent e to the isomorphism
obtained for 𝑁 = 𝐹. �

Lemma 2.2. Let {𝜌𝑖}𝑖∈𝐼 be a family of pairwise distinct absolutely irreducible right pseudocompact
𝒪
𝒢�-modules. Then the map

𝒪
𝒢� →
∏
𝑖∈𝐼

End𝑘 (𝜌𝑖)op (5)

is surjective.

Proof. Since 𝒢 is profinite, each 𝜌𝑖 is a finite-dimensional k-vector space. Thus 𝜑𝑖 : 𝒪
𝒢� →
End𝑘 (𝜌𝑖)op, given by the action, is continuous for the discrete topology on the target. Since 𝜌𝑖 is
absolutely irreducible, 𝜑𝑖 is surjective. Moreover, Ker 𝜑𝑖 is an open maximal two-sided ideal of 𝒪
𝒢�.
If 𝑖 ≠ 𝑗 , then 𝜌𝑖 � 𝜌 𝑗 , and thus Ker 𝜑𝑖 + Ker 𝜑 𝑗 = 𝒪
𝒢�. This implies that for every finite subset F of
I, the map 𝒪
𝒢� →

∏
𝑖∈𝐹 End𝑘 (𝜌𝑖)op is surjective. Thus the image of map (5) is dense for the prod-

uct topology on the target. On the other hand, map (5) is a continuous map between pseudocompact
𝒪-modules, and thus its image is closed, which implies surjectivity. �

If M is in PC(𝐸), then we let 𝔯(𝑀) be the intersection of open maximal submodules of M. Then
𝔯(𝐸) is a closed two-sided ideal of E and 𝔯(𝑀) is the closure of 𝔯(𝐸)𝑀 inside M.

Proposition 2.3. Let us assume that the following hold:

1. M is a finitely generated projective E-module.
2. 𝑀/𝔯(𝑀) = cosoc𝒢 𝑀 .
3. For all 𝑆 ∈ Irr(𝐸) such that

𝜌𝑆 := Homcont
𝐸 (𝑀, 𝑆) ≠ 0,

dim𝑘 𝜌𝑆 is finite and 𝜌𝑆 is an absolutely irreducible representation of 𝒢.
4. If 𝑆, 𝑆′ ∈ Irr(𝐸) and 𝑆 � 𝑆′, then Hom𝒢 (𝜌𝑆 , 𝜌𝑆′ ) = 0.

Then the map 𝒪
𝒢� → Endcont
𝐸 (𝑀) is surjective.

Proof. For 𝑆 ∈ Irr(𝐸), we let 𝑀𝑆 be the smallest quotient of M such that

𝜌𝑆 = Homcont
𝐸 (𝑀, 𝑆) = Homcont

𝐸 (𝑀𝑆 , 𝑆).

It follows from assumption (3) that these subspaces are finite-dimensional. Thus 𝑀𝑆 � 𝑆⊕𝑑 such
that 𝑑 · dim𝑘 Endcont

𝐸 (𝑆) = dim𝑘 𝜌𝑆 . Since S is irreducible, Endcont
𝐸 (𝑆) is a skew field. It acts on 𝜌𝑆 ,
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and this action commutes with the action of 𝒢. Since 𝜌𝑆 is absolutely irreducible, we conclude that
Endcont

𝐸 (𝑆) = 𝑘 and dim𝑘 𝜌𝑆 = 𝑑. Thus Endcont
𝐸 (𝑀𝑆) � 𝑀𝑑 (𝑘) and thus does not have nontrivial

two-sided ideals. Hence, the natural right action of Endcont
𝐸 (𝑀𝑆) on 𝜌𝑆 induces an injective ring

homomorphism

Endcont
𝐸 (𝑀𝑆) → End𝑘 (𝜌𝑆)op, (6)

which has to be surjective, as both k-vector spaces have dimension equal to 𝑑2.
The isomorphism 𝑀/𝔯(𝑀) �

∏
𝑆∈Irr(𝐸) 𝑀𝑆 induces an isomorphism

Endcont
𝐸 (𝑀/𝔯(𝑀)) �

∏
𝑆∈Irr(𝐸)

Endcont
𝐸 (𝑀𝑆).

Since 𝜌𝑆 � 𝜌𝑆′ if 𝑆 � 𝑆′, it follows from Lemma 2.2 together with isomorphism (6) that the action of
𝒪
𝒢� on 𝑀/𝔯(𝑀) induces a surjection

𝒪
𝒢�� Endcont
𝐸 (𝑀/𝔯(𝑀)). (7)

Since M is projective and 𝑀/𝔯(𝑀) is prosemisimple, we have

Endcont
𝐸 (𝑀) � Homcont

𝐸 (𝑀, 𝑀/𝔯(𝑀)) � Endcont
𝐸 (𝑀/𝔯(𝑀)). (8)

If m is an irreducible right pseudocompact 𝒪
𝒢�-module and 𝔞 is its annihilator, then 𝒪
𝒢�/𝔞
is a finite-dimensional simple k-algebra, and thus 𝒪
𝒢�/𝔞 is semisimple as a left 𝒪
𝒢�-module,
and thus (𝒪
𝒢�/𝔞) ⊗̂𝒪
𝒢� 𝑀 is semisimple as a left 𝒪
𝒢�-module. Hence, the surjection 𝑀 �
(𝒪
𝒢�/𝔞) ⊗̂𝒪
𝒢� 𝑀 factors through as

𝑀 � cosoc𝒢 𝑀 � (𝒪
𝒢�/𝔞) ⊗̂𝒪
𝒢� 𝑀.

Moreover, the maps become isomorphisms after application of m ⊗̂𝒪
𝒢�. Thus

m ⊗̂𝒪
𝒢� 𝑀 � m ⊗̂𝒪
𝒢� cosoc𝒢 𝑀 � m ⊗̂𝒪
𝒢� 𝑀/𝔯(𝑀), (9)

as 𝑀/𝔯(𝑀) = cosoc𝒢 𝑀 by assumption. Lemma 2.1 together with formula (9) implies that by applying
m ⊗̂𝒪
𝒢� to formula (8), we obtain isomorphisms

m ⊗̂𝒪
𝒢� Endcont
𝐸 (𝑀)

�−→ Homcont
𝐸 (𝑀,m ⊗̂𝒪
𝒢� 𝑀)

�−→ Homcont
𝐸 (𝑀,m ⊗̂𝒪
𝒢� 𝑀/𝔯(𝑀))

�−→ m ⊗̂𝒪
𝒢�Homcont
𝐸 (𝑀, 𝑀/𝔯(𝑀))

�−→ m ⊗̂𝒪
𝒢� Endcont
𝐸 (𝑀/𝔯(𝑀)),

(10)

where the 𝒢-action on Endcont
𝐸 (𝑀) and Endcont

𝐸 (𝑀/𝔯(𝑀)) is given by (𝑔.𝜑) (𝑣) := 𝑔(𝜑(𝑣)).
If the map 𝒪
𝒢� → Endcont

𝐸 (𝑀) is not surjective, then its cokernel is a nonzero left pseudocompact
𝒪
𝒢�-module and thus will have an irreducible quotient m′. If we let m = Hom𝑘 (m′, 𝑘) with the right
𝒪
𝒢�-action, then m ⊗̂𝒪
𝒢�m′ is nonzero, as the evaluation map m ⊗̂𝒪
𝒢�m′ � 𝑘 is nonzero. By
construction, the composition

m ⊗̂𝒪
𝒢�𝒪
𝒢� → m ⊗̂𝒪
𝒢� Endcont
𝐸 (𝑀) � m ⊗̂𝒪
𝒢�m′
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is the zero map. Thus m ⊗̂𝒪
𝒢�𝒪
𝒢� → m ⊗̂𝒪
𝒢� Endcont
𝐸 (𝑀) cannot be surjective. However, the

commutative diagram

m ⊗̂𝒪
𝒢�𝒪
𝒢� m ⊗̂𝒪
𝒢� Endcont
𝐸 (𝑀)

m ⊗̂𝒪
𝒢�𝒪
𝒢� m ⊗̂𝒪
𝒢� Endcont
𝐸 (𝑀/𝔯(𝑀))

= �(10)

(7)

implies that the top horizontal arrow is surjective, yielding a contradiction. �

We remind the reader that as a consequence of the topological Nakayama’s lemma [32, Exposé VIIB,
Lemma 0.3.3], the following holds:

Lemma 2.4. Let N be a pseudocompact left E-module. Then N is projective in PC(𝐸) if and only if the
functor m ↦→ m ⊗̂𝐸 𝑁 from the category of right pseudocompact E-modules to the category of abelian
groups is exact. In this case, 𝑁 � 𝑁/𝔯(𝑁) is a projective envelope of 𝑁/𝔯(𝑁).

Corollary 2.5. If in addition to the assumptions of Proposition 2.3 we assume that 𝑀/𝔯(𝑀) � 𝐸/𝔯(𝐸)
as E-modules, then M is a free E-module of rank 1 and the action of 𝒪
𝒢� on M induces a surjection

𝒪
𝒢�� 𝐸op,

which is uniquely determined up to a conjugation by 𝐸×.

We will now give a characterisation of the kernel of 𝒪
𝒢� → Endcont
𝐸 (𝑀) in favourable settings.

Let m be a finite-dimensional L-vector space with continuous 𝒪-linear action of E on the right. The
image of E in End𝐿 (m) is a compact 𝒪-module, and thus E stabilises an 𝒪-lattice m0 in m. The action
of 𝒪
𝒢� on M induces a continuous left action of 𝒪
𝒢� on m0 ⊗̂𝐸 𝑀 and hence on

m ⊗𝐸 𝑀 = (m0 ⊗𝐸 𝑀) [1/𝑝] = (m0 ⊗̂𝐸 𝑀) [1/𝑝] .

Lemma 2.6. Let {m𝑖}𝑖∈𝐼 be a family of finite-dimensional L-vector spaces with continuous right 𝒪-
linear action of E. For each 𝑖 ∈ 𝐼, let 𝔞𝑖 be the E-annihilator of m𝑖 and let 𝔟𝑖 be the 𝒪
𝒢�-annihilator
of m𝑖 ⊗𝐸 𝑀 . If M is a free E-module of finite rank and

⋂
𝑖∈𝐼 𝔞𝑖 = 0, then

Ker(𝒪
𝒢� → Endcont
𝐸 (𝑀)) =

⋂
𝑖∈𝐼

𝔟𝑖 .

Proof. For each 𝑖 ∈ 𝐼, let 𝔠𝑖 be the Endcont
𝐸 (𝑀)-annihilator of m𝑖 ⊗𝐸 𝑀 . Since 𝔟𝑖 is the preimage of 𝔠𝑖

in 𝒪
𝒢�, it is enough to show that
⋂

𝑖∈𝐼 𝔠𝑖 = 0.
Let 𝑤1, . . . , 𝑤𝑛 be an E-basis of M. Then we may identify Endcont

𝐸 (𝑀) with 𝑀𝑛 (𝐸) by mapping 𝜑 to
the matrix (𝑎𝑘 𝑗 ), given by

𝜑(𝑤𝑘 ) =
𝑛∑
𝑗=1
𝑎𝑘 𝑗𝑤 𝑗

for all 1 ≤ 𝑘 ≤ 𝑛. If 𝑣 ∈ m𝑖 , then

𝑣 ⊗̂ 𝜑(𝑤𝑘 ) =
𝑛∑
𝑗=1
(𝑣𝑎𝑘 𝑗 ) ⊗̂ 𝑤 𝑗 .

Thus 𝜑 annihilates m𝑖 ⊗𝐸 𝑀 if and only if 𝑣𝑎𝑘 𝑗 = 0 for all 𝑣 ∈ m𝑖 and all 1 ≤ 𝑘, 𝑗 ≤ 𝑛, which is
equivalent to 𝜑 ∈ 𝑀𝑛 (𝔞𝑖). Since

⋂
𝑖∈𝐼 𝔞𝑖 = 0, we have

⋂
𝑖∈𝐼 𝑀𝑛 (𝔞𝑖) = 0 and thus

⋂
𝑖∈𝐼 𝔠𝑖 = 0. �
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3. Pseudorepresentations

Let𝒢 be a profinite group and let 𝜌̄ be a continuous semisimple representation of𝒢 on a 2-dimensional
k-vector space. We fix a continuous group homomorphism 𝜓 : 𝒢 → 𝒪× lifting det 𝜌̄. Let 𝐷ps,𝜓 be the
functor from the category of augmented Artinian 𝒪-algebras with residue field k to the category of sets,
which maps (𝐴,𝔪𝐴) to the set of continuous functions 𝑡 : 𝒢→ 𝐴 satisfying the following conditions:

◦ 𝑡 (1) = 2.
◦ 𝑡 (𝑔) ≡ tr 𝜌̄(𝑔) (mod 𝔪𝐴), ∀𝑔 ∈ 𝒢.
◦ 𝑡 (𝑔ℎ) = 𝑡 (ℎ𝑔), ∀𝑔, ℎ ∈ 𝒢.
◦ 𝜓(𝑔)𝑡 (𝑔−1ℎ) − 𝑡 (𝑔)𝑡 (ℎ) + 𝑡 (𝑔ℎ) = 0, ∀𝑔, ℎ ∈ 𝒢.

The data (𝑡, 𝜓) determines a continuous polynomial law of homogeneous degree 2 on𝒢 (see [18, Lemma
1.9]). This deformation problem is prorepresentable by a local 𝒪-algebra 𝑅ps,𝜓 with residue field k,
complete with respect to profinite topology. We denote by 𝑇 : 𝒢 → 𝑅ps,𝜓 the universal deformation.
We extend it 𝑅ps,𝜓-linearly to a continuous function 𝑇 : 𝑅ps,𝜓
𝒢� → 𝑅ps,𝜓 . The homomorphism
𝜓 : 𝒢→ 𝒪× induces a continuous 𝒪-algebra homomorphism 𝜓 : 𝒪
𝒢� → 𝒪, which we extend 𝑅ps,𝜓-
linearly to a continuous 𝑅ps,𝜓-algebra homomorphism 𝜓 : 𝑅ps,𝜓
𝒢� → 𝑅ps,𝜓 . Let J be the closed
two-sided ideal of 𝑅ps,𝜓
𝒢� generated by 𝑎2 − 𝑇 (𝑎)𝑎 + 𝜓(𝑎) for all 𝑎 ∈ 𝑅ps,𝜓
𝒢�.
Proposition 3.1. The ring homomorphism 𝒪
𝒢� → 𝑅ps,𝜓
𝒢�/𝐽 is surjective.

Proof. Let 𝑅 and C be the images of 𝑅ps,𝜓 and 𝒪
𝒢� in 𝑅ps,𝜓
𝒢�/𝐽, respectively. Since 𝑅ps,𝜓 , 𝒪
𝒢�
and 𝑅ps,𝜓
𝒢�/𝐽 are pseudocompact 𝒪-modules, 𝑅 and C are closed subrings of 𝑅ps,𝜓
𝒢�/𝐽. It is
enough to show that C contains 𝑅, since in this case we deduce that C contains the image of 𝑅ps,𝜓
𝒢�,
which is equal to 𝑅ps,𝜓
𝒢�/𝐽.

Let 𝐵 = 𝑅 ∩ 𝐶 and let 𝔪𝐵 be the intersection of B with the maximal ideal of 𝑅. Then B is a closed
subring of 𝑅. This implies that B is complete for the profinite topology. If 𝑥 ∈ 𝔪𝐵, then 1 + 𝑥 has an
inverse in B given by the geometric series. Since B is an 𝒪-algebra and the residue field of 𝑅 is k, we
conclude that (𝐵,𝔪𝐵) is a local ring with residue field k.

Let 𝑇 be the specialisation of T along 𝑅ps,𝜓 � 𝑅. The relation 𝑔2−𝑇 (𝑔)𝑔+𝜓(𝑔) = 0 in 𝑅ps,𝜓
𝒢�/𝐽
implies that 𝑇 (𝑔) = 𝑔 + 𝑔−1𝜓(𝑔). Thus 𝑇 takes values in B. The universal property of 𝑅ps,𝜓 implies
that there is a continuous homomorphism of 𝒪-algebras 𝜑 : 𝑅ps,𝜓 → 𝐵, such that 𝜑(𝑇 (𝑔)) = 𝑇 (𝑔) for
all 𝑔 ∈ 𝒢. Using the universal property of 𝑅ps,𝜓 again, we conclude that if we compose 𝜑 with the
inclusion 𝐵 ⊂ 𝑅, we get back the surjection 𝑅ps,𝜓 � 𝑅 that we started with. Thus 𝐵 = 𝑅. �

Remark 3.2. The proposition does not hold if we do not fix the determinant or consider representations 𝜌̄
of dimension greater than 2. Counterexamples may be obtained with𝒢 = Z𝑝 and 𝜌̄ trivial representation
of 𝒢 on an n-dimensional k-vector space, using [18, Examples 1.7(i) and 1.11(i)].

4. Representations of GL2(Q𝑝)

Let G be a p-adic analytic group and let Z be its centre. We let Modsm
𝐺 (𝒪) be the category of smooth

representations of G on 𝒪-torsion modules. Using Pontryagin duality, 𝜋 ↦→ 𝜋∨ := Hom𝒪 (𝜋, 𝐿/𝒪)
equipped with the compact open topology induces an antiequivalence of categories between Modsm

𝐺 (𝒪)
and the category Modpro

𝐺 (𝒪) of linearly compact 𝒪-modules with a continuous G-action [28, Lemma
2.2.7]. The inverse is given by 𝑀 ↦→ 𝑀∨ := Homcont

𝒪 (𝑀, 𝐿/𝒪). In particular, if G is compact, then
Modpro

𝐺 (𝒪) is the category of linearly compact 𝒪
𝐺�-modules, where 𝒪
𝐺� is the completed group
algebra. We define Modsm

𝐺 (𝑘) and Modpro
𝐺 (𝑘) the same way, with 𝒪 replaced by k. Moreover, for a

continuous character 𝜁 : 𝑍 → 𝒪×, adding the subscript 𝜁 in any of these categories indicates the
corresponding full subcategory of G-representations on which Z acts by 𝜁 . Denote by Modl.fin

𝐺,𝜁 (𝒪)
the full subcategory of Modsm

𝐺,𝜁 (𝒪) consisting of representations in Modsm
𝐺,𝜁 (𝒪) which are equal to the

union of their subrepresentations of finite length. We let ℭ(𝒪) be the full subcategory of Modpro
𝐺 (𝒪)

antiequivalent to Modl.fin
𝐺,𝜁 (𝒪) under the Pontryagin duality.
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4.1. Blocks

From now on, we will assume 𝐺 = GL2(Q𝑝). Every irreducible object 𝜋 of Modsm
𝐺 (𝒪) is killed by 𝜛

and hence is an object of Modsm
𝐺 (𝑘).

Let Irr𝐺,𝜁 be the set of irreducible representations in Modsm
𝐺,𝜁 (𝑘). We write 𝜋 ↔ 𝜋′ if 𝜋 � 𝜋′ or

Ext1𝐺,𝜁 (𝜋, 𝜋
′) ≠ 0 or Ext1𝐺,𝜁 (𝜋

′, 𝜋) ≠ 0, where Ext1𝐺,𝜁 (𝜋, 𝜋
′) is the Yoneda extension group of 𝜋′

by 𝜋 in Modsm
𝐺,𝜁 (𝑘). We write 𝜋 ∼ 𝜋′ if there exist 𝜋1, . . . , 𝜋𝑛 ∈ Irr𝐺,𝜁 such that 𝜋 � 𝜋1, 𝜋′ � 𝜋𝑛

and 𝜋𝑖 ↔ 𝜋𝑖+1 for 1 ≤ 𝑖 ≤ 𝑛 − 1. The relation ∼ is an equivalence relation on Irr𝐺,𝜁 . A block is an
equivalence class of ∼.

Barthel and Livné [2] and Breuil [9] have classified the absolutely irreducible smooth representations
𝜋 admitting a central character. The blocks containing an absolutely irreducible representation have been
determined in [40, Corollary 6.2]. We have the following cases:

(i) 𝔅 = {𝜋} with 𝜋 supersingular.
(ii) 𝔅 = {(Ind𝐺𝐵 𝜒1 ⊗ 𝜒2𝜔

−1)sm, (Ind𝐺𝐵 𝜒2 ⊗ 𝜒1𝜔
−1)sm} with 𝜒2𝜒

−1
1 ≠ 1, 𝜔±1.

(iii) 𝑝 > 2 and 𝔅 = {(Ind𝐺𝐵 𝜒 ⊗ 𝜒𝜔−1)sm}.
(iv) 𝑝 ≥ 5 and 𝔅 = {1, Sp, (Ind𝐺𝐵 𝜔 ⊗ 𝜔−1)sm} ⊗ 𝜒 ◦ det.
(v) 𝑝 = 3 and 𝔅 = {1, Sp, 𝜔 ◦ det, Sp ⊗𝜔 ◦ det} ⊗ 𝜒 ◦ det.

(vi) 𝑝 = 2 and 𝔅 = {1, Sp} ⊗ 𝜒 ◦ det.

In these cases, 𝜒, 𝜒1, 𝜒2 : Q×𝑝 → 𝑘× are smooth characters and𝜔 : Q×𝑝 → 𝑘× is the character𝜔(𝑥) = 𝑥 |𝑥 |
(mod 𝜛), and Sp is the Steinberg representation defined by the exact sequence

0→ 1→ (Ind𝐺𝐵 1)sm → Sp→ 0.

If 𝜋 ∈ Irr𝐺,𝜁 is not absolutely irreducible then there is a finite extension 𝑘 ′ of k, such that 𝜋 ⊗𝑘 𝑘 ′ is a
finite direct sum of absolutely irreducible representations, see [39, Proposition 5.11], so no information
is lost by working with absolutely irreducible representations.

Given a block𝔅, we denote by 𝜋𝔅 the direct sum of all representations in𝔅 and let 𝑃𝔅 be a projective
envelope of 𝜋∨𝔅 in ℭ(𝒪). Then 𝐸𝔅 = Endℭ (𝒪) (𝑃𝔅) is a pseudocompact 𝒪-algebra. We denote the centre
of 𝐸𝔅 by 𝑍𝔅.

By [39, Corollary 5.35], the category ℭ(𝒪) decomposes into a direct product of subcategories

ℭ(𝒪) �
∏

𝔅∈Irr𝐺,𝜁 /∼
ℭ(𝒪)𝔅, (11)

where the objects of ℭ(𝒪)𝔅 are those M in ℭ(𝒪) such that for every irreducible subquotient S of M,
𝑆∨ lies in 𝔅. Moreover, the category ℭ(𝒪)𝔅 is equivalent to the category of compact right 𝐸𝔅-modules
and the centre of ℭ(𝒪)𝔅 is isomorphic to 𝑍𝔅 [39, Proposition 5.45].

Lemma 4.1. If 𝔅 contains an absolutely irreducible representation, then 𝑍𝔅 is a local pseudocompact
𝒪-algebra with residue field k.

Proof. If 𝜋 is absolutely irreducible, then End𝐺 (𝜋) = 𝑘 , and thus the action of 𝑍𝔅 on 𝜋 defines a
homomorphism of 𝒪-algebras 𝑐𝜋 : 𝑍𝔅 → 𝑘 . If 𝜋, 𝜋′ ∈ 𝔅 are distinct and there is a nonsplit extension
0→ 𝜋 → 𝜏 → 𝜋′ → 0, then End𝐺 (𝜏) = 𝑘 , and we conclude that 𝑐𝜋 = 𝑐𝜏 = 𝑐𝜋′ . Using the transitivity
property of the relation ∼ on Irr𝐺,𝜁 , we conclude that 𝑐𝜋 = 𝑐𝜋′ for all 𝜋, 𝜋′ ∈ 𝔅. It follows from
the proof of [31, Proposition IV.4.12] that the Jacobson radical of 𝑍𝔅 consists of elements that kill all
the irreducible representations. Thus Ker 𝑐𝜋 is the maximal ideal of 𝑍𝔅 with residue field k. The last
assertion follows from the fact that 𝑍𝔅 is closed in 𝐸𝔅 and [31, Proposition IV.4.13]. �

Lemma 4.2. Let P be projective in ℭ(𝒪). Then 𝑃SL2 (Q𝑝) = 0.

Proof. Let J be the Pontryagin dual of P. Then J is injective in Modl.fin
𝐺,𝜁 (𝒪) and the assertion is

equivalent to 𝐽SL2 (Q𝑝) = 0. Let N be the unipotent subgroup
(

1 Q𝑝

0 1

)
. Then by [29, Proposition 3.6.2]
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and [30, Corollary 3.12], we have 𝐽𝑁 = 0. Thus 𝐽SL2 (Q𝑝) = 0 and the lemma follows. Alternatively, one
can deduce the statement from Proposition 4.3. �

Proposition 4.3. Let P and M be in ℭ(𝒪), such that P is projective and 𝑀/𝜛𝑀 is of finite length. Then
Homℭ (𝒪) (𝑀, 𝑃) = 0.

Proof. Let 𝐾 ′ be a compact open pro-p subgroup of SL2(Q𝑝) such that 𝐾 ′ ∩ 𝑍 = {1}. Then P is
projective in Modpro

𝐾 ′ (𝒪) by [30, Corollary 3.10], and thus 𝑃 �
∏

𝑖∈𝐼 𝒪
𝐾 ′� for some index set I. Thus
it is enough to show that Homcont

𝒪
𝐾 ′� (𝑀,𝒪
𝐾
′�) = 0. The topological Nakayama’s lemma for compact

𝒪-modules implies that it is enough to show that Homcont
𝑘
𝐾 ′� (𝑀/𝜛𝑀, 𝑘
𝐾

′�) = 0. Since 𝑀/𝜛𝑀 is of
finite length, it is enough to show that Hom𝑘
𝐾 ′� (𝜋∨, 𝑘
𝐾 ′�) = 0 for every 𝜋 ∈ 𝔅. This follows from
[42, Lemma 5.16]. Note that if 𝐾𝑛 = 1 +𝑀2 (2𝑝𝑛Z𝑝) and 𝐾 ′𝑛 = 𝐾𝑛 ∩ SL2 (Q𝑝), then 𝐾𝑛 = 𝐾 ′𝑛 (𝑍 ∩ 𝐾𝑛)
and so 𝜋𝐾𝑛 = 𝜋𝐾

′
𝑛 as 𝑍 ∩ 𝐾𝑛 acts trivially on 𝜋; so the argument in [42, Lemma 5.16] carries over to

the restriction of 𝜋 to SL2(Q𝑝). �

We will denote by Ord𝐵 Emerton’s functor of ordinary parts [28].

Lemma 4.4. Let 𝜋 ↩→ 𝐽 be an injective envelope of 𝜋 ∈ 𝔅 in Modl.fin
𝐺,𝜁 (𝒪). If 𝜋 is supersingular, then

Ord𝐵 𝐽 = 0. If 𝜋 is an irreducible subquotient of (Ind𝐺
𝐵
𝜒)sm for some character 𝜒 : 𝑇 → 𝑘×, where 𝐵

is the subgroup of lower triangular matrices, then Ord𝐵 𝐽 is isomorphic to an injective envelope of 𝜒 in
Modl.fin

𝑇 ,𝜁 (𝒪), and also in Modsm
𝑇 ,𝜁 (𝒪).

Proof. Since J is injective and Ord𝐵 is adjoint to parabolic induction, which is an exact functor, Ord𝐵 𝐽
is injective in Modl.fin

𝑇 ,𝜁 (𝒪). Thus it is a direct sum of injective envelopes of characters of T. Moreover,

Hom𝑇 (𝜒,Ord𝐵 𝐽) � Hom𝐺 ((Ind𝐺
𝐵
𝜒)sm, 𝐽). (12)

Since J is an injective envelope of 𝜋, this group is nonzero if and only if 𝜋 is a subquotient of (Ind𝐺
𝐵
𝜒)sm,

in which case the dimension of the spaces in formula (12) is equal to the multiplicity with which 𝜋
occurs as a subquotient of (Ind𝐺

𝐵
𝜒)sm. If 𝜋 is supersingular, then it does not occur as a subquotient of

principal series, and thus Ord𝐵 𝐽 = 0. Otherwise, it follows from [2] that there is a unique character 𝜒
such that the multiplicity is nonzero, in which case it is equal to 1. This proves the first assertion. The
same (albeit easier) proof as in [39, Proposition 5.16] implies that every injective object in Modl.fin

𝑇 ,𝜁 (𝒪)
is also injective in Modsm

𝑇 ,𝜁 (𝒪). �

Lemma 4.5. Let 𝜋 ↩→ 𝐽 be an injective envelope of 𝜋 ∈ 𝔅 in Modl.fin
𝐺,𝜁 (𝒪). If 𝜋 is not a character, then

𝐽SL2 (Q𝑝) = 0; otherwise (𝐽SL2 (Q𝑝) )∨ is nonzero and finitely generated over 𝒪.

Proof. If 𝐽SL2 (Q𝑝) is nonzero, then 𝜋∩ 𝐽SL2 (Q𝑝) is nonzero, as 𝜋 ↩→ 𝐽 is essential. Since 𝜋 is absolutely
irreducible, we deduce that it is a character and is the G-socle of 𝐽SL2 (Q𝑝) . Note that the action of G on
𝐽SL2 (Q𝑝) factors through

𝐺/𝑍 SL2 (Q𝑝) � Q×𝑝/(Q×𝑝)2 �
{
Z/2Z × Z/2Z if 𝑝 > 2,
Z/2Z × Z/2Z × Z/2Z if 𝑝 = 2.

It follows that 𝐽SL2 (Q𝑝) [𝜛] is a finite-dimensional k-vector space. Dually, this implies that
(𝐽SL2 (Q𝑝) )∨/𝜛(𝐽SL2 (Q𝑝) )∨ is finite-dimensional over k, and the lemma follows from Nakayama’s
lemma. �

Lemma 4.6. Let J be injective in Modl.fin
𝐺,𝜁 (𝒪) and 𝜅 ∈ Modl.fin

𝑇 ,𝜁 (𝒪) be such that 𝜅∨ is a finitely generated
𝒪-module. Then Hom𝑇 (Ord𝐵 𝐽, 𝜅) = 0.

Proof. The following is an analogue of Proposition 4.3 in an easier setting. Let 𝑇0 to be an open torsion-
free pro-p subgroup of 𝑇 ∩ SL2(Q𝑝). Since Ord𝐵 𝐽 is injective in Modsm

𝑇 ,𝜁 (𝒪) by Lemma 4.4, it is
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injective in Modsm
𝑇0
(𝒪), as restriction to 𝑇0 is adjoint to c-Ind𝑇𝑍𝑇0

, which is exact. Thus the Pontryagin
dual of Ord𝐵 𝐽 is isomorphic to

∏
𝑖∈𝐼 𝒪
𝑇0� for some index set I. Hence, it suffices to show that

Homcont
𝒪
𝑇0�(𝜅

∨,𝒪
𝑇0�) = 0.

This is clear, as 𝒪
𝑇0� is isomorphic to the ring of formal power series in one variable and 𝜅∨ is a
finitely generated 𝒪-module. �

Lemma 4.7. Let 𝜏 be a smooth representation of G whose irreducible subquotients consist of characters
in 𝔅. Then SL2(Q𝑝) acts trivially on 𝜏 and there is an exact sequence

0→ 𝜏 → (Ind𝐺𝐵 𝜏)sm → 𝑄 → 0. (13)

Moreover, the irreducible subquotients of Q are twists of Sp by a character. In particular,
Hom𝐺 (𝜏, 𝑄) = 0.

Proof. Since SL2(Q𝑝) acts trivially on 𝜏 by [47, Lemma 1.2.1], the unipotent radical of B acts trivially
on 𝜏. Thus (Ind𝐺𝐵 𝜏 |𝐵)sm coincides with the parabolic induction. Since the map 𝜏 → (Ind𝐺𝐵 𝜏)sm defined
by 𝑣 ↦→ (𝑔 ↦→ 𝑔𝑣) is G-equivariant and injective, we obtain the first assertion.

To show the second assertion, we choose an increasing and exhaustive filtration {𝑅 𝑗 } 𝑗≥0 of 𝜏 such
that 𝑅 𝑗/𝑅 𝑗−1 is a character for each j. Then we have 𝑅 𝑗/𝑅 𝑗−1 ↩→ (Ind𝐺𝐵 𝑅

𝑗/𝑅 𝑗−1)sm with quotient
isomorphic to a twist of Sp by a character. Thus the second assertion follows from the exactness of
(Ind𝐺𝐵 −)sm. �

Lemma 4.8. Let J be injective in Modl.fin
𝐺,𝜁 (𝒪) and let 𝜏 and Q be as in Lemma 4.7. If 𝜏∨ is finitely

generated over 𝒪, then

Hom𝐺 (𝐽, 𝜏) = Hom𝐺 (𝐽, (Ind𝐺𝐵 𝜏)sm) = Hom𝐺 (𝐽, 𝑄) = 0.

Proof. Since 𝜏∨ is finitely generated over 𝒪, then 𝜏[𝜛] is a finite k-vector space, and thus

(Ind𝐺𝐵 𝜏)
∨
sm/𝜛 � (Ind𝐺𝐵 𝜏[𝜛])

∨
sm

is of finite length in ℭ(𝒪) and the assertion follows from Proposition 4.3. �

Proposition 4.9. Let J and 𝜏 be as in Lemma 4.8. Then Ext1𝐺,𝜁 (𝐽, 𝜏) = 0.

Proof. Consider an exact sequence 0 → 𝜏 → 𝐼 → 𝐽 → 0. Applying Ord𝐵 to it, we get an exact
sequence

0→ Ord𝐵 𝜏 → Ord𝐵 𝐼 → Ord𝐵 𝐽 → R1 Ord𝐵 𝜏 → R1 Ord𝐵 𝐼 → R1 Ord𝐵 𝐽

of smooth T-representations. It is proved in [30] that the functors 𝐻𝑖 Ord𝐵 in [29] coincide with the
derived functorsR𝑖 Ord𝐵. Moreover,𝐻1 Ord𝐵 coincides with the N-coinvariants twisted by the character
𝛼−1, where 𝛼

( (
𝑎 0
0 𝑑

) )
= 𝜔(𝑎𝑑−1), by [29, Proposition 3.6.2].

Since SL2(Q𝑝) acts trivially on 𝜏, we have Ord𝐵 𝜏 = 0 and R1 Ord𝐵 𝜏 � 𝜏 ⊗ 𝛼−1. Thus the exact
sequence reduces to

0→ Ord𝐵 𝐼 → Ord𝐵 𝐽 → 𝜏 ⊗ 𝛼−1 → 𝐼𝑁 ⊗ 𝛼−1 → 0. (14)

Since the middle map is zero by Lemma 4.6, the map 𝜏 ↩→ 𝐼 induces an isomorphism 𝜏 � 𝐼𝑁 of
T-representations and hence

Hom𝐺 (𝐼, (Ind𝐺𝐵 𝜏)sm) � Hom𝐺 (𝜏, (Ind𝐺𝐵 𝜏)sm) (15)

by the adjunction formula.
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It follows from Lemma 4.8 that the first three terms in the long exact sequence obtained by applying
Hom𝐺 (𝐽,−) to formula (13) are zero. Thus by applying Hom𝐺 (𝐼,−) → Hom𝐺 (𝜏,−) to formula (13),
we obtain the following commutative diagram with exact columns:

Hom𝐺 (𝐼, 𝜏) Hom𝐺 (𝜏, 𝜏)

Hom𝐺 (𝐼, (Ind𝐺𝐵 𝜏)sm) Hom𝐺 (𝜏, (Ind𝐺𝐵 𝜏)sm)

Hom𝐺 (𝐼, 𝑄) Hom𝐺 (𝜏, 𝑄).

∼
(15)

The last part of Lemma 4.7 says that Hom𝐺 (𝜏, 𝑄) = 0 and hence Hom𝐺 (𝐼, 𝑄) = 0. Thus all the maps
in the top square of the diagram are isomorphisms. The preimage of id𝜏 ∈ Hom𝐺 (𝜏, 𝜏) in Hom𝐺 (𝐼, 𝜏)
splits the exact sequence 0→ 𝜏 → 𝐼 → 𝐽 → 0. This proves the proposition. �

4.2. Quotient category

Let 𝔗(𝒪) be the full subcategory of ℭ(𝒪) whose objects have trivial SL2 (Q𝑝)-action. By [39, Lemma
10.25] (for 𝑝 > 2) and [47, Lemma 1.2.1] (for 𝑝 = 2), 𝔗(𝒪) is a thick subcategory of ℭ(𝒪) and hence
we may consider the quotient category 𝔔 (𝒪) := ℭ(𝒪)/𝔗(𝒪). Let 𝒯 : ℭ(𝒪) → 𝔔 (𝒪) be the quotient
functor; we note that 𝒯 is the identity on objects. It is shown in [39, Section 10.3] that 𝔔 (𝒪) is an
abelian category with enough projectives and 𝒯 is an exact functor.

For a block 𝔅, we denote

𝑃′𝔅 =
⊕
𝜋∈𝔅

𝜋SL2 (Q𝑝 )=0

𝑃𝜋∨ , 𝐸 ′𝔅 = Endℭ (𝒪) (𝑃′𝔅), 𝑍 ′𝔅 = 𝑍 (𝐸 ′𝔅),

where 𝑃𝜋∨ is a projective envelope of 𝜋∨ in ℭ(𝒪).

Proposition 4.10. Let 𝔅 be a block.

1. 𝒯𝑃′𝔅 is a projective object of 𝔔 (𝒪) and 𝐸 ′𝔅 � End𝔔 (𝒪) (𝒯𝑃′𝔅).
2. The functor 𝑀 ↦→ Hom𝔔 (𝒪) (𝒯𝑃′𝔅, 𝑀) defines an equivalence of categories between 𝔔 (𝒪)𝔅 and

the category of pseudocompact right 𝐸 ′𝔅-modules, with the inverse given by m ↦→ m ⊗̂𝐸′𝔅 𝒯𝑃′𝔅.

Proof. See [39, Lemma 10.27] for the first assertion and [31, Section IV.4, Theorem 4, Corollaries 1
and 5] for the second assertion. �

4.3. The centre

In this section we will prove key results toward showing that 𝐸𝔅 and 𝑍𝔅 are finite over 𝑍 ′𝔅. If 𝔅 is of
type (i), (ii) or (iii), then we have 𝑃𝔅 = 𝑃′𝔅 and thus 𝑍𝔅 = 𝑍 ′𝔅.

Lemma 4.11. Let E be a ring with centre Z and let m be a finitely generated (right) E-module. Assume
that Z is Noetherian and E is (module) finite over Z. Then End𝐸 (m) and its centre 𝑍 (End𝐸 (m)) are
Noetherian and finite over Z.

Proof. Since m is finitely generated over E, there is a surjection 𝐸 ⊕𝑛 � m for some n. This induces an
injection End𝐸 (m) ↩→ Hom𝐸 (𝐸 ⊕𝑛,m) and a surjection 𝑀𝑛 (𝐸op) � End𝐸 (𝐸 ⊕𝑛) � Hom𝐸 (𝐸 ⊕𝑛,m)
of Z-modules. Since 𝑀𝑛 (𝐸op) is finite over 𝐸op, it is finite and Noetherian over Z. It follows that
Hom𝐸 (𝐸 ⊕𝑛,m) and thus End𝐸 (m), which can be identified with a Z-submodule of Hom𝐸 (𝐸 ⊕𝑛,m),
are finite and Noetherian over Z. This proves the lemma. �
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Lemma 4.12. Let 𝑀𝔅 = ker(𝑃𝔅 → (𝑃𝔅)SL2 (Q𝑝) ). Then the following hold:

1. (𝑀𝔅)SL2 (Q𝑝) = 0.
2. For all 𝜋 ∈ 𝔅, Homℭ (𝒪) (𝑀𝔅, 𝜋

∨) is finite-dimensional over k.

Proof. It suffices to consider the block 𝔅 of type (iv), (v) or (vi); otherwise 𝑀𝔅 = 𝑃𝔅 and the assertion
is trivial. Let 𝐽𝔅 be the Pontryagin dual of 𝑃𝔅. Then we have an exact sequence 0→ 𝐽

SL2 (Q𝑝)
𝔅 → 𝐽𝔅 →

𝑀∨𝔅 → 0. By applying HomGL2 (Q𝑝) (𝜋,−), we get a long exact sequence

0→ Hom𝐺 (𝜋, 𝐽
SL2 (Q𝑝)
𝔅 ) → Hom𝐺 (𝜋, 𝐽𝔅) → Hom𝐺 (𝜋, 𝑀∨𝔅)

→ Ext1𝐺,𝜁 (𝜋, 𝐽
SL2 (Q𝑝)
𝔅 ) → Ext1𝐺,𝜁 (𝜋, 𝐽𝔅) = 0,

where Ext1𝐺,𝜁 is the extension group in Modl.fin
𝐺,𝜁 (𝒪).

If 𝜋 ∈ 𝔅 is a character, then both Hom𝐺 (𝜋, 𝐽
SL2 (Q𝑝)
𝔅 ) and Hom𝐺 (𝜋, 𝐽𝔅) are 1-dimensional over k,

and Ext1𝐺,𝜁 (𝜋, 𝐽
SL2 (Q𝑝)
𝔅 ) = 0 by [47, Lemma 1.2.1]. Thus Hom𝐺 (𝜋, 𝑀∨𝔅) = 0 and the first assertion

follows (see [20, Lemma III.40] for another proof).
If 𝜋 ∈ 𝔅 is not a character, then Hom𝐺 (𝜋, 𝐽

SL2 (Q𝑝)
𝔅 ) = 0 and Hom𝐺 (𝜋, 𝐽𝔅) is 1-dimensional over k.

Since 𝜋 is killed by 𝜛, for the second assertion it is enough to show that Ext1𝐺,𝜁 (𝜋, (𝐽𝔅 [𝜛])
SL2 (Q𝑝) ) is

finite-dimensional over k. This holds, because (𝐽𝔅 [𝜛])SL2 (Q𝑝) is of finite length by Lemma 4.5, and if
𝜒 is a character, then Ext1𝐺,𝜁 (𝜋, 𝜒 ◦ det) is finite-dimensional. �

Corollary 4.13. There is a surjection (𝑃′𝔅)
⊕𝑛 � 𝑀𝔅 for some 𝑛 ∈ N.

Proof. This follows from Lemma 4.12, which shows that the cosocle of 𝑀𝔅 contains no characters and
each irreducible representation in 𝔅 appears with finite multiplicity. �

Lemma 4.14. Both Homℭ (𝒪) (𝑃𝔅/𝑀𝔅, 𝑃𝔅) and Ext1ℭ (𝒪) (𝑃𝔅/𝑀𝔅, 𝑃𝔅) are equal to zero.

Proof. The first assertion follows because SL2 (Q𝑝) acts trivially on 𝑃𝔅/𝑀𝔅 and 𝑃SL2 (Q𝑝)
𝔅 = 0 (see

Lemma 4.2), and the second assertion follows from Proposition 4.9 applied to 𝐽 = 𝑃∨𝔅 and 𝜏 = 𝐽SL2 (Q𝑝)
𝔅 .

It follows from Lemma 4.5 that 𝜏∨ is a finitely generated 𝒪-module. �

Proposition 4.15. There is a natural isomorphism 𝐸𝔅 � Endℭ (𝒪) (𝑀𝔅). In particular, 𝑍𝔅 �
𝑍 (Endℭ (𝒪) (𝑀𝔅)).

Proof. Set 𝜙 ∈ 𝐸𝔅 = Endℭ (𝒪) (𝑃𝔅). Then the composition 𝑀𝔅
𝜙
−→ 𝑃𝔅 � 𝑃𝔅/𝑀𝔅 is the zero map,

since SL2(Q𝑝) acts trivially on 𝑃𝔅/𝑀𝔅 � (𝑃𝔅)SL2 (Q𝑝) and (𝑀𝔅)SL(Q𝑝) = 0 by Lemma 4.12. Thus 𝜙
maps 𝑀𝔅 to 𝑀𝔅, and restriction to 𝑀𝔅 induces a ring homomorphism 𝐸𝔅 → Endℭ (𝒪) (𝑀𝔅).

Applying the functor Homℭ (𝒪) (𝑀𝔅,−) to the exact sequence 0→ 𝑀𝔅 → 𝑃𝔅 → 𝑃𝔅/𝑀𝔅 → 0, we
get the exact sequence

0→ Endℭ (𝒪) (𝑀𝔅) → Homℭ (𝒪) (𝑀𝔅, 𝑃𝔅) → Homℭ (𝒪) (𝑀𝔅, 𝑃𝔅/𝑀𝔅).

Since the last term is equal to zero by Lemma 4.12, we obtain Endℭ (𝒪) (𝑀𝔅) � Homℭ (𝒪) (𝑀𝔅, 𝑃𝔅). On
the other hand, by applying the functor Homℭ (𝒪) (−, 𝑃𝔅) to the same short exact sequence, we get the
exact sequence

0→ Homℭ (𝒪) (𝑃𝔅/𝑀𝔅, 𝑃𝔅) → Endℭ (𝒪) (𝑃𝔅) → Homℭ (𝒪) (𝑀𝔅, 𝑃𝔅)
→ Ext1ℭ (𝒪) (𝑃𝔅/𝑀𝔅, 𝑃𝔅).

Since Homℭ (𝒪) (𝑃𝔅/𝑀𝔅, 𝑃𝔅) = 0 and Ext1ℭ (𝒪) (𝑃𝔅/𝑀𝔅, 𝑃𝔅) = 0 by Lemma 4.14, we deduce
Endℭ (𝒪) (𝑃𝔅) � Homℭ (𝒪) (𝑀𝔅, 𝑃𝔅) and the proposition follows. �
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Corollary 4.16. There is a natural surjective homomorphism

𝑍 ′𝔅 → 𝑍 (Endℭ (𝒪) (𝑀𝔅)) � 𝑍𝔅.

Proof. Note that we have (𝑀𝔅)SL2 (Q𝑝) = 0 by Lemma 4.2 and (𝑀𝔅)SL2 (Q𝑝) = 0 by Lemma 4.12. It
follows from [39, Lemma 10.26] that the functor 𝒯 induces an isomorphism

Endℭ (𝒪) (𝑀𝔅) � End𝔔 (𝒪) (𝒯𝑀𝔅), 𝜑 ↦→ 𝒯𝜑.

Since 𝑍 ′𝔅 is the centre of 𝔔 (𝒪)𝔅, it acts on 𝒯𝑀𝔅, and this action induces a homomorphism 𝑍 ′𝔅 →
𝑍 (End𝔔 (𝒪) (𝒯𝑀𝔅)), which we may compose with the previous isomorphism to obtain a homomorphism
𝑍 ′𝔅 → 𝑍 (Endℭ (𝒪) (𝑀𝔅)). Since 𝑍𝔅 is the centre of ℭ(𝒪)𝔅, a similar argument shows that 𝑍 ′𝔅 is a
𝑍𝔅-algebra and the surjection (𝑃′𝔅)

⊕𝑛 � 𝑀𝔅 in Corollary 4.13 is 𝑍𝔅-equivariant. It induces a 𝑍𝔅-
equivariant surjection (𝒯𝑃′𝔅)

⊕𝑛 � 𝒯𝑀𝔅. We deduce that the map

𝑍 ′𝔅 → 𝑍 (Endℭ (𝒪) (𝑀𝔅))

is a homomorphism of 𝑍𝔅-algebras. Proposition 4.15 implies that the composition

𝑍𝔅 → 𝑍 ′𝔅 → 𝑍 (Endℭ (𝒪) (𝑀𝔅)) � 𝑍𝔅

is the identity map, which implies that the homomorphism is surjective. �

4.4. Colmez’s Montreal functor

Let 𝒢Q𝑝 be the absolute Galois group of Q𝑝 . We will consider 𝜁 as a character of 𝒢Q𝑝 via local class
field theory, normalised so that the uniformisers correspond to geometric Frobenius. Let 𝜀 : 𝒢Q𝑝 → Z×𝑝
be the p-adic cyclotomic character.

Colmez [19] has defined an exact and covariant functor V from the category of smooth, finite-length
representations of G on 𝒪-torsion modules with a central character to the category of continuous finite-
length representations of 𝒢Q𝑝 on 𝒪-torsion modules. This functor is modified in [39, Section 5.7] to an
exact covariant functor

V̌ : ℭ(𝒪) → Modpro
𝒢Q𝑝
(𝒪)

as follows. Let M be in ℭ(𝒪); if it is of finite length, we define V̌(𝑀) := V(𝑀∨)∨(𝜁𝜀), where ∨ denotes
the Pontryagin dual. For general 𝑀 ∈ ℭ(𝒪), we may write 𝑀 � lim←−−𝑀𝑖 , with 𝑀𝑖 of finite length in
ℭ(𝒪), and define V̌(𝑀) := lim←−− V̌(𝑀𝑖). With this normalisation, we have the following:

◦ V̌(𝜋∨) = 0 if 𝜋 � 𝜒 ◦ det.
◦ V̌(𝜋∨) = 𝜒1 if 𝜋 � (Ind𝐺𝐵 𝜒1 ⊗ 𝜒2)sm.
◦ V̌(𝜋∨) = 𝜒 if 𝜋 � Sp ⊗𝜒 ◦ det.
◦ V̌(𝜋∨) = V(𝜋) is a 2-dimensional absolutely irreducible Galois representation if 𝜋 is supersingular.

The functor V̌ induces a bijection 𝔅 ↦→ 𝜌̄𝔅 between blocks containing an absolutely irreducible
representation and equivalence classes of semisimple representations 𝜌̄ : 𝒢Q𝑝 → GL2(𝑘) such that all
irreducible summands of 𝜌̄ are absolutely irreducible. The representation 𝜌̄𝔅 can be described explicitly
according to the classification of blocks given in Section 4.1: in case (i), 𝜌̄𝔅 = V̌(𝜋∨) is absolutely
irreducible; in case (ii), 𝜌̄𝔅 = 𝜒1 ⊕ 𝜒2; in cases (iii) and (vi), 𝜌̄𝔅 = 𝜒 ⊕ 𝜒; and in cases (iv) and (v),
𝜌̄𝔅 = 𝜒 ⊕ 𝜒𝜔.

Since the functor V̌ : ℭ(𝒪) → Modpro
𝒢Q𝑝
(𝒪) kills characters and hence every object in 𝔗(𝒪), it factors

through 𝒯 : ℭ(𝒪) → 𝔔 (𝒪). We denote V̌ : 𝔔 (𝒪) → Modpro
𝒢Q𝑝
(𝒪) by the same letter.
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Proposition 4.17. For each block𝔅, the functor V̌ induces an equivalence of categories between𝔔 (𝒪)𝔅
and its essential image in Modpro

𝒢Q𝑝
(𝒪).

Proof. This is due to [39] for cases (i)–(iv), [46, Proposition 2.8] for case (v) and [47, Proposition 1.3.2]
for case (iv). �

Proposition 4.18. The map 𝒪
𝒢Q𝑝� → Endcont
𝐸′𝔅
(V̌(𝑃′𝔅)) is surjective. Moreover, if 𝔅 is supersingular,

then Endcont
𝐸′𝔅
(V̌(𝑃′𝔅)) � 𝑀2 ((𝐸 ′𝔅)

op); otherwise, Endcont
𝐸′𝔅
(V̌(𝑃′𝔅)) � (𝐸

′
𝔅)

op.

Proof. It suffices to show that 𝑀 = V̌(𝑃′𝔅) satisfies all four conditions in Proposition 2.3. We note that
the functor m ↦→ m ⊗̂𝐸′𝔅 V̌(𝑃′𝔅) is exact by the equivalence of categories in Proposition 4.10(2), the
exactness of V̌ and the isomorphism

V̌(m ⊗̂𝐸′𝔅 𝑃
′
𝔅) � m ⊗̂𝐸′𝔅 V̌(𝑃′𝔅)

(see the proof of [39, Lemma 5.53]). Thus by Lemma 2.4, V̌(𝑃′𝔅) is a projective 𝐸 ′𝔅-module. Let 𝔯 be
the Jacobson radical of 𝐸 ′𝔅. Since(

𝐸 ′𝔅
/
𝔯
)
⊗̂𝐸′𝔅 V̌

(
𝑃′𝔅

)
� V̌

( (
𝐸 ′𝔅

/
𝔯
)
⊗̂𝐸′𝔅 𝑃

′
𝔅

)
is either a 1- or a 2-dimensional k-vector space, the topological Nakayama’s lemma implies that V̌(𝑃′𝔅)
is a finitely generated 𝐸 ′𝔅-module, and thus Proposition 2.3(1) holds. Proposition 4.17 implies that
Proposition 2.3(2) holds.

If m is a right pseudocompact 𝐸 ′𝔅-module then [12, Lemma 2.4] implies that

Homcont
𝒪 (m ⊗̂𝐸′𝔅 V̌(𝑃′𝔅), 𝑘) � Homcont

𝐸′𝔅
(V̌(𝑃′𝔅),Homcont

𝒪 (m, 𝑘)). (16)

Since in our situation 𝐸 ′𝔅 is a compact 𝒪-algebra, the irreducible (left or right) 𝐸 ′𝔅-modules are finite-
dimensional vector spaces with discrete topology, and thus the map m ↦→ m∗ := Hom𝑘 (m, 𝑘) induces
a bijection between irreducible left and irreducible right 𝐸 ′𝔅-modules. Moreover, if m is an irreducible
right 𝐸 ′𝔅-module, then it follows from formula (16) that 𝜌m∗ � (m ⊗̂𝐸′𝔅 V̌(𝑃′𝔅))

∗; thus Proposition
2.3(3) and (4) follow from Proposition 4.17.

If 𝔅 is supersingular, then it contains only one irreducible 𝜋, which is not a character. Thus 𝑃𝔅 = 𝑃′𝔅,
𝐸𝔅 = 𝐸 ′𝔅 is a local ring and 𝑘 ⊗̂𝐸𝔅 𝑃𝔅 = 𝜋∨. Thus 𝑘 ⊗̂𝐸𝔅 V̌(𝑃𝔅) � V̌(𝜋∨) � 𝜌̄𝔅 is an absolutely
irreducible 2-dimensional representation. Since 𝐸𝔅 is a local ring, we deduce that V̌(𝑃𝔅) is a free
𝐸𝔅-module of rank 2. Thus Endcont

𝐸𝔅
(V̌(𝑃𝔅)) � 𝑀2 ((𝐸 ′𝔅)

op).
If 𝔅 is of type (iii) or (vi), then the block in the quotient category contains only one irreducible

object, and Colmez’s functor maps it to a 1-dimensional 𝒢Q𝑝 -representation. The same argument as in
the supersingular case shows that 𝐸 ′𝔅 is a local ring and V̌(𝑃′𝔅) is a free 𝐸 ′𝔅-module of rank 1, and thus
Endcont

𝐸′𝔅
(V̌(𝑃′𝔅)) = (𝐸

′
𝔅)

op.
If 𝔅 is of type (ii), (iv) or (v), then 𝔔 (𝒪)𝔅 contains exactly two irreducible objects, and Colmez’s

functor sends them to distinct 1-dimensional 𝒢Q𝑝 -representations 𝜒1, 𝜒2. It follows from Corollary 2.5
that V̌(𝑃′𝔅) is a free 𝐸 ′𝔅-module of rank 1, and thus Endcont

𝐸′𝔅
(V̌(𝑃′𝔅)) = (𝐸

′
𝔅)

op. �

4.5. Banach-space representations

Let Banadm
𝐺,𝜁 (𝐿) be the category of admissible unitary L-Banach-space representations [44, Section 3] on

which Z acts by the character 𝜁 . We note that Banadm
𝐺,𝜁 (𝐿) is an abelian category [44, Theorem 3.5]. Any

Π ∈ Banadm
𝐺,𝜁 (𝐿) has an open, bounded and G-invariant lattice Θ, and Θ ⊗𝒪 𝑘 is an admissible smooth
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k-representation of G. Let Θ𝑑 = Hom𝒪 (Θ,𝒪) be the Schikhof dual of Θ endowed with the topology of
pointwise convergence. Then Θ𝑑 is an object of Modpro

𝐺 (𝒪) [39, Lemma 4.4]. If Θ𝑑 is in ℭ(𝒪), then Ξ𝑑

is in ℭ(𝒪) for every open bounded G-invariant lattice Ξ in Π, since Θ and Ξ are commensurable and
ℭ(𝒪) is closed under subquotients [39, Lemma 4.6].

If Π ∈ Banadm
𝐺,𝜁 (𝐿), then we let

V̌(Π) = V̌(Θ𝑑) ⊗𝒪 𝐿,

where Θ is any open bounded G-invariant lattice in Π. Then V̌ is exact and contravariant on Banadm
𝐺,𝜁 (𝐿).

5. Density

5.1. Capture

Let 𝐺 = GL2 (Q𝑝) and 𝐾 = GL2(Z𝑝). Write Z for the centre of G and 𝑍 (𝐾) for the centre of K. Let
𝜓 : 𝑍 (𝐾) → 𝒪× be a continuous character. We identify Z with Q×𝑝 and 𝑍 (𝐾) with Z×𝑝 via the map(
𝑥 0
0 𝑥

)
↦→ 𝑥.

Lemma 5.1. Let {𝑉𝑖}𝑖∈𝐼 be a family of continuous representations of K on finite-dimensional L-vector
spaces with central character 𝜓, and let 𝑀 ∈ Modpro

𝐾,𝜓 (𝒪) be 𝒪-torsion-free. The following conditions
are equivalent:

1. For all 𝑖 ∈ 𝐼, the smallest quotient 𝑀 � 𝑄 such that Homcont
𝒪
𝐾�(𝑄,𝑉

∗
𝑖 ) � Homcont

𝒪
𝐾�(𝑀,𝑉
∗
𝑖 ) is equal

to M.
2. The intersection of the kernels of all 𝜙 ∈ Homcont

𝒪
𝐾�(𝑀,𝑉
∗
𝑖 ) for each 𝑖 ∈ 𝐼 is equal to zero.

3. The image of the evaluation map⊕
𝑖∈𝐼

Hom𝐾 (𝑉𝑖 ,Π(𝑀)) ⊗𝐿 𝑉𝑖 → Π(𝑀)

is a dense subspace, where Π(𝑀) := Homcont
𝒪 (𝑀, 𝐿) is an L-Banach space equipped with the

supremum norm.

Proof. See [21, Lemmas 2.7 and 2.10]. �

Definition 5.2. We say that {𝑉𝑖}𝑖∈𝐼 captures M if it satisfies one of the equivalent conditions in
Lemma 5.1.

Since 1 + 𝑝Z𝑝 (resp., 1 + 4Z2) is a free pro-p group of rank 1 if 𝑝 > 2 (resp., 𝑝 = 2), there are a
smooth nontrivial character 𝜒 : Z×𝑝 → 𝐿× and a continuous character 𝜂0 : Z×𝑝 → 𝐿× such that 𝜓 = 𝜒𝜂2

0.
Let e be the smallest integer such that 𝜒 is trivial on 1 + 𝑝𝑒Z𝑝 . Let

𝐽 =
(
Z×𝑝 Z𝑝

𝑝𝑒Z𝑝 Z
×
𝑝

)
and let 𝜒 ⊗ 1 : 𝐽 → 𝐿× be the character which sends

(
𝑎 𝑏
𝑐 𝑑

)
to 𝜒(𝑎). Then the representation 𝜏 =

Ind𝐾𝐽 (𝜒 ⊗ 1) is a principal series type. That is, for an irreducible smooth 𝐿-representation 𝜋 of G,
we have Hom𝐿 [𝐾 ] (𝜏, 𝜋) ≠ 0 if and only if 𝜋 � (Ind𝐺𝐵 𝜓1 ⊗ 𝜓2)sm, where B is a Borel subgroup and
𝜓1 |Z×𝑝 = 𝜒 and 𝜓2 |Z×𝑝 = 1 [11, Section A2.2].

Proposition 5.3. The family

{Ind𝐾𝐽 (𝜒 ⊗ 1) ⊗ Sym2𝑎 𝐿2 ⊗ (det)−𝑎 ⊗ 𝜂𝜂0 ◦ det}𝑎∈N,𝜂 ,

where 𝜂 runs over all the characters with 𝜂2 = 1, captures every projective object in Modpro
𝐾,𝜓−1 (𝒪).
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Proof. See [41, Proposition 2.7]. �

We will denote the family of representations in this proposition by {𝑉𝑖}𝑖∈𝐼 . We note that each 𝑉𝑖
is a twist of a locally algebraic representation by a unitary character 𝜂0, which might not be locally
algebraic. However, twisting by its inverse will get us to a locally algebraic situation, which is sufficient
for all arguments that follow.

5.2. Locally algebraic vectors in Π(𝑃)

Let 𝜁 : 𝑍 → 𝒪× be a continuous character and 𝜓 = 𝜁 |𝐾 . Let P be a projective object in ℭ(𝒪) and
𝐸 = Endℭ (𝒪) (𝑃). In particular, P is a torsion-free compact linear-topological 𝒪-module. Define

Π(𝑃) := Homcont
𝒪 (𝑃, 𝐿)

with the topology induced by the supremum norm. Then we have 𝐸 [1/𝑝] � Endcont
𝐺 (Π(𝑃)).

If V is a continuous representation of K on a finite-dimensional L-vector space, then

Hom𝐾 (𝑉,Π(𝑃)) � Homcont
𝒪
𝐾�(𝑃,𝑉

∗). (17)

Since P is projective in Modpro
𝐾,𝜓−1 (𝒪) by [30, Corollary 3.10], the family of finite-dimensional K-

representations associated to 𝜓 in Proposition 5.3, which we denote by {𝑉𝑖}𝑖∈𝐼 , captures P. We view 𝑉𝑖
as a representation of 𝐾𝑍 by letting

(
𝜛 0
0 𝜛

)
act by 𝜁 (𝜛).

Proposition 5.4. For each 𝑖 ∈ 𝐼, we define 𝐴𝑖 := End𝐺 (c-Ind𝐺𝐾𝑍 𝑉𝑖). Then

1. 𝐴𝑖 is isomorphic to 𝐿 [𝑇] and
2. c-Ind𝐺𝐾𝑍 𝑉𝑖 is flat over 𝐴𝑖 .

Proof. We may write 𝑉𝑖 = Ind𝐾𝐽 (𝜒 ⊗ 1) ⊗𝐿 𝑊𝑖 , where the action of 𝐾𝑍 on 𝑊𝑖 extends to an action of
G (see Proposition 5.3). Then

c-Ind𝐺𝐾𝑍 𝑉𝑖 � c-Ind𝐺𝐾𝑍 (Ind𝐾𝐽 (𝜒 ⊗ 1)) ⊗𝐿 𝑊𝑖 .

Here we view Ind𝐾𝐽 (𝜒 ⊗ 1) as a representation of 𝐾𝑍 by letting
(
𝜛 0
0 𝜛

)
act on Ind𝐾𝐽 (𝜒 ⊗ 1) by

𝜁 (𝜛)𝜁−1
𝑊𝑖
(𝜛), where 𝜁𝑊𝑖 is the central character of𝑊𝑖 . Since the restriction of𝑊𝑖 to any compact open

subgroup of G remains absolutely irreducible, the isomorphism induces an isomorphism of L-algebras

End𝐺 (c-Ind𝐺𝐾𝑍 𝑉𝑖) � End𝐺 (c-Ind𝐺𝐾𝑍 (Ind𝐾𝐽 (𝜒 ⊗ 1))).

Thus we may assume that𝑊𝑖 is the trivial representation.
By [14], the K-type Ind𝐾𝐽 (𝜒 ⊗ 1) is a G-cover of the 𝐾𝑀 -type 𝜒 ⊗ 1, where 𝑀 = Q×𝑝 × Q×𝑝 and

𝐾𝑀 = Z×𝑝 × Z×𝑝 . Thus there is an algebra isomorphism

𝑗𝑀 : End𝑀 (c-Ind𝑀
𝐾𝑀
(𝜒 ⊗ 1)) ∼−→ End𝐺 (c-Ind𝐺𝐽 (𝜒 ⊗ 1))

such that for each 𝑓 ∈ End𝑀 (c-Ind𝑀
𝐾𝑀

𝜒 ⊗ 1), we have Supp( 𝑗𝑀 𝑓 ) = 𝐽 Supp( 𝑓 )𝐽. It follows that

𝐿 [𝑇] ∼−→ End𝑀 (c-Ind𝑀
𝐾𝑀𝑍 (𝜒 ⊗ 1)) ∼−−→

𝑗𝑀
𝐴𝑖 ,

where T maps to an element in 𝐴𝑖 supported at 𝐽𝑍
(
𝑝 0
0 1

)
𝐽𝑍 . Here we view 𝜒 ⊗ 1 as a representation

of 𝐾𝑀 𝑍 by letting
(
𝜛 0
0 𝜛

)
act by 𝜁 (𝜛). This shows the first assertion.
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To prove the second assertion, it suffices to show that c-Ind𝐺𝐾𝑍 𝑉𝑖 is torsion-free, since 𝐴𝑖 is a principal
ideal domain. After tensoring with 𝐿, this is equivalent to c-Ind𝐺𝐾𝑍 𝑉𝑖 having no 𝑇 − 𝜆 torsion, which is
easily seen using the fact that the functions in c-Ind𝐺𝐾𝑍 𝑉𝑖 are compactly supported. �

In particular, Frobenius reciprocity gives

Hom𝐾 (𝑉𝑖 ,Π(𝑃)) � Hom𝐺 (c-Ind𝐺𝐾𝑍 𝑉𝑖 ,Π(𝑃)). (18)

Hence Hom𝐾 (𝑉𝑖 ,Π(𝑃)) is naturally an 𝐴𝑖-module and we may transport the action of 𝐴𝑖 onto
Homcont

𝒪
𝐾�(𝑃,𝑉
∗
𝑖 ) via formula (17).

If V is a continuous representation of K on a finite-dimensional L-vector space and if Θ is an
open, bounded K-invariant lattice in V, let |·| be the norm on 𝑉∗ given by |ℓ | := sup𝑣 ∈Θ |ℓ(𝑣) |, so that
Θ𝑑 = Hom𝒪 (Θ,𝒪) is the unit ball in 𝑉∗ with respect to |·|. The topology on Homcont

𝒪
𝐾�(𝑃,𝑉
∗) is given

by the norm ‖𝜙‖ := sup𝑣 ∈𝑃 |𝜙(𝑣) |, and Homcont
𝒪
𝐾�(𝑃,Θ

𝑑) is the unit ball in this Banach space.

Proposition 5.5. For all 𝑖 ∈ 𝐼, the submodule

Homcont
𝒪
𝐾�(𝑃,𝑉

∗
𝑖 )l.fin := {𝜙 ∈ Homcont

𝒪
𝐾�(𝑃,𝑉
∗
𝑖 ) : ℓ𝐴𝑖 (𝐴𝑖𝜙) < ∞}

is dense in Homcont
𝒪
𝐾�(𝑃,𝑉

∗
𝑖 ), where ℓ𝐴𝑖 (𝐴𝑖𝜙) is the length of 𝐴𝑖𝜙 as an 𝐴𝑖-module.

Proof. See [21, Proposition 2.19]. �

Proposition 5.6. Let 𝔪 be a maximal ideal of 𝐴𝑖 and let Π be a completion of 𝐴𝑖/𝔪𝑛 ⊗𝐴𝑖 c-Ind𝐺𝐾𝑍 𝑉𝑖
with respect to a G-invariant norm. Then Π is the universal unitary completion of 𝐴𝑖/𝔪𝑛⊗𝐴𝑖 c-Ind𝐺𝐾𝑍 𝑉𝑖 .
Moreover, the action of 𝐴𝑖 on 𝐴𝑖/𝔪𝑛 ⊗𝐴𝑖 c-Ind𝐺𝐾𝑍 𝑉𝑖 extends to a continuous action of 𝐴𝑖 on Π.

Proof. Let Π◦ be a G-invariant 𝒪-lattice of Π. Then

Θ := Π◦ ∩ (𝐴𝑖/𝔪𝑛 ⊗𝐴𝑖 c-Ind𝐺𝐾𝑍 𝑉𝑖)

is a G-invariant 𝒪-lattice of 𝐴𝑖/𝔪𝑛 ⊗𝐴𝑖 c-Ind𝐺𝐾𝑍 𝑉𝑖 . By [27, Proposition 1.17], it suffices to show that
Θ is of finite type over 𝒪[𝐺].

By Proposition 5.4(i), we have that 𝜅(𝔪) := 𝐴𝑖/𝔪 � 𝐿 [𝑇]/ 𝑓 (𝑇) – where 𝑓 (𝑇) ∈ 𝐿 [𝑇] is an
irreducible polynomial – is a finite extension of L. Define a finite, increasing, exhaustive filtration
{𝑅 𝑗 }𝑛≥ 𝑗≥0 of 𝐴𝑖/𝔪𝑛 ⊗𝐴𝑖 c-Ind𝐺𝐾𝑍 𝑉𝑖 by G-invariant 𝐴𝑖-submodules 𝑅 𝑗 = 𝔪𝑛− 𝑗/𝔪𝑛 ⊗𝐴𝑖 c-Ind𝐺𝐾𝑍 𝑉𝑖 .
Then we have

𝑅 𝑗/𝑅 𝑗−1 � 𝜅(𝔪) ⊗𝐴𝑖 c-Ind𝐺𝐾𝑍 𝑉𝑖

for each j and {Θ 𝑗 := Θ ∩ 𝑅 𝑗 }𝑛≥ 𝑗≥0 is a finite, increasing, exhaustive filtration of Θ such that Θ 𝑗 is
a G-invariant 𝒪-lattice of 𝑅 𝑗 for each j. Moreover, Θ 𝑗/Θ 𝑗−1 gives rise to a G-invariant 𝒪-lattice of
𝑅 𝑗/𝑅 𝑗−1 � 𝐴𝑖/𝔪 ⊗𝐴𝑖 c-Ind𝐺𝐾𝑍 𝑉𝑖 , and thus is finitely generated over 𝒪[𝐺] by the proof of [4, Theorem
4.3.1]. This implies that Θ is finitely generated over 𝒪[𝐺], and the first assertion follows.

If 𝜙 ∈ 𝐴𝑖 , then 𝜙(Θ) ⊂ 𝜛𝑛Θ for some 𝑛 ∈ Z, as Θ is finitely generated over 𝒪[𝐺]. This implies the
second assertion. �

We denote the universal unitary completion of 𝐴𝑖/𝔪𝑛 ⊗𝐴𝑖 c-Ind𝐺𝐾𝑍 𝑉𝑖 by Π𝑖,𝔪,𝑛. If 𝑛 = 1, then
Π𝑖,𝔪,1 is the universal unitary completion of 𝜅(𝔪) ⊗𝐴𝑖 c-Ind𝐺𝐾𝑍 𝑉𝑖 studied in [4, Theorem 4.3.1] and
[10, Proposition 2.2.1].

Corollary 5.7. If 𝜙 ∈ Homcont
𝒪
𝐾�(𝑃,𝑉

∗
𝑖 )l.fin is such that 𝐴𝑖𝜙 � 𝐴𝑖/𝔪𝑛 for a maximal ideal 𝔪 of 𝐴𝑖 , then

𝜙 induces an injection Π𝑖,𝔪,𝑛 ↩→ Π(𝑃). Moreover, Π𝑖,𝔪,𝑛 admits a filtration of length n such that each
graded piece is isomorphic to the universal unitary completion Π𝑖,𝔪,1 of 𝜅(𝔪) ⊗𝐴𝑖 c-Ind𝐺𝐾𝑍 𝑉𝑖 .
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Proof. The assumption 𝐴𝑖𝜙 � 𝐴𝑖/𝔪𝑛 implies that 𝐴𝑖/𝔪𝑛 ⊗𝐴𝑖 c-Ind𝐺𝐾𝑍 𝑉𝑖 injects into Π(𝑃). The first
assertion follows immediately from Proposition 5.6. To show the second assertion, we let {𝑅 𝑗 }𝑛≥ 𝑗≥0
be the filtration of 𝐴𝑖/𝔪𝑛 ⊗𝐴𝑖 c-Ind𝐺𝐾𝑍 𝑉𝑖 defined in Proposition 5.6. Let Π 𝑗 be the closure of 𝑅 𝑗 in
Π𝑖,𝔪,𝑛; then Π𝑛 = Π𝑖,𝔪,𝑛. Since 𝔪𝑅 𝑗 = 𝑅 𝑗−1, we have 𝔪Π 𝑗 = Π 𝑗−1 and hence Π 𝑗 = 𝔪𝑛− 𝑗Π𝑖,𝔪,𝑛. If
Π 𝑗 = Π 𝑗−1, then Π 𝑗 = 𝔪Π 𝑗 and hence Π 𝑗 = 𝔪 𝑗Π 𝑗 = 𝔪𝑛Π𝑖,𝔪,𝑛 = 0. Since Π 𝑗 ≠ 0 for 1 ≤ 𝑗 ≤ 𝑛, we
conclude that Π 𝑗 ≠ Π 𝑗−1 for 1 ≤ 𝑗 ≤ 𝑛. Moreover, Π 𝑗/Π 𝑗−1 contains 𝑅 𝑗/𝑅 𝑗−1 � 𝐴𝑖/𝔪⊗𝐴𝑖 c-Ind𝐺𝐾𝑍 𝑉𝑖
as a dense subspace, and thus is isomorphic to Π𝑖,𝔪,1. This proves the corollary. �

Note that the image of any 𝜙 ∈ Hom𝐺 (𝐴𝑖/𝔪𝑛 ⊗𝐴𝑖 c-Ind𝐺𝐾𝑍 𝑉𝑖 ,Π(𝑃)) is isomorphic to 𝐴𝑖/𝔪𝑘 ⊗𝐴𝑖

c-Ind𝐺𝐾𝑍 𝑉𝑖 for some 0 ≤ 𝑘 ≤ 𝑛. Hence it induces an injection Π𝑖,𝔪,𝑘 ↩→ Π(𝑃) by Corollary 5.7.

Proposition 5.8. Let P be a projective object in ℭ(𝒪). Then the image of the evaluation map⊕
𝑖∈𝐼

⊕
𝔪,𝑛

Homcont
𝐺 (Π𝑖,𝔪,𝑛,Π(𝑃)) ⊗𝐿 Π𝑖,𝔪,𝑛 → Π(𝑃),

where 𝔪 runs through maximal ideals of 𝐴𝑖 and 𝑛 ∈ N is a dense subspace.

Proof. Let Π be the closure of the image of the evaluation map and M the image of P under
Homcont

𝐿 (Π(𝑃), 𝐿) � Homcont
𝐿 (Π, 𝐿). Then we have

Homcont
𝒪
𝐾�(𝑃,𝑉

∗
𝑖 )l.fin � ⊕𝔪 Homcont

𝒪
𝐾�(𝑃,𝑉
∗
𝑖 ) [𝔪∞]

� ⊕𝔪 Hom𝐾 (𝑉𝑖 ,Π(𝑃)) [𝔪∞]
� ⊕𝔪 Hom𝐺 (c-Ind𝐺𝐾𝑍 𝑉𝑖 ,Π(𝑃)) [𝔪

∞]
� ⊕𝔪 lim−−→

𝑛

Hom𝐺 (c-Ind𝐺𝐾𝑍 𝑉𝑖 ,Π(𝑃)) [𝔪
𝑛]

� ⊕𝔪 lim−−→
𝑛

Hom𝐺 (𝐴𝑖/𝔪𝑛 ⊗𝐴𝑖 c-Ind𝐺𝐾𝑍 𝑉𝑖 ,Π(𝑃))

� ⊕𝔪 lim−−→
𝑛

Homcont
𝐺 (Π𝑖,𝔪,𝑛,Π(𝑃)).

Here the first isomorphism is due to the fact that any module M over a commutative ring A such that
every finitely generated submodule is of finite length admits a decomposition 𝑀 � ⊕𝔪𝑀 [𝔪∞] with 𝔪
running through maximal ideals of A. The second isomorphism is given by formula (17), and the last
isomorphism is due to Corollary 5.7. Similarly, we have

Homcont
𝒪
𝐾�(𝑀,𝑉

∗
𝑖 )l.fin � ⊕𝔪 Homcont

𝒪
𝐾�(𝑀,𝑉
∗
𝑖 ) [𝔪∞]

� ⊕𝔪 Hom𝐾 (𝑉𝑖 ,Π) [𝔪∞]
� ⊕𝔪 Hom𝐺 (c-Ind𝐺𝐾𝑍 𝑉𝑖 ,Π) [𝔪

∞]
� ⊕𝔪 lim−−→

𝑛

Hom𝐺 (𝐴𝑖/𝔪𝑛 ⊗𝐴𝑖 c-Ind𝐺𝐾𝑍 𝑉𝑖 ,Π)

� ⊕𝔪 lim−−→
𝑛

Homcont
𝐺 (Π𝑖,𝔪,𝑛,Π)

= ⊕𝔪 lim−−→
𝑛

Homcont
𝐺 (Π𝑖,𝔪,𝑛,Π(𝑃)).

Thus by Proposition 5.5, we have Homcont
𝒪
𝐾�(𝑃,𝑉

∗
𝑖 ) � Homcont

𝒪
𝐾�(𝑀,𝑉
∗
𝑖 ) for each 𝑖 ∈ 𝐼. Combining this

with Lemma 5.1, we deduce the proposition. �

Corollary 5.9. Define m𝑖,𝔪,𝑛 := Homℭ (𝒪) (𝑃,Θ𝑑) ⊗𝒪 𝐿, where Θ is an open bounded G-invariant
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lattice in Π𝑖,𝔪,𝑛. Then ⋂
𝑖∈𝐼

⋂
𝔪,𝑛

𝔞𝑖,𝔪,𝑛 = 0,

where 𝔞𝑖,𝔪,𝑛 := ann𝐸 (m𝑖,𝔪,𝑛).

Proof. For Π ∈ Banadm
𝐺,𝜁 (𝐿) with a G-invariant 𝒪-lattice Θ, we have

Homℭ (𝒪) (𝑃,Θ𝑑) ⊗𝒪 𝐿 � Homcont
𝐺 (Π,Π(𝑃)).

Thus the evaluation map in Proposition 5.8 induces an 𝐸 [1/𝑝]-homomorphism⊕
𝑖∈𝐼

⊕
𝔪,𝑛

m𝑖,𝔪,𝑛 ⊗𝐿 Π𝑖,𝔪,𝑛 → Π(𝑃)

with a dense image. Since 𝐸 [1/𝑝] acts faithfully on the right-hand side of the map, it acts faithfully
on the left-hand side as well. This proves the corollary, since the E-action on the left-hand side factors
through the quotient 𝐸/

⋂
𝑖∈𝐼

⋂
𝔪,𝑛 𝔞𝑖,𝔪,𝑛. �

6. Main results

Given a block 𝔅, we have defined 𝜋𝔅, 𝑃𝔅 and 𝐸𝔅 in Section 4.1 and 𝑃′𝔅 and 𝐸 ′𝔅 in Section 4.2. We
assume that all irreducibles in 𝔅 are absolutely irreducible. This can be achieved by replacing k with a
finite extension. Let 𝜌̄𝔅 be the 2-dimensional semisimple Galois representation of 𝒢Q𝑝 over k defined
by V̌(𝜋∨𝔅) in cases (i), (ii), (iv) and (v), and by a direct sum of two copies of V̌(𝜋∨𝔅) in cases (iii) and
(vi); see Section 4.4 for an explicit description. We write 𝑅ps,𝜁 𝜀

tr 𝜌̄𝔅 for the universal pseudodeformation
ring of tr 𝜌̄𝔅 with a fixed determinant 𝜁𝜀. This ring is Noetherian by [18, Proposition F]. We let
𝑇 : 𝒢Q𝑝 → 𝑅

ps,𝜁 𝜀
tr 𝜌̄𝔅 be the universal object (see Section 3).

6.1. Finiteness

Let {𝑉𝑖}𝑖∈𝐼 be a family of K-representations defined in Proposition 5.3 and let 𝐴𝑖 = End𝐺 (c-Ind𝐺𝐾𝑍 𝑉𝑖).
For each 𝑖 ∈ 𝐼, a maximal ideal 𝔪 of 𝐴𝑖 and 𝑛 ∈ N, we write Π𝑖,𝔪,𝑛 for the universal unitary completion
of 𝐴𝑖/𝔪𝑛 ⊗𝐴𝑖 c-Ind𝐺𝐾𝑍 𝑉𝑖 .

Lemma 6.1. Assume Π𝑖,𝔪,𝑛 is a subrepresentation of Π(𝑃′𝔅). Then V̌(Π𝑖,𝔪,𝑛) is a finite free 𝐴𝑖/𝔪𝑛-
module of rank equal to dim𝐴𝑖/𝔪 (V̌(Π𝑖,𝔪,1)) ≤ 2. Moreover,

(i) if rank𝐴𝑖/𝔪𝑛 V̌(Π𝑖,𝔪,𝑛) = 2, then V̌(Π𝑖,𝔪,𝑛) is a deformation to 𝐴𝑖/𝔪𝑛 of the absolutely irreducible
2-dimensional L-representation V̌(Π𝑖,𝔪,1) of 𝒢Q𝑝 ; and

(ii) if rank𝐴𝑖/𝔪𝑛 V̌(Π𝑖,𝔪,𝑛) = 1, then the action of 𝒢Q𝑝 on V̌(Π𝑖,𝔪,𝑛) is given by an (𝐴𝑖/𝔪𝑛)×-valued
character lifting V̌(Π𝑖,𝔪,1).

Proof. Since 𝑉𝑖 is a principal series type, the 𝒢Q𝑝 -module

V̌(Π𝑖,𝔪,𝑛)/𝔪V̌(Π𝑖,𝔪,𝑛)
∼−→ V̌(Π𝑖,𝔪,1)

has dimension 𝑟 ≤ 2 over 𝜅(𝔪) := 𝐴𝑖/𝔪 by [4, Theorem 4.3.1] and [10, Proposition 2.2.1]. Nakayama’s
lemma implies that we have a surjection

(𝐴𝑖/𝔪𝑛)⊕𝑟 � V̌(Π𝑖,𝔪,𝑛).
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Proposition 5.7 and the exactness of V̌ imply that V̌(Π𝑖,𝔪,𝑛) has length 𝑛𝑟 as an 𝐴𝑖/𝔪𝑛-module. Hence
the surjection is an isomorphism and the lemma follows. �

Lemma 6.2. Under the same assumptions as in Lemma 6.1, there is a natural map 𝜃𝑖,𝔪,𝑛 : 𝑅ps,𝜁 𝜀
tr 𝜌̄𝔅 →

𝐴𝑖/𝔪𝑛, which induces a map

𝑅
ps,𝜁 𝜀
tr 𝜌̄𝔅 
𝒢Q𝑝�/𝐽 → End𝐴𝑖/𝔪𝑛 (V̌(Π𝑖,𝔪,𝑛)).

Proof. If V̌(Π𝑖,𝔪,𝑛) is of rank 2 over 𝐴𝑖/𝔪𝑛, it follows from Lemma 6.1(i) that V̌(Π𝑖,𝔪,𝑛) is a defor-
mation of the 2-dimensional Galois representation V̌(Π𝑖,𝔪,1) to 𝐴𝑖/𝔪𝑛 with determinant 𝜁𝜀. It follows
from [18, Section 4.1, Theorem 3.17] that there is an𝒪-algebra map 𝜃𝑖,𝔪,𝑛 : 𝑅ps,𝜁 𝜀

tr 𝜌̄𝔅 → 𝐴𝑖/𝔪𝑛 such that
the specialisation of T along 𝜃𝑖,𝔪,𝑛 is equal to tr𝐴𝑖/𝔪𝑛 V̌(Π𝑖,𝔪,𝑛). This map induces a homomorphism
of 𝒪-algebras

𝑅
ps,𝜁 𝜀
tr 𝜌̄𝔅 
𝒢Q𝑝� → End𝐴𝑖/𝔪𝑛 (V̌(Π𝑖,𝔪,𝑛)),

and Cayley–Hamilton for 𝑀2 (𝐴𝑖/𝔪𝑛) implies that J lies in the kernel of this map.
If V̌(Π𝑖,𝔪,𝑛) is given by a character 𝜒𝑖,𝔪,𝑛 : 𝒢Q𝑝 → (𝐴𝑖/𝔪𝑛)×, then the same argument applies to

the representation 𝜒𝑖,𝔪,𝑛 ⊕ 𝜒−1
𝑖,𝔪,𝑛𝜁𝜀, so that we get a map

𝑅
ps,𝜁 𝜀
tr 𝜌̄𝔅 
𝒢Q𝑝�/𝐽 → End𝐴𝑖/𝔪𝑛 (𝜒𝑖,𝔪,𝑛 ⊕ 𝜒−1

𝑖,𝔪,𝑛𝜁𝜀).

Its image commutes with the idempotent which projects onto the direct summand 𝜒𝑖,𝔪,𝑛. Hence, the
image is contained in End𝐴𝑖/𝔪𝑛 (𝜒𝑖,𝔪,𝑛)×End𝐴𝑖/𝔪𝑛 (𝜒−1

𝑖,𝔪,𝑛𝜁𝜀), and we may project to End𝐴𝑖/𝔪𝑛 (𝜒𝑖,𝔪,𝑛)
to obtain the required homomorphism. �

In Propositions 3.1 and 4.18, we established surjections

𝛼 : 𝒪
𝒢Q𝑝�� Endcont
𝐸′𝔅
(V̌(𝑃′𝔅)), 𝛽 : 𝒪
𝒢Q𝑝�� 𝑅

ps,𝜁 𝜀
tr 𝜌̄𝔅 
𝒢Q𝑝�/𝐽.

Theorem 6.3. The maps just given induce a surjection

𝑅
ps,𝜁 𝜀
tr 𝜌̄𝔅 
𝒢Q𝑝�/𝐽 � Endcont

𝐸′𝔅
(V̌(𝑃′𝔅)).

In particular, 𝐸 ′𝔅 and 𝑍 ′𝔅 are finite over 𝑅ps,𝜁 𝜀
tr 𝜌̄𝔅 and hence Noetherian.

Proof. For the first part we have to show that Ker 𝛽 ⊂ Ker𝛼. Let 𝑀 = V̌(𝑃′𝔅) and define m𝑖,𝔪,𝑛 :=
m(Π𝑖,𝔪,𝑛), with 𝑖,𝔪, 𝑛 as in Corollary 5.9. Then the assumptions in Lemma 2.6 are satisfied by
Corollary 5.9. It follows that the kernel of 𝛼 is given by ∩𝑖∈𝐼 ∩𝔪,𝑛 𝔟𝑖,𝔪,𝑛, where 𝔟𝑖,𝔪,𝑛 is the 𝒪
𝒢Q𝑝�-
annihilator of

m𝑖,𝔪,𝑛 ⊗𝐸′𝔅 V̌(𝑃′𝔅) � V̌(m𝑖,𝔪,𝑛 ⊗𝐸′𝔅 𝑃
′
𝔅) � V̌(Π𝑖,𝔪,𝑛).

Since the action of 𝒪
𝒢Q𝑝� on V̌(Π𝑖,𝔪,𝑛) factors through 𝑅
ps,𝜁 𝜀
tr 𝜌̄𝔅 
𝒢Q𝑝�/𝐽 by Lemma 6.2, 𝔟𝑖,𝔪,𝑛

contains the kernel of 𝛽 and hence Ker 𝛽 ⊂ Ker𝛼.
The second assertion is a consequence of the first assertion and the finiteness of 𝑅ps,𝜁 𝜀

tr 𝜌̄𝔅 
𝒢Q𝑝�/𝐽 over
𝑅

ps,𝜁 𝜀
tr 𝜌̄𝔅 [48, Proposition 3.6]. �

Corollary 6.4. 𝐸𝔅 and 𝑍𝔅 are finite over 𝑅ps,𝜁 𝜀
tr 𝜌̄𝔅 and hence Noetherian.
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Proof. By [39, Lemma 10.26], we have

Endℭ (𝒪) (𝑀𝔅) � End𝔔 (𝒪) (𝒯𝑀𝔅),
Homℭ (𝒪) (𝑃′𝔅, 𝑀𝔅) � Hom𝔔 (𝒪) (𝒯𝑃′𝔅,𝒯𝑀𝔅),

since 𝑀SL2 (Q𝑝)
𝔅 = (𝑀𝔅)SL2 (Q𝑝) = (𝑃′𝔅)SL2 (Q𝑝) = 0. Define m := Homℭ (𝒪) (𝑃′𝔅, 𝑀𝔅), which is a finitely

generated right 𝐸 ′𝔅-module by Corollary 4.13. Moreover, we have

End𝐸′𝔅 (m) � End𝔔 (𝒪) (𝒯𝑀𝔅) � Endℭ (𝒪) (𝑀𝔅)

by Proposition 4.10(2) and the isomorphism above. Theorem 6.3 implies that the conditions of
Lemma 4.11 are satisfied with 𝐸 = 𝐸 ′𝔅 and 𝑍 = 𝑍 ′𝔅. Thus Endℭ (𝒪) (𝑀𝔅) and its centre are finite
over 𝑍 ′𝔅, and thus finite over 𝑅ps,𝜁 𝜀

tr 𝜌̄𝔅 by Theorem 6.3, and hence Noetherian. This implies the corollary,
since Endℭ (𝒪) (𝑀𝔅) � 𝐸𝔅 and 𝑍 (Endℭ (𝒪) (𝑀𝔅)) � 𝑍𝔅 by Proposition 4.15. �

Remark 6.5. Since 𝑍𝔅 is Noetherian, the 𝔪-adic topology coincides with the linearly compact topology
in Lemma 4.1.

Let us spell out the properties of the map 𝑅
ps,𝜁 𝜀
tr 𝜌̄𝔅 → 𝑍𝔅 constructed in Corollary 6.4. Since 𝑍𝔅

acts functorially on every object in ℭ(𝒪)𝔅, the homomorphism 𝑅
ps,𝜁 𝜀
tr 𝜌̄𝔅 → 𝑍𝔅 induces a functorial ring

homomorphism

𝑐𝑀 : 𝑅ps,𝜁 𝜀
tr 𝜌̄𝔅 → Endℭ (𝒪) (𝑀)

for every object M in ℭ(𝒪). Since V̌ is a functor, it induces a ring homomorphism

Endℭ (𝒪) (𝑀) → Endcont
𝒢Q𝑝
(V̌(𝑀)), 𝜑 ↦→ V̌(𝜑).

We denote the action of 𝒢Q𝑝 on V̌(𝑀) by 𝜌V̌(𝑀 ) . Finally, for all 𝑔 ∈ 𝒢Q𝑝 we may evaluate the universal
pseudorepresentation 𝑇 : 𝒢Q𝑝 → 𝑅

ps,𝜁 𝜀
tr 𝜌̄𝔅 at 𝑔 ∈ 𝒢Q𝑝 to obtain an element 𝑇 (𝑔) ∈ 𝑅ps,𝜁 𝜀

tr 𝜌̄𝔅 .

Proposition 6.6. For each 𝑀 ∈ ℭ(𝒪)𝔅 and each 𝑔 ∈ 𝒢Q𝑝 ,

V̌(𝑐𝑀 (𝑇 (𝑔))) = 𝜌V̌(𝑀 ) (𝑔) + 𝜌V̌(𝑀 ) (𝑔
−1)𝜁𝜀(𝑔)

in Endcont
𝒢Q𝑝
(V̌(𝑀)).

Proof. Since 𝑔2 − 𝑇 (𝑔)𝑔 + 𝜁𝜀(𝑔) = 0 in 𝑅ps,𝜁 𝜀
tr 𝜌̄𝔅 
𝒢Q𝑝�/𝐽, the equality 𝑇 (𝑔) id = 𝑔 + 𝜁𝜀(𝑔)𝑔−1 holds in

that ring. The rest is just unravelling the definitions. �

Since 𝑃𝔅 is a projective generator for ℭ(𝒪)𝔅, the functor

𝑁 ↦→ m(𝑁) := Homℭ (𝒪) (𝑃𝔅, 𝑁)

induces an equivalence of categories between ℭ(𝒪)𝔅 and the category of right pseudocompact 𝐸𝔅-
modules. The inverse functor is given by m ↦→ m ⊗̂𝐸𝔅 𝑃𝔅.

Corollary 6.7. For N in ℭ(𝒪)𝔅 the following assertions are equivalent:

1. There is a surjection 𝑃⊕𝑛𝔅 � 𝑁 for some 𝑛 ≥ 1.
2. m(𝑁) is a finitely generated 𝐸𝔅-module.
3. m(𝑁) is a finitely generated 𝑅ps,𝜁 𝜀

tr 𝜌̄𝔅 -module.
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4. 𝑘 ⊗̂
𝑅

ps,𝜁 𝜀
tr 𝜌̄𝔅

𝑁 is of finite length in ℭ(𝒪).
5. The cosocle of N in ℭ(𝒪) is of finite length.

The equivalent conditions hold if N is finitely generated over 𝒪
𝐻� for a compact open subgroup
H of G.

Proof. (1) implies (2), since m is exact. (2) implies (3) by Corollary 6.4. Since

𝑘 ⊗̂
𝑅

ps,𝜁 𝜀
tr 𝜌̄𝔅

m(𝑁) � m(𝑘 ⊗̂
𝑅

ps,𝜁 𝜀
tr 𝜌̄𝔅

𝑁),

and the functor m is an antiequivalence, (3) implies (4). Let 𝑁 � cosoc(𝑁) be the cosocle of N. Since
the maximal ideal of 𝑅ps,𝜁 𝜀

tr 𝜌̄𝔅 acts trivially on every semisimple object, the surjection factors through

𝑘 ⊗̂
𝑅

ps,𝜁 𝜀
tr 𝜌̄𝔅

𝑁 � cosoc(𝑁),

and so (4) implies (5). If cosoc(𝑁) is of finite length, then there is a surjection 𝜋⊕𝑛𝔅 � cosoc(𝑁) for
some 𝑛 ≥ 1. Since 𝑃𝔅 is projective, there is a map 𝜑 : 𝑃⊕𝑛𝔅 → 𝑁 lifting (𝑃𝔅)⊕𝑛 � 𝜋⊕𝑛𝔅 � cosoc(𝑁).
The cokernel of 𝜑 will have zero cosocle and hence 𝜑 is surjective, so that (5) implies (1).

If N is finitely generated over 𝒪
𝐻�, which we may assume to be pro-p, then ((𝑁/𝜛𝑁)∨)𝐻 is a
finite-dimensional k-vector space, and hence the G-socle of 𝑁∨ is of finite length, which dually implies
that (5) holds. �

Since every irreducible in 𝔅 is admissible, its Pontryagin dual is finitely generated over 𝒪
𝐻� for
any compact open subgroup H of G. It follows from Corollary 6.7(4) that 𝑘 ⊗̂

𝑅
ps,𝜁 𝜀
tr 𝜌̄𝔅

𝑃𝔅 is also a finitely

generated 𝒪
𝐻�-module. This implies that the assumptions made in [39, Section 4] are satisfied with
the category ℭ(𝒪) there equal to ℭ(𝒪)𝔅, and we will record some consequences.

6.2. Banach-space representations

The category Banadm
𝐺,𝜁 (𝐿) decomposes into a direct sum of categories [39, Proposition 5.36]:

Banadm
𝐺,𝜁 (𝐿) �

⊕
𝔅∈Irr𝐺,𝜁 /∼

Banadm
𝐺,𝜁 (𝐿)𝔅, (19)

where the objects of Banadm
𝐺,𝜁 (𝐿)𝔅 are those Π in Banadm

𝐺,𝜁 (𝐿) such that for every open bounded G-
invariant lattice Θ in Π, the irreducible subquotients of Θ ⊗𝒪 𝑘 lie in 𝔅. This condition is equivalent to
requiring that Θ𝑑 be an object of ℭ(𝒪)𝔅.

As in the previous subsection, we fix a block 𝔅 consisting of absolutely irreducible representations.
Let Modfg

𝐸𝔅 [1/𝑝]
be the category of finitely generated right 𝐸𝔅 [1/𝑝]-modules. The functor

m : Banadm
𝐺,𝜁 (𝐿)𝔅 → Modfg

𝐸𝔅 [1/𝑝]
, Π ↦→ m(Π) := Homℭ (𝒪) (𝑃𝔅,Θ𝑑) ⊗𝒪 𝐿,

where Θ is any open bounded G-invariant lattice in Π and is exact, contravariant and fully faithful by
[39, Lemma 4.45]. Moreover, it induces an antiequivalence of categories

m : Banadm
𝐺,𝜁 (𝐿)

fl
𝔅
�−→ Modfl

𝐸𝔅 [1/𝑝] , (20)

where the superscript ‘fl’ indicates the subcategories of objects of finite length in the respective cat-
egories [39, Theorem 4.34]. We write antiequivalence instead of equivalence to indicate that m is
contravariant.

If 𝔪 is a maximal ideal of 𝑅ps,𝜁 𝜀
tr 𝜌̄𝔅 [1/𝑝], then we let Banadm

𝐺,𝜁 (𝐿)
fl
𝔅,𝔪 be the full subcategory of

Banadm
𝐺,𝜁 (𝐿) consisting of finite-length Banach-space representations, which are killed by some power
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of 𝔪. The functor m induces an antiequivalence between this category and the category of 𝐸𝔅 [1/𝑝]-
modules of finite length, which are killed by a power of𝔪. The Chinese remainder theorem [39, Theorem
4.36] implies that we have an equivalence of categories

Banadm
𝐺,𝜁 (𝐿)

fl
𝔅 �

⊕
𝔪∈m-Spec 𝑅ps,𝜁 𝜀

tr 𝜌̄𝔅
[1/𝑝]

Banadm
𝐺,𝜁 (𝐿)

fl
𝔅,𝔪 . (21)

Corollary 6.8. If Π1 ∈ Banadm
𝐺,𝜁 (𝐿)

fl
𝔅,𝔪1

and Π2 ∈ Banadm
𝐺,𝜁 (𝐿)

fl
𝔅,𝔪2

for distinct maximal ideals 𝔪1 and
𝔪2 of 𝑅ps,𝜁 𝜀

tr 𝜌̄𝔅 [1/𝑝], then the Yoneda Ext𝑖 (Π1,Π2) computed in Banadm
𝐺,𝜁 (𝐿) vanish for all 𝑖 ≥ 0.

Proof. It follows from formula (21) that the assertion holds for the Yoneda Ext groups computed in
Banadm

𝐺,𝜁 (𝐿)
fl
𝔅. It follows from [39, Proposition 4.46, Corollary 4.48] that these coincide with Yoneda Ext

groups computed in Banadm
𝐺,𝜁 (𝐿)𝔅, which is a direct summand of Banadm

𝐺,𝜁 (𝐿) (see formaul (19)). �

We will determine the set of isomorphism classes Irr(𝔪, 𝐿 ′) of irreducible objects in Banadm
𝐺,𝜁 (𝐿

′)fl𝔅,𝔪

for a sufficiently large finite extension 𝐿 ′ of L. Recall that Π ∈ Banadm
𝐺,𝜁 (𝐿) is absolutely irreducible

if Π ⊗𝐿 𝐿 ′ is irreducible in Banadm
𝐺,𝜁 (𝐿

′) for all finite extensions 𝐿 ′ of L. It follows from formula (20)
that for such Π, Schur’s lemma holds, so that Endcont

𝐺 (Π) = 𝐿. This result is also proved in [26] in a
much more general setting. It follows from formula (20) that irreducibles in Banadm

𝐺,𝜁 (𝐿)𝔅,𝔪 correspond
to irreducible modules of the algebra 𝐸𝔅 ⊗𝑅ps,𝜁 𝜀

tr 𝜌̄𝔅
𝜅(𝔪). Corollary 6.4 implies that this algebra is finite-

dimensional over 𝜅(𝔪), and thus Irr(𝔪, 𝐿 ′) is finite for every finite extension 𝐿 ′ of L, and there is a
finite extension 𝐿 ′ of L such that all Π in Irr(𝔪, 𝐿 ′) are absolutely irreducible.

Proposition 6.9. Let 𝐿 ′ be a finite extension of L and let Π be absolutely irreducible in Banadm
𝐺,𝜁 (𝐿

′)𝔅.
Let 𝑐Π : 𝑅ps,𝜁 𝜀

tr 𝜌̄𝔅 → 𝐿 ′ be the composition

𝑐Π : 𝑅ps,𝜁 𝜀
tr 𝜌̄𝔅 → 𝑍𝔅 → Endcont

𝐺 (Π) = 𝐿
′.

Then one of the following holds:

1. If Π is a subquotient of (Ind𝐺𝐵 𝜓1 ⊗ 𝜓2𝜀
−1)cont for some unitary characters 𝜓1, 𝜓2 : Q×𝑝 → (𝐿 ′)×,

then 𝑇𝑐Π = 𝜓1 + 𝜓2;
2. otherwise, V̌(Π) is a 2-dimensional absolutely irreducible 𝐿 ′-representation of𝒢Q𝑝 , det V̌(Π) = 𝜁𝜀

and 𝑇𝑐Π = tr V̌(Π),

where 𝑇𝑐Π is the specialisation of the universal pseudorepresentation 𝑇 : 𝒢Q𝑝 → 𝑅
ps,𝜁 𝜀
tr 𝜌̄𝔅 along 𝑐Π .

Proof. Let Ψ be the unitary principal series representation in (1). If 𝜓1 ≠ 𝜓2𝜀
−1, then ΨSL2 (Q𝑝) = 0,

and by looking at its reduction modulo p one may conclude that Ψ is absolutely irreducible. If 𝜓1 = 𝜓2𝜀,
then Ψ is a nonsplit extension

0→ 𝜓1 ◦ det→ Ψ→ Ŝp ⊗ 𝜓1 ◦ det→ 0,

where Ŝp is the universal unitary completion of the smooth Steinberg representation. This representation
is absolutely irreducible, since its mod p reduction is. In both cases, Endcont

𝐺 (Ψ) = 𝐿 ′, and thus
𝑅

ps,𝜁 𝜀
tr 𝜌̄𝔅 acts on all irreducible subquotients of Ψ via the same homomorphism 𝑐Ψ. Since V̌(Ψ) = 𝜓2,

regarded as a representation of 𝒢Q𝑝 via the class field theory, 𝑔 + 𝜀𝜁 (𝑔)𝑔−1 acts on it via the scalar
𝜓2 (𝑔) + 𝜓2(𝑔−1)𝜀𝜁 (𝑔) = 𝜓2 (𝑔) + 𝜓1 (𝑔) for all 𝑔 ∈ 𝒢Q𝑝 . Proposition 6.6 implies that the specialisation
of T at 𝑐Ψ is the character 𝜓1 + 𝜓2.

If we are not in part (1), then [21, Corollary 1.2, Theorem 1.9] imply that V̌(Π) is absolutely
irreducible 2-dimensional and det V̌(Π) = 𝜁𝜀. A calculation with 2×2 matrices implies that 𝑔+𝜁𝜀(𝑔)𝑔−1
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acts on V̌(Π) by a scalar (tr V̌(Π)) (𝑔). Proposition 6.6 implies that the specialisation of T at 𝑐Ψ is the
character tr V̌(Π). �

Corollary 6.10. Let 𝐿 ′ be a finite extension of L and let 𝑥 : 𝑅ps,𝜁 𝜀
tr 𝜌̄𝔅 → 𝐿 ′ be an 𝒪-algebra homomor-

phism. If 𝑇𝑥 = 𝜓1 + 𝜓2 for characters 𝜓1, 𝜓2 : 𝒢Q𝑝 → (𝐿 ′)×, then one of the following holds:

1. If 𝜓1𝜓
−1
2 = 1, then Irr(𝔪𝑥 , 𝐿

′) = {(Ind𝐺𝐵 1 ⊗ 𝜀−1)cont ⊗ 𝜓1 ◦ det}.
2. If 𝜓1𝜓

−1
2 = 𝜀±1, then Irr(𝔪𝑥 , 𝐿

′) = {1, Ŝp, (Ind𝐺𝐵 𝜀 ⊗ 𝜀−1)cont} ⊗ 𝜓 ◦ det.
3. If 𝜓1𝜓

−1
2 ≠ 𝜀±1, 1, then

Irr(𝔪𝑥 , 𝐿
′) = {(Ind𝐺𝐵 𝜓1 ⊗ 𝜓2𝜀

−1)cont, (Ind𝐺𝐵 𝜓2 ⊗ 𝜓1𝜀
−1)cont},

where we consider 𝜓1 and 𝜓2 as unitary characters ofQ×𝑝 via the class field theory and 𝜓 in (2) is either
𝜓1 or 𝜓2.

Proof. We have explained in the course of the proof of Proposition 6.9 that the representations listed in
this corollary are absolutely irreducible and are contained in Irr(𝔪𝑥 , 𝐿

′). Moreover, using the functor
of ordinary parts one may show that they are pairwise nonisomorphic.

We will show that the list is exhaustive. We may enlarge 𝐿 ′ so that all Π ∈ Irr(𝔪𝑥 , 𝐿
′) are absolutely

irreducible. Since 𝑐Π = 𝑥, we cannot be in part (2) of Proposition 6.9, and thus we must be in part (1),
and hence Π is already in our list. �

Proposition 6.11. Let 𝐿 ′ be a finite extension of L and let 𝑥 : 𝑅ps,𝜁 𝜀
tr 𝜌̄𝔅 → 𝐿 ′ be an 𝒪-algebra homomor-

phism. If 𝑇𝑥 = tr 𝜌, where 𝜌 : 𝒢Q𝑝 → GL2 (𝐿 ′) is absolutely irreducible, then Irr(𝔪𝑥 , 𝐿
′) = {Π}, with

Π absolutely irreducible nonordinary and V̌(Π) � 𝜌.

Proof. It follows from [21, Theorem 1.1] that such Π exists. We may enlarge 𝐿 ′ so that all Π′ ∈
Irr(𝔪𝑥 , 𝐿

′) are absolutely irreducible. Since 𝑐Π′ = 𝑥, we cannot be in part (1) of Proposition 6.9; thus
we must be in part (2), and tr V̌(Π) = tr V̌(Π′). Since both V̌(Π′) and V̌(Π) are absolutely irreducible,
we deduce that V̌(Π) � V̌(Π′), and [21, Theorem 1.8] implies that Π � Π′. �

6.3. The centre

We fix a block 𝔅 as in the previous section and explore the relation between 𝑅ps,𝜁 𝜀
tr 𝜌̄𝔅 and 𝑍𝔅. So far we

have constructed a finite map

𝑅
ps,𝜁 𝜀
tr 𝜌̄𝔅 → 𝑍 ′𝔅 � 𝑍𝔅 (22)

(Theorem 6.3 and Corollary 4.16). We show in Corollary A.14 that 𝑅ps,𝜁 𝜀
tr 𝜌̄𝔅 [1/𝑝] is normal, and we know

by [17, Theorem 2.1] that it is equidimensional, and the locus corresponding to absolutely irreducible
pseudorepresentations is Zariski dense in Spec 𝑅ps,𝜁 𝜀

tr 𝜌̄𝔅 [1/𝑝].

Proposition 6.12. Let 𝑅�,𝜁 𝜀𝜌̄𝔅
be the universal framed deformation ring of 𝜌̄𝔅 with fixed determinant

𝜁𝜀, let S be its maximal 𝒪-torsion-free quotient and let 𝑉𝑆 be a free S-module of rank 2 with 𝒢Q𝑝 -
action induced by the universal deformation 𝒢Q𝑝 → GL2(𝑅�,𝜁 𝜀𝜌̄𝔅

) � GL2(𝑆). There is N in ℭ(𝒪) with
a continuous action of S, which commutes with the action of G, such that we have an isomorphism of
𝑆[𝒢Q𝑝 ]-modules V̌(𝑁) � 𝑉𝑆 .

Proof. If 𝑥 ∈ m-Spec 𝑆[1/𝑝], then the specialisation of 𝑉𝑆 at x lies in the image of V̌ by [22, Theorem
10.1]. Since 𝑆[1/𝑝] is reduced (Propositions A.9 and A.13) and Jacobson, such points will be dense,
and the existence of such N follows from [19, Theorem II.3.3]. �

The subscript ‘tf’ will indicate the maximal 𝒪-torsion-free quotient.
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Theorem 6.13. The surjection 𝑅
ps,𝜁 𝜀
tr 𝜌̄𝔅 
𝒢Q𝑝�/𝐽 � Endcont

𝐸′𝔅
(V̌(𝑃′𝔅)) in Theorem 6.3 identifies

Endcont
𝐸′𝔅
(V̌(𝑃′𝔅)) with (𝑅ps,𝜁 𝜀

tr 𝜌̄𝔅 
𝒢Q𝑝�/𝐽)tf . In particular, map (22) induces an isomorphism

𝑅
ps,𝜁 𝜀
tr 𝜌̄𝔅 [1/𝑝]

�−→ 𝑍 ′𝔅 [1/𝑝] . (23)

Moreover, if 𝑝 ≠ 2, then 𝑍 ′𝔅 = (𝑅ps,𝜁 𝜀
tr 𝜌̄𝔅 )tf , and if 𝑝 = 2, then the cokernel of map (22) is killed

by 2.

Proof. As already explained in the proof of Proposition 4.3, projective objects inℭ(𝒪) are also projective
in the category of compact𝒪
𝐾 ′�-modules, where𝐾 ′ is an open pro-p subgroup of SL2 (Q𝑝) intersecting
Z trivially, and thus are 𝒪-torsion-free. Hence, 𝑃′𝔅 is 𝒪-torsion-free. Since 𝐸 ′𝔅 and 𝑍 ′𝔅 act faithfully on
𝑃′𝔅, we deduce that both rings are 𝒪-torsion-free. Since Endcont

𝐸′𝔅
(V̌(𝑃′𝔅)) is either (𝐸 ′𝔅)

op or 𝑀2 (𝐸 ′𝔅)
by Proposition 4.18, we deduce that the map in Theorem 6.3 factors through

(𝑅ps,𝜁 𝜀
tr 𝜌̄𝔅 
𝒢Q𝑝�/𝐽)tf � Endcont

𝐸′𝔅
(V̌(𝑃′𝔅)). (24)

If a lies in the kernel of this map, then it will kill V̌(𝑃′𝔅) and hence m ⊗̂𝐸′𝔅 V̌(𝑃′𝔅) for all compact right
𝐸 ′𝔅-modules. Thus a will kill all objects in the essential image of V̌, and it will therefore also kill the
representation 𝑉𝑆 defined in Proposition 6.12.

It follows from Propositions A.9 and A.13 that the ring 𝑅�,𝜁 𝜀𝜌̄𝔅
[1/𝑝] is normal and the absolutely

irreducible locus is dense in Spec 𝑅�,𝜁 𝜀𝜌̄𝔅
[1/𝑝]. Corollary A.7 implies that (𝑅ps,𝜁 𝜀

tr 𝜌̄𝔅 
𝒢Q𝑝�/𝐽)tf acts
faithfully on 𝑉𝑆 , hence 𝑎 = 0 and formula (24) is injective.

The assertions about the centre follow from Proposition A.11. �

We immediately obtain the following:

Corollary 6.14. 𝑍 ′𝔅 is a complete local Noetherian 𝒪-algebra with residue field k. It is 𝒪-torsion-free
and 𝑍 ′𝔅 [1/𝑝] is normal.

Corollary 6.15. 𝑍𝔅 = 𝑍 ′𝔅.

Proof. Since 𝑍𝔅 acts faithfully on 𝑃𝔅 it is 𝒪-torsion-free. Thus it is enough to show that the surjection
𝑍 ′𝔅 � 𝑍𝔅 (see Corollary 4.16) induces an isomorphism after inversion of p. Since 𝑍 ′𝔅 [1/𝑝] is reduced by
Corollary 6.14, it is enough to show that m-Spec 𝑍𝔅 [1/𝑝] contains a subsetΣ of m-Spec 𝑍 ′𝔅 [1/𝑝], which
is dense in Spec 𝑍 ′𝔅 [1/𝑝]. We may take Σ to be the absolutely irreducible locus in m-Spec 𝑅ps,𝜁 𝜀

tr 𝜌̄𝔅 [1/𝑝],
as it is dense in Spec 𝑅ps,𝜁 𝜀

tr 𝜌̄𝔅 [1/𝑝] by [17, Theorem 2.1] and lies in m-Spec 𝑍𝔅 [1/𝑝] by the main result
of [21]. �

Corollary 6.16. Let 𝐿 ′ be a finite extension of L and let 𝑥 : 𝑅ps,𝜁 𝜀
tr 𝜌̄𝔅 → 𝐿 ′ be an 𝒪-algebra homomor-

phism. If the specialisation of the universal pseudodeformation 𝑇 : 𝒢Q𝑝 → 𝑅
ps,𝜁 𝜀
tr 𝜌̄𝔅 at x is not of the

form 𝜓 + 𝜓𝜀, then Banadm
𝐺,𝜁 (𝐿

′)fl𝔅,𝔪𝑥
is equivalent to the category of modules of finite length over the

completion of (𝑅ps,𝜁 𝜀
tr 𝜌̄𝔅 
𝒢Q𝑝�/𝐽) ⊗𝒪 𝐿 ′ at 𝔪𝑥 .

Moreover, if 𝑇𝑥 = tr 𝜌, where 𝜌 : 𝒢Q𝑝 → GL2 (𝐿 ′) is absolutely irreducible, then Banadm
𝐺,𝜁 (𝐿

′)fl𝔅,𝔪𝑥
is

equivalent to the category of modules of finite length over the deformation ring 𝑅𝜁 𝜀
𝜌 , which parameterises

the deformations of 𝜌 with determinant 𝜁𝜀 to local Artinian 𝐿 ′-algebras.
In particular, if Π′ ∈ Banadm

𝐺,𝜁 (𝐿
′) is killed by 𝔪𝑥 then Π′ is isomorphic to a direct sum of finitely

many copies of Π in Proposition 6.11.
Proof. After extending scalars, we may assume that 𝐿 = 𝐿 ′. If 𝑇𝑥 ≠ 𝜓 + 𝜓𝜀 for any character 𝜓, then it
follows from Corollaries 6.10 and 6.11 that Irr(𝔪𝑥 , 𝐿

′) does not contain characters. We may apply [39,
Theorem 4.36] to deduce that Banadm

𝐺,𝜁 (𝐿
′)fl𝔅,𝔪𝑥

is antiequivalent to the category of 𝐸 ′𝔅 ⊗𝑅 𝑅𝔪𝑥 -modules
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of finite length, where 𝑅 = 𝑅ps,𝜁 𝜀
tr 𝜌̄𝔅 . Theorem 6.13 implies that this ring coincides with the completion

of (𝑅ps,𝜁 𝜀
tr 𝜌̄𝔅 
𝒢Q𝑝�/𝐽) [1/𝑝] at 𝔪𝑥 .

Let us assume that 𝑇𝑥 = tr 𝜌 with 𝜌 absolutely irreducible. Then Irr(𝔪𝑥 , 𝐿
′) = {Π}, with Π

absolutely irreducible by Proposition 6.11 and V̌(Π) � 𝜌. It follows from [18, Sections 4.1 and 4.2]
that (𝑅
𝒢Q𝑝�/𝐽) ⊗𝑅 𝑅𝔪𝑥 is an Azumaya algebra over 𝑅𝔪𝑥 . Since 𝜌 is an absolutely irreducible 2-
dimensional module of (𝑅
𝒢Q𝑝�/𝐽) ⊗𝑅 𝜅(𝑥), we conclude that (𝑅
𝒢Q𝑝�/𝐽) ⊗𝑅 𝜅(𝑥) = 𝑀2 (𝜅(𝑥)),
and thus (𝑅
𝒢Q𝑝�/𝐽) ⊗𝑅 𝑅𝔪𝑥 is isomorphic to the ring of 2 × 2 matrices over 𝑅𝔪𝑥 . Since 𝑀2 (𝑅𝔪𝑥 )
is Morita equivalent to 𝑅𝔪𝑥 , which is isomorphic to 𝑅𝜁 𝜀

𝜌 by [35, Lemma 2.3.3, Proposition 2.3.5], we
obtain the first assertion.

In particular, the full subcategory of Banadm
𝐺,𝜁 (𝐿

′)fl𝔅,𝔪𝑥
consisting of representations killed by 𝔪𝑥

is equivalent to the category of finite-dimensional vector spaces over 𝐿 ′, and hence the last assertion
follows. �

6.4. Complements

We will prove Theorem 1.1. Let 𝔅 be an arbitrary block, so that we do not assume that it contains an
absolutely irreducible representation.

If 𝜋1, 𝜋2 ∈ Irr𝐺,𝜁 (𝑘), then it follows from [39, Proposition 5.11] that there is a finite extension 𝑘 ′ of
k such that 𝜋1 ⊗𝑘 𝑘 ′ is a finite direct sum of absolutely irreducible representations; then 𝜋2 ⊗𝑘 𝑘 ′ is a
finite direct sum of irreducible representations, each of them occurring with multiplicity 1. It is implied
by [39, Proposition 5.33] that

Ext1𝑘 [𝐺 ],𝜁 (𝜋1, 𝜋2) ⊗𝑘 𝑘 ′ � Ext1𝑘′ [𝐺 ],𝜁 (𝜋1 ⊗𝑘 𝑘 ′, 𝜋2 ⊗𝑘 𝑘 ′). (25)

If Ext1𝑘 [𝐺 ],𝜁 (𝜋1, 𝜋2) ≠ 0, then it follows from this formula that there are irreducible summands 𝜋′1
of 𝜋1 ⊗𝑘 𝑘 ′ and 𝜋′2 of 𝜋2 ⊗𝑘 𝑘 ′ such that Ext1𝑘′ [𝐺 ],𝜁 (𝜋

′
1, 𝜋
′
2) ≠ 0. Since 𝜋′1 is absolutely irreducible, we

conclude by inspecting the list of blocks in Section 4.1 that 𝜋′2 is absolutely irreducible, and thus if 𝔅
is the block containing 𝜋1, then 𝜋 ⊗𝑘 𝑘 ′ is a finite direct sum of absolutely irreducible representations
for all 𝜋 ∈ 𝔅.

Let 𝐿 ′ be a finite extension of L with ring of integers 𝒪′ and residue field 𝑘 ′. If 𝜋′1, 𝜋
′
2 ∈ Irr𝐺,𝜁 (𝑘 ′)

are absolutely irreducible, then it follows from [39, Proposition 5.11] that there exist unique 𝜋1, 𝜋2 ∈
Irr𝐺,𝜁 (𝑘) such that 𝜋′1 is a direct summand of 𝜋1 ⊗𝑘 𝑘 ′ and 𝜋′2 is a direct summand of 𝜋2 ⊗𝑘 𝑘 ′. It follows
from formula (25) that if 𝜋′1 and 𝜋′2 lie in the same block in Modl.fin

𝐺,𝜁 (𝒪′), then 𝜋1 and 𝜋2 lie in the same
block in Modl.fin

𝐺,𝜁 (𝒪).
Thus if 𝜋1 ∈ 𝔅 and we let 𝔅1, . . . ,𝔅𝑟 be the blocks of irreducible subquotients of 𝜋1 ⊗𝑘 𝑘 ′ in

Modl.fin
𝐺,𝜁 (𝒪′) and 𝔅 ⊗𝑘 𝑘 ′ be the set of isomorphism classes of irreducible subquotients of 𝜋 ⊗𝑘 𝑘 ′ for

all 𝜋 ∈ 𝔅, then

𝔅 ⊗𝑘 𝑘 ′ =
𝑟⋃
𝑖=1

𝔅𝑖 .

It follows from [39, Corollary 5.40] that 𝑃𝔅 ⊗𝒪 𝒪′ �
∏𝑟

𝑖=1 𝑃𝔅𝑖
and

𝐸𝔅 ⊗𝒪 𝒪′ � Endℭ (𝒪′) (𝑃𝔅 ⊗𝒪 𝒪′) �
𝑟∏
𝑖=1

𝐸𝔅𝑖
.

Since the blocks 𝔅𝑖 contain only absolutely irreducible representations, it follows from Corollary 6.4
that 𝐸𝔅 ⊗𝒪 𝒪′ is a finite module over its centre 𝑍 (𝐸𝔅 ⊗𝒪 𝒪′) and

𝑍 (𝐸𝔅) ⊗𝒪 𝒪′ � 𝑍 (𝐸𝔅 ⊗𝒪 𝒪′) �
𝑟∏
𝑖=1

𝑍𝔅𝑖
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is Noetherian (see the argument in the proof of [25, Lemma 4.14] for the first isomorphism). Since 𝒪′ is
a finite free𝒪-module, this implies that 𝑍 (𝐸𝔅) is Noetherian, and 𝐸𝔅 is a finitely generated 𝑍𝔅-module,
which finishes the proof of Theorem 1.1.

7. Application to Hecke eigenspaces

Let R be a linearly compact local 𝑅ps,𝜁 𝜀
tr 𝜌̄𝔅 -algebra with residue field k; we do not assume that R is

Noetherian. If 𝑥 : 𝑅 → Q𝑝 is an 𝒪-algebra homomorphism, then we denote by 𝑇𝑥 the specialisation of
the universal pseudorepresentation 𝑇 : 𝒢Q𝑝 → 𝑅

ps,𝜁 𝜀
tr 𝜌̄𝔅 along 𝑅ps,𝜁 𝜀

tr 𝜌̄𝔅 → 𝑅
𝑥→ Q𝑝 .

Let M be an object of ℭ(𝒪)𝔅, which we assume to be 𝒪-torsion-free. Then Π(𝑀) := Homcont
𝒪 (𝑀, 𝐿)

is a unitary L-Banach-space representation of G.
We assume that we are given a continuous action of R on M, which commutes with the action of G,

such that the following hold:

◦ the action of R on M is faithful;
◦ the two actions of 𝑅ps,𝜁 𝜀

tr 𝜌̄𝔅 on M induced by the maps

𝑅
ps,𝜁 𝜀
tr 𝜌̄𝔅 → 𝑅, 𝑅

ps,𝜁 𝜀
tr 𝜌̄𝔅 → 𝑍𝔅

coincide; and
◦ M is a finitely generated 𝑅
𝐾�-module.

Theorem 7.1. Let 𝑥 : 𝑅 → Q𝑝 be an 𝒪-algebra homomorphism and let Π(𝑀) [𝔪𝑥] be the subspace
of Π(𝑀) annihilated by the kernel of x. Then under the foregoing assumptions, Π(𝑀) [𝔪𝑥] is nonzero
and is of finite length in Banadm

𝐺,𝜁 (𝐿). Moreover,

◦ if 𝑇𝑥 is the trace of an absolutely irreducible Galois representation defined over 𝜅(𝑥), then

Π(𝑀) [𝔪𝑥] � Π⊕𝑚

for some multiplicity 𝑚 > 0, where Π is an absolutely irreducible nonordinary 𝜅(𝑥)-Banach-space
representation of G satisfying tr V̌(Π) = 𝑇𝑥; and

◦ if 𝑇𝑥 is the trace of a reducible Galois representation, then (after a possible extension of scalars) all
the irreducible subquotients of Π(𝑀) [𝔪𝑥] occur as subquotients of a direct sum of unitary
parabolic induction

(Ind𝐺𝐵 𝜓1 ⊗ 𝜓2𝜀
−1)cont ⊕ (Ind𝐺𝐵 𝜓2 ⊗ 𝜓1𝜀

−1)cont,

where 𝜓1, 𝜓2 : 𝒢Q𝑝 → 𝜅(𝑥)× are characters such that 𝑇𝑥 = 𝜓1 + 𝜓2.

Proof. Since 𝑃𝔅 is a projective generator for ℭ(𝒪)𝔅, the functor 𝑁 ↦→ m(𝑁) := Homℭ (𝒪) (𝑃𝔅, 𝑁)
induces an equivalence of categories between ℭ(𝒪)𝔅 and the category of right pseudocompact 𝐸𝔅-
modules. The inverse functor is given by m ↦→ m ⊗̂𝐸𝔅 𝑃𝔅. In particular, the assumption that R acts
faithfully on M implies that R acts faithfully on m(𝑀).

We claim that m(𝑀) is a finitely generated R-module. The topological Nakayama’s lemma
implies that it is enough to show that 𝑘 ⊗̂𝑅 m(𝑀) is a finite-dimensional k-vector space. Since
𝑘 ⊗̂𝑅 m(𝑀) � m(𝑘 ⊗̂𝑅 𝑀), it is enough to show that 𝑘 ⊗̂𝑅 𝑀 is of finite length in ℭ(𝒪). Since by
assumption M is a finitely generated 𝑅
𝐾�-module, 𝑘 ⊗̂𝑅 𝑀 is a finitely generated 𝑘
𝐾�-module.
Since by assumption the actions of 𝑅ps,𝜁 𝜀

tr 𝜌̄𝔅 on M induced by 𝑍𝔅 and by R, coincide we deduce that the
maximal ideal of 𝑅ps,𝜁 𝜀

tr 𝜌̄𝔅 annihilates 𝑘 ⊗̂𝑅 𝑀 . Corollary 6.7(4) applied to 𝑁 = 𝑘 ⊗̂𝑅 𝑀 implies the claim.
Since m(𝑀) is a finitely generated and faithful R-module, its localisation m(𝑀)𝔪𝑥 is a finitely gen-

erated faithful 𝑅𝔪𝑥 -module. If m(𝑀) ⊗𝑅 𝜅(𝑥) = 0, then m(𝑀)𝔪𝑥 = 0 by Nakayama’s lemma, and since
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𝑅𝔪𝑥 acts faithfully, 𝑅𝔪𝑥 = 0 and hence 𝜅(𝑥) = 0, giving a contradiction. In particular, m(𝑀) ⊗𝑅 𝜅(𝑥) is
a nonzero, finite-dimensional 𝜅(𝑥)-vector space. Since R is a compact 𝒪-module and 𝜅(𝑥) is a subfield
of Q𝑝 , we have that 𝜅(𝑥) is a finite extension of L and the image of R is contained in the ring of integers
of 𝜅(𝑥).

Let Q be the maximal 𝒪-torsion-free Hausdorff quotient of 𝑀/𝔪𝑥𝑀 . It follows from [44, Propo-
sition 1.3] that Π(𝑄) is a closed subspace of Π(𝑀), which then implies that Π(𝑄) = Π(𝑀) [𝔪𝑥]. It
follows from the equivalence of categories already explained that m(𝑄) is isomorphic to the image of
m(𝑀) in m(𝑀) ⊗𝑅 𝜅(𝑥). In particular, Q and thus Π(𝑄) are nonzero.

The last two assertions follow from the antiequivalence (20) and Corollaries 6.10 and 6.16. �

Remark 7.2. If M is finitely generated as a𝒪
𝐾�-module, then the argument in the proof of Theorem 7.1
shows that m(𝑀) is a finitely generated 𝑅ps,𝜁 𝜀

tr 𝜌̄𝔅 -module, and since R acts faithfully on m(𝑀), then R is
a finitely generated 𝑅ps,𝜁 𝜀

tr 𝜌̄𝔅 -module and hence is Noetherian.

The result allows us to remove the restrictions imposed on the Galois representation 𝜌̄𝔪, 𝑝 in
[38, Corollary 6.3.6], by taking M to be the Pontryagin dual of the representation denoted by
𝐻̃1 (𝐾 𝑝 , 𝐸/𝒪)𝔪,𝜁 ′ in [38, Theorem 6.3.5] and taking R to be the closure of the subring generated by the
Hecke operators in Endcont

𝒪 (𝑀). Since [38, Corollary 6.3.6] is the only place where the restriction on p
is used, the proof of [38, Theorem 6.4.7] goes through without a change to give the following result:

Theorem 7.3 (Lue Pan + 𝜀). Let 𝜌 : Gal(Q/Q) → GL2(𝐿) be promodular and absolutely irreducible.
If 𝜌 is unramified outside finitely many places and 𝜌 |𝒢Q𝑝 is Hodge–Tate with weights 0, 0, then 𝜌 is
associated to a weight 1 modular form.

The promodular condition means that the Hecke eigenvalues associated to 𝜌 appear in completed
cohomology; see [38, Definition 6.1.2] for the precise definition. The original theorem in Lue Pan’s
paper had to additionally assume that if p is 2 or 3, then ( 𝜌̄ |𝒢Q𝑝 )

ss is not isomorphic to 𝜒 ⊕ 𝜒𝜔 for any
character 𝜒 : 𝒢Q𝑝 → 𝑘× .

A. Normality of 𝑅ps [1/𝑝]

Let 𝒢 be a profinite group satisfying Mazur’s finiteness condition at p: The group of continuous group
homomorphisms Homcont

grp (𝒢′, F𝑝) is finite for every open subgroup 𝒢′ of 𝒢. Let 𝜌̄ : 𝒢 → GL𝑑 (𝑘)
be a continuous semisimple representation such that all the irreducible summands of 𝜌̄ are absolutely
irreducible. Let 𝜓 : 𝒢→ 𝒪× be a character lifting det 𝜌̄. Let 𝐷̄ : 𝑘 [𝒢] → 𝑘 be the pseudorepresentation
associated to 𝜌̄ in [18], so that 𝐷̄ (1 + 𝑡𝑔) = det(1 + 𝑡 𝜌̄(𝑔)) for all 𝑔 ∈ 𝒢. We may consider the framed
deformation ring 𝑅�𝜌̄ , its quotient 𝑅�,𝜓𝜌̄ parameterising framed deformations of 𝜌̄ with determinant equal
to 𝜓, the universal deformation ring 𝑅ps of 𝐷̄, and its quotient 𝑅ps,𝜓 parameterising deformations of 𝐷̄
with determinant𝜓. This last ring is constructed as follows: If𝐷𝑢 : 𝒢→ 𝑅ps is the universal deformation
of 𝐷̄, then for each 𝑔 ∈ 𝒢, we have that 𝐷𝑢 (1 + 𝑡𝑔) = 𝑎0 (𝑔) + · · · + 𝑎𝑑 (𝑔)𝑡𝑑 , with 𝑎𝑖 (𝑔) ∈ 𝑅ps, and
𝑅ps,𝜓 is the quotient of 𝑅ps by the ideal generated 𝜓(𝑔)𝑎𝑑 (𝑔) − 1 for all 𝑔 ∈ 𝒢. The finiteness condition
on 𝒢 ensures that all these rings are Noetherian. The characteristic polynomial of the universal framed
deformations of 𝜌̄ induces maps 𝑅ps → 𝑅�𝜌̄ and 𝑅ps,𝜓 → 𝑅

�,𝜓
𝜌̄ .

Theorem A.1. If 𝑅�𝜌̄ [1/𝑝] is normal, then both 𝑅ps [1/𝑝] and the associated rigid space (Spf 𝑅ps)rig
are normal.

We also prove a version of the theorem with a fixed determinant. We apply this theorem to 𝒢 = 𝒢Q𝑝

to prove that the rings 𝑅ps,𝜓 , 𝑅ps and associated rigid analytic spaces are normal for all 2-dimensional
𝜌̄. There is essentially one case that we need to handle, namely 𝜌̄ = 1 ⊕ 𝜔, where 𝜔 is the cyclotomic
character modulo p; in the other cases, all the rings are regular. The trickiest cases are when 𝑝 = 2 and
𝑝 = 3. The case 𝑝 = 2 is treated in [22]. We deal with the case 𝑝 = 3 using the work of Böckle [7].
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The argument of [22] has been extended by Iyengar in [33], to the case when 𝜌̄ is the trivial
d-dimensional representation of a Galois group of a p-adic field F, under the assumption that F contains
a primitive 4th root of unity if 𝑝 = 2. Thus our theorem applies in that setting.3

We will split the proof into several steps. We start with commutative algebra lemmas and recall that
all excellent rings are G-rings [45, Tag 07QS].
Lemma A.2. Let A be a G-ring and set 𝔭 ∈ Spec 𝐴. Then 𝐴𝔭 satisfies Serre’s condition (𝑅𝑖) (resp.,
(𝑆𝑖)) if and only if the completion 𝐴𝔭 at 𝔭 does.
Proof. Let 𝐵 = 𝐴𝔭 and let 𝐵̂ be the completion of 𝐴𝔭 at 𝔭. Since A is a G-ring, the fibre rings 𝜅(𝔮) ⊗𝐵 𝐵̂
are regular for all 𝔮 ∈ Spec 𝐵. The assertion follows from [36, Theorem 23.9]. �

Lemma A.3. Let A be a complete local Noetherian 𝒪-algebra with residue field k and 𝐵 =
𝐴
𝑥1, . . . , 𝑥𝑟�, set 𝔮 ∈ Spec 𝐵[1/𝑝], and let 𝔭 be the image of 𝔮 in Spec 𝐴[1/𝑝]. Then 𝐴𝔭 satisfies
Serre’s condition (𝑅𝑖) (resp., (𝑆𝑖)) if and only if 𝐵𝔮 does. In particular, 𝐴[1/𝑝] is normal if and only if
𝐵[1/𝑝] is normal.
Proof. The proof is a variation on [15, Appendix A]. We may assume that A and hence B are 𝒪-torsion-
free. Set 𝔭′ ∈ Spec 𝐴𝔭 ⊂ Spec 𝐴. We claim that the ring 𝜅(𝔭′) ⊗𝐴 𝐵 is regular. By Cohen’s structure
theorem, there is a subring 𝐶 ⊂ 𝐴/𝔭′ such that C is formally smooth over 𝒪 and 𝐴/𝔭′ is finite over C.
Then

𝜅(𝔭′) ⊗𝐴 𝐵 � 𝜅(𝔭′) ⊗𝐴/𝔭′ 𝐵/𝔭′𝐵.

Since 𝐴/𝔭′ is finite over C, we have

𝐵/𝔭′𝐵 = (𝐴/𝔭′)
𝑥1, . . . , 𝑥𝑟� � 𝐴/𝔭′ ⊗𝐶 𝐶
𝑥1, . . . , 𝑥𝑟�.

Thus

𝜅(𝔭′) ⊗𝐴 𝐵 � 𝜅(𝔭) ⊗𝑄 (𝐶) 𝑄(𝐶) ⊗𝐶 𝐶
𝑥1, . . . , 𝑥𝑟�,

where 𝑄(𝐶) is the quotient field of C. Since C is formally smooth over 𝒪, the ring 𝐶
𝑥1, . . . , 𝑥𝑟� is
isomorphic to a ring of formal power series over 𝒪, and thus is regular. Tensoring with 𝑄(𝐶) over C
is just localisation with respect to the multiplicative set 𝐶 \ {0}, and thus 𝑄(𝐶) ⊗𝐶 𝐶
𝑥1, . . . , 𝑥𝑟� is
regular. Since 𝑄(𝐶) is of characteristic 0, the extension 𝜅(𝔭)/𝑄(𝐶) is separable, and it follows from
[15, Lemma A.3] that 𝜅(𝔭) ⊗𝑄 (𝐶) 𝑄(𝐶) ⊗𝐶 𝐶
𝑥1, . . . , 𝑥𝑟� is regular. We deduce that 𝜅(𝔭′) ⊗𝐴𝔭 𝐵𝔮 is
regular, since it is a localisation of 𝜅(𝔭′) ⊗𝐴 𝐵 at 𝔮.

It follows from [36, Theorem 23.9] that 𝐴𝔭 satisfies (𝑅𝑖) (resp., (𝑆𝑖)) if and only if 𝐵𝔮 does.
To conclude that 𝐴[1/𝑝] is normal if and only if 𝐵[1/𝑝] is, we only have to show that the map
Spec 𝐵[1/𝑝] → Spec 𝐴[1/𝑝] is surjective, and this is clear because (𝔭, 𝑥1, . . . , 𝑥𝑟 ) maps to 𝔭. �

Lemma A.4. Let 𝐴 → 𝐵 be a finite étale map of local rings. Then A satisfies Serre’s condition (𝑅𝑖)
(resp., (𝑆𝑖)) if and only if B does.
Proof. If 𝔭 ∈ Spec 𝐴, then the fibre ring 𝜅(𝔭) ⊗𝐴 𝐵 is a finite étale 𝜅(𝔭)-algebra and hence a product of
fields, and thus is regular. The assertion follows from [36, Theorem 23.9]. �

Proposition A.5. Let 𝐿 ′ be a finite extension of L and let 𝜌 : 𝒢 → GL𝑛 (𝐿 ′) be a continuous rep-
resentation with mod p semisimplification isomorphic to 𝜌̄. If 𝑅�𝜌̄ [1/𝑝] is normal, then the ring 𝑅�𝜌 ,
representing the framed deformations of 𝜌 to Artinian 𝐿 ′-algebras, is also normal.
Proof. We may choose a finite extension 𝐿 ′′ of 𝐿 ′ with the ring of integers𝒪′′ and residue field 𝑘 ′′ such
that 𝜌 ⊗𝐿′ 𝐿 ′′ has a 𝒢-invariant 𝒪′′-lattice Θ with Θ ⊗𝒪′′ 𝑘 ′′ � 𝜌̄ ⊗𝑘 𝑘 ′′ (see the proof of [22, Lemma
9.5]). Thus Θ is a deformation of 𝜌̄ ⊗𝑘 𝑘 ′′ to 𝒪′′.

3This has been further generalised in [8] for all p-adic fields F and all 𝜌̄.
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It follows from Lemma A.4 that 𝑅�𝜌 is normal if and only if 𝐿 ′′ ⊗𝐿′ 𝑅�𝜌 is normal. The same argument
shows that 𝐿 ′′⊗𝐿 𝑅�𝜌̄ [1/𝑝] is normal. Moreover, we may identify 𝐿 ′′⊗𝐿′ 𝑅�𝜌 with the framed deformation
ring of 𝜌 ⊗𝐿′ 𝐿 ′′ to local Artinian 𝐿 ′′-algebras, and 𝒪′′ ⊗𝒪 𝑅�𝜌̄ with the framed deformation ring of
𝜌̄ ⊗𝑘 𝑘 ′′ to local Artinian 𝒪′′-algebras. After these identifications, we may assume that 𝐿 = 𝐿 ′ = 𝐿 ′′,
and so Θ is a deformation of 𝜌̄ to 𝒪 and hence induces an 𝒪-algebra homomorphism 𝑥 : 𝑅�𝜌̄ → 𝒪.

It follows from [35, Lemma 2.3.3, Proposition 2.3.5] that 𝑅�𝜌 is isomorphic to the completion of
(𝑅�𝜌̄ )𝔭 at 𝔭 = Ker 𝑥. Since 𝑅�𝜌̄ [1/𝑝] is normal, (𝑅�𝜌̄ )𝔭 will satisfy (𝑅1) and (𝑆2). Lemma A.2 implies that
the same holds for the completion. Thus 𝑅�𝜌 is normal by Serre’s criterion for normality [36, Theorem
23.8]. �

Lemma A.6. Let A be a normal Noetherian ring and let G be a group acting on A by ring automorphisms.
Then the subring of G-invariants 𝐴𝐺 is normal.

Proof. If A is a domain, then the assertion is proved in [13, Proposition 6.4.1]. The same proof works
in our setting, as we will explain for the lack of a reference. Since A is Noetherian and normal, it is a
finite product of normal domains. Let Frac(𝐴) denote its total ring of fractions. Then Frac(𝐴) is a finite
product of fields. The group G acts on Frac(𝐴) and we have

𝐴𝐺 = 𝐴 ∩ Frac(𝐴)𝐺 . (26)

We claim that Frac(𝐴)𝐺 is a finite product of fields. The claim implies that Frac(𝐴)𝐺 is its own ring of
fractions. Since A is normal, equation (26) implies that 𝐴𝐺 is reduced and integrally closed in its ring
of fractions and has only finitely many minimal prime ideals – and hence is normal by [45, Tag 037B,
Lemma 10.37.16].

To prove the claim, we note that Spec Frac(𝐴) consists of finitely many primes and is in bijection
with the set ℰ of idempotents 𝑒 ∈ Frac(𝐴), such that 𝑒 Frac(𝐴)𝑒 is a field. We have 1 =

∑
𝑒∈ℰ 𝑒 and

𝑒𝑒′ = 0 if 𝑒 ≠ 𝑒′. If 𝑒 ∈ Frac(𝐴) is a G-invariant idempotent, then

Frac(𝐴)𝐺 = (𝑒 Frac(𝐴)𝑒)𝐺 × ((1 − 𝑒) Frac(𝐴) (1 − 𝑒))𝐺 ,

and thus we may assume that the action of G on ℰ is transitive. If 𝑥 ∈ Frac(𝐴)𝐺 and 𝑒𝑥 = 0 for
some 𝑒 ∈ ℰ, then using the transitivity of the action we obtain that 𝑒𝑥 = 0 for all 𝑒 ∈ ℰ, and so
𝑥 =

∑
𝑒∈ℰ 𝑒𝑥 = 0. Hence, if 𝑥 ∈ Frac(𝐴)𝐺 is nonzero, then 𝑒𝑥 is nonzero, and we denote its inverse in

the field 𝑒 Frac(𝐴)𝑒 by (𝑥𝑒)−1. If we let 𝑦 =
∑

𝑒∈ℰ (𝑥𝑒)−1𝑒 ∈ Frac(𝐴), then 𝑥𝑦 = 1. Thus x is a unit in
Frac(𝐴) and its inverse y is unique. Uniqueness implies that y is G-invariant. Thus if G acts transitively
on ℰ, then Frac(𝐴)𝐺 is a field. �

Proof of Theorem A.1. Let 𝐷𝑢 : 𝒢→ 𝑅ps be the universal pseudorepresentation lifting 𝐷. Let CH(𝐷𝑢)
be the closed two-sided ideal of 𝑅ps
𝒢� defined in [18, Section 1.17], so that 𝐸 := 𝑅ps
𝒢�/CH(𝐷𝑢)
is the largest quotient of 𝑅ps
𝒢� where the Cayley–Hamilton theorem for 𝐷𝑢 holds. Following [18,
Section 1.17], we will call such an algebra a Cayley–Hamilton 𝑅ps-algebra of degree d. Then E is a
finitely generated 𝑅ps-module [48, Proposition 3.6]. If 𝑓 : 𝐸 → 𝑀𝑑 (𝐵) is a homomorphism of 𝑅ps-
algebras for a commutative 𝑅ps-algebra B, then we say f is a homomorphism of Cayley–Hamilton
algebras if det ◦ 𝑓 : 𝐸 → 𝐵 is equal to the specialisation of 𝐷𝑢 along 𝑅ps → 𝐵.

There is a commutative 𝑅ps-algebra 𝐴gen together with a homomorphism of 𝑅ps-algebras 𝑗 : 𝐸 →
𝑀𝑑 (𝐴gen) satisfying the following universal property: If 𝑓 : 𝐸 → 𝑀𝑑 (𝐵) is a map of Cayley–Hamilton
𝑅ps-algebras for a commutative 𝑅ps-algebra B, then there is a unique map 𝑓 : 𝐴gen → 𝐵 of 𝑅ps-algebras
such that 𝑓 = 𝑀𝑑 ( 𝑓 ) ◦ 𝑗 (see, for example, [48, Theorem 3.8] or [8, Lemma 3.1]). Since E is finitely
generated as an 𝑅ps-module, 𝐴gen is of finite type over 𝑅ps.

Let Λ𝑖 : 𝐸 → 𝑅ps, 0 ≤ 𝑖 ≤ 𝑑, be the coefficients of the characteristic polynomial of 𝐷𝑢; these are
homogeneous polynomial laws satisfying 𝐷𝑢 (𝑡 − 𝑎) =

∑𝑛
𝑖=0(−1)𝑖Λ𝑖 (𝑎)𝑡𝑑−𝑖 in 𝑅ps [𝑡] for all 𝑎 ∈ 𝐸 [18,

Section 1.10]. Now 𝐸 [1/𝑝] is a Q-algebra and the pair (𝐸 [1/𝑝],Λ1) is a trace algebra satisfying the
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d-dimensional Cayley–Hamilton identity in the sense of [43, Definition 2.6] (see [16, Footnote 10]).
Moreover, for Q-algebras, the homomorphisms of Cayley–Hamilton algebras coincide with the notion
of maps of algebras with traces in [43, Section 2.5]. Thus 𝑗 : 𝐸 [1/𝑝] → 𝑀𝑑 (𝐴gen [1/𝑝]) is injective and
its image is equal to the GL𝑑-invariants [43, Theorem 2.6]. Moreover, 𝑅ps [1/𝑝] = (𝐴gen [1/𝑝])GL𝑑 (see
[16, Proposition 2.3] and [48, Theorem 2.20]). By Lemma A.6 it is enough to show that 𝐴gen [1/𝑝] is
normal. Further, it is enough to show that the localisation of 𝐴gen [1/𝑝] at every maximal ideal is normal
(see [45, Tag 037B, Lemma 10.37.10]). (The superscript ‘gen’ in 𝐴gen stands for generic matrices in
[43, Section 1.1].)

Let 𝔪 be a maximal ideal of 𝐴gen [1/𝑝]. Its residue field 𝜅(𝔪) is a finite extension of L, as 𝐴gen [1/𝑝]
is finitely generated over 𝑅ps [1/𝑝]. By specialising j at 𝔪 we obtain a continuous representation
𝜌 : 𝒢→ GL𝑑 (𝜅(𝔪)) such that

det(1 + 𝑡𝜌(𝑔)) = 𝐷𝑢 ⊗𝑅ps 𝜅(𝔪) (1 + 𝑡𝑔), ∀𝑔 ∈ 𝒢.

This implies that if we choose a 𝒢-invariant 𝒪𝜅 (𝔪) -lattice Θ in 𝜌, then the semisimplification of
Θ/𝜛𝜅 (𝔪)Θ is isomorphic to 𝜌̄, so that we are in the setup of Proposition A.5. The universal property
of 𝐴gen implies that the completion of 𝐴gen [1/𝑝] at 𝔪 is the universal framed deformation ring 𝑅�𝜌 ,
which is normal by Proposition A.5. Since 𝐴gen is finitely generated over 𝑅ps, which is a complete
local Noetherian ring, 𝐴gen and hence its localisation (𝐴gen [1/𝑝])𝔪 are excellent, and thus a G-ring.
Lemma A.2 implies that (𝐴gen [1/𝑝])𝔪 satisfies (𝑅1) and (𝑆2) and hence is normal.

Let 𝑅̃ be the normalisation of 𝑅ps in 𝑅ps [1/𝑝]. Then (Spf 𝑅ps)rig = (Spf 𝑅̃)rig [24, Lemma 7.2.2].
Since 𝑅ps [1/𝑝] is normal, so is 𝑅̃, and thus (Spf 𝑅̃)rig is normal [24, Proposition 7.2.4(c)]. Alternatively,
one could use the fact that the local rings of (Spf 𝑅ps)rig are excellent [23, Theorem 1.1.3] and [24,
Lemma 7.1.9] together with Lemma A.2. �

The following is a corollary to the proof; it does not require the assumption that 𝑅�𝜌̄ [1/𝑝] is normal:

Corollary A.7. Let V be a free 𝑅�𝜌̄ [1/𝑝]-module of rank d with 𝒢-action given by 𝜌� : 𝒢→ GL𝑑 (𝑅�𝜌̄ ).
Then (𝑅ps
𝒢�/CH(𝐷𝑢)) [1/𝑝] acts faithfully on V. The same holds with the fixed determinant.

Proof. We use the notation of the proof of Theorem A.1, so that 𝐸 = 𝑅ps
𝒢�/CH(𝐷𝑢) and there is a
map 𝑗 : 𝐸 → 𝑀𝑑 (𝐴gen) satisfying a universal property. This map is an injection after inverting p. Let
𝑉gen be a free 𝐴gen-module of rank d, with E-action given by j. Thus 𝐸 [1/𝑝] acts faithfully on𝑉gen [1/𝑝].

Suppose that 𝑎 ∈ 𝐸 [1/𝑝] kills off V. Since 𝐸 [1/𝑝] acts faithfully on 𝑉gen [1/𝑝], there is a maximal
ideal 𝔪 of 𝐴gen [1/𝑝] such that a acts nontrivially on 𝑉gen ⊗𝐴gen 𝐴

gen
𝔪 . Let 𝐴̂gen

𝔪 be the completion of
𝐴

gen
𝔪 with respect to the maximal ideal. Since 𝐴̂gen

𝔪 is faithfully flat over 𝐴gen
𝔪 , a acts nontrivially on

the completion of 𝑉gen [1/𝑝] at 𝔪, which we denote by 𝑉̂gen
𝔪 . However, as explained in the proof of

Theorem A.1, 𝑉̂gen
𝔪 is isomorphic as an E-module to the completion of V at a maximal ideal of 𝑅�𝜌̄ [1/𝑝].

Since a annihilates V, it will also annihilate the completion, giving a contradiction.
Define 𝐸𝜓 := 𝐸 ⊗𝑅ps 𝑅ps,𝜓 and 𝐴gen,𝜓 := 𝐴gen ⊗𝑅ps 𝑅ps,𝜓 . Then 𝑗 : 𝐸 → 𝑀𝑑 (𝐴gen) induces a map

𝑗 : 𝐸𝜓 → 𝑀𝑑 (𝐴gen,𝜓) which satisfies the same universal property as j. Then the same proof works with
𝐴gen,𝜓 instead of 𝐴gen. �

Lemma A.8. Let R be a complete local Noetherian 𝒪-algebra with residue field k, and let 𝜌 : 𝒢 →
GL𝑑 (𝑅) be a continuous representation. Assume that R is 𝒪-torsion-free and reduced, and the set of
𝑥 ∈ m-Spec 𝑅[1/𝑝] such that 𝜌𝑥 is absolutely irreducible is dense in Spec 𝑅[1/𝑝]. Then

𝒞 := {𝑋 ∈ 𝑀𝑑 (𝑅) : 𝑋𝜌(𝑔) = 𝜌(𝑔)𝑋, ∀𝑔 ∈ 𝒢}

consists of scalar matrices.

Proof. Set 𝑋 ∈ 𝒞 with matrix entries 𝑥𝑖 𝑗 . Let𝔭1, . . . ,𝔭𝑛 be the minimal primes of R. Since R is reduced,
it embeds into

∏𝑛
𝑠=1 𝜅(𝔭𝑠). It is enough to show that the image of X in 𝑀𝑑 (𝜅(𝔭𝑠)) for 1 ≤ 𝑠 ≤ 𝑛 is

scalar, since if the images of 𝑥𝑖 𝑗 and 𝑥𝑖𝑖 − 𝑥 𝑗 𝑗 for 𝑖 ≠ 𝑗 are zero in 𝜅(𝔭𝑠) for 1 ≤ 𝑠 ≤ 𝑛, then they are

https://doi.org/10.1017/fms.2021.72 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.72


Forum of Mathematics, Sigma 35

zero in A and so X is scalar. If 𝑥 ∈ m-Spec 𝑅[1/𝑝] is such that 𝜌𝑥 : 𝒢 → GL𝑑 (𝜅(𝑥)) is absolutely
irreducible, then 𝒞 ⊗𝑅 𝜅(𝑥) is 1-dimensional. Since 𝔮 ↦→ dim𝜅 (𝔮) 𝒞 ⊗𝑅 𝜅(𝔮) is upper semicontinuous
and such x are dense, we deduce that dim𝜅 (𝔭𝑠) 𝒞 ⊗𝑅 𝜅(𝔭𝑠) = 1 for all minimal primes 𝔭𝑠 . This implies
that 𝒞 ⊗𝑅 𝜅(𝔭𝑠) consists of scalar matrices. �

Proposition A.9. Assume that 𝑅�,𝜓𝜌̄ [1/𝑝] is nonzero. Then 𝑅�𝜌̄ [1/𝑝] is normal (resp., reduced) if and
only if 𝑅�,𝜓𝜌̄ [1/𝑝] is normal (resp., reduced).

Proof. Let Γ be the pro-p completion of the abelianisation of 𝒢. Because Homcont
grp (𝒢, F𝑝) is finite,

Γ � Δ ×Z𝑟𝑝 , where Δ is a finite p-group. The map 𝒢→ (𝑅�𝜌̄ )×, 𝑔 ↦→ 𝜓(𝑔)−1 det 𝜌�(𝑔), factors through
Γ and thus induces an 𝒪-algebra homomorphism 𝒪
Γ� → 𝑅�𝜌̄ ; and 𝑅�,𝜓𝜌̄ is equal to the quotient of 𝑅�𝜌̄
by the augmentation ideal in 𝒪
Γ�.

Let 𝒳(Γ) be the functor which sends a local Artinian 𝒪-algebra (𝐴,𝔪𝐴) to the group of continuous
characters 𝜒 : Γ → 1 + 𝔪𝐴. This functor is represented by Spf 𝒪
Γ�. For such (𝐴,𝔪𝐴), the group
𝒳(Γ) (𝐴) acts on 𝐷� (𝐴) by twisting. The action induces a homomorphism of local 𝒪-algebras 𝛾 :
𝑅�𝜌̄ → 𝑅�𝜌̄ ⊗̂𝒪 𝒪
Γ�. Let 𝑅inv = {𝑎 ∈ 𝑅�𝜌̄ : 𝛾(𝑎) = 𝑎 ⊗ 1} be the subring of 𝒳(Γ)-invariants in
𝑅�𝜌̄ . Analogously, 𝒳(Δ) acts on 𝐷�, the action induces the map 𝛿 : 𝑅�𝜌̄ → 𝑅�𝜌̄ ⊗̂𝒪 𝒪[Δ] and we let
𝑅inv.t = {𝑎 ∈ 𝑅�𝜌̄ : 𝛿(𝑎) = 𝑎 ⊗ 1} be the subring of 𝒳(Δ)-invariants in 𝑅�𝜌̄ .

The action of 𝒳(Γ) and 𝒳(Δ) on 𝐷� is free, since if 𝜌𝐴 : 𝒢Q𝑝 → GL𝑑 (𝐴) is a framed deformation
of 𝜌̄, then for each 𝑔 ∈ 𝒢Q𝑝 at least one matrix entry of 𝜌𝐴(𝑔) will not lie in 𝔪𝐴 and thus is a unit.
Hence, 𝜌𝐴(𝑔) = 𝜌𝐴(𝑔)𝜒𝐴(𝑔) for all 𝑔 ∈ 𝐺 implies that 𝜒𝐴 is the trivial character.

The map 𝑅inv.t → 𝑅�𝜌̄ is finite and becomes étale after inversion of p by [1, Proposition 1.1.11(2)].
Thus 𝑅�𝜌̄ [1/𝑝] is normal if and only if 𝑅inv.t [1/𝑝] is normal, by Lemma A.4. Since 𝑅inv is the subring
of 𝒳(Γ/Δ)-invariants in 𝑅inv.t and Γ/Δ � Z𝑟𝑝 , we have 𝑅inv.t � 𝑅inv
𝑥1, . . . , 𝑥𝑟� by [1, Proposition
1.1.11(2)]. Thus 𝑅inv.t [1/𝑝] is normal if and only if 𝑅inv [1/𝑝] is normal, by Lemma A.3. The map
𝑅inv → 𝑅

�,𝜓
𝜌̄ is finite and becomes étale after inversion of p by [1, Proposition 1.1.11(3)]. Lemma A.4

implies that 𝑅�,𝜓𝜌̄ [1/𝑝] is normal if and only if 𝑅inv [1/𝑝] is normal. Putting all the equivalences together
proves the assertion.

Since reducedness is equivalent to ( 𝑅0) and ( 𝑆1), the same proof works. �

Corollary A.10. If 𝑅�𝜌̄ [1/𝑝] is normal, then 𝑅ps,𝜓 [1/𝑝] and the associated rigid analytic space
(Spf 𝑅ps,𝜓)rig are normal.

Proof. Proposition A.9 implies that 𝑅�,𝜓𝜌̄ [1/𝑝] is normal. The proof of Theorem A.1, with 𝑅�𝜌̄ [1/𝑝]
replaced by 𝑅�,𝜓𝜌̄ [1/𝑝], implies the assertion. �

Proposition A.11. Let 𝐸 = 𝑅ps
𝒢�/CH(𝐷𝑢), 𝐸tf the maximal 𝒪-torsion-free quotient of E, 𝑍 (𝐸tf) the
centre of 𝐸tf and 𝑅ps

tf the maximal 𝒪-torsion-free quotient of 𝑅ps. Then 𝑅ps
tf is a subring of 𝑍 (𝐸tf).

If 𝑅�𝜌̄ [1/𝑝] is reduced and the set 𝑥 ∈ m-Spec 𝑅�𝜌̄ [1/𝑝], such that 𝜌�𝑥 is absolutely irreducible, is
dense in Spec 𝑅�𝜌̄ [1/𝑝], then 𝑑 · 𝑍 (𝐸tf) ⊂ 𝑅ps

tf . In particular, if 𝑝 � 𝑑, then 𝑅ps
tf = 𝑍 (𝐸tf). Moreover, the

same holds for rings with fixed determinant.

Proof. As in the proof of Theorem A.1, there is an injection

𝑗 : 𝐸 [1/𝑝] ↩→ 𝑀𝑑 (𝐴gen [1/𝑝]).

Moreover, tr ◦ 𝑗 induces a surjection 𝐸 [1/𝑝] � 𝑅ps [1/𝑝]. Thus 𝑅ps
tf is a subring of 𝑍 (𝐸tf). Corollary

A.7 gives us an injection 𝐸tf ↩→ 𝑀𝑑 (𝑅�𝜌̄ [1/𝑝]). If 𝑎 ∈ 𝐸tf , then the characteristic polynomial of 𝑗 (𝑎)
has coefficients in 𝑅ps

tf . Moreover, 𝑍 (𝐸tf) is contained in the centraliser of 𝜌�(𝒢) in 𝑀𝑑 (𝑅�𝜌̄ [1/𝑝]).
According to Lemma A.8, the centraliser is equal to scalar matrices. Since 𝑗 (𝑧) is a scalar matrix, we
deduce that 𝑑𝑧 ∈ 𝑅ps

tf .
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It follows from Proposition A.9 that 𝑅�,𝜓𝜌̄ [1/𝑝] is reduced. Since twisting by characters does not
change the property of being absolutely irreducible, the proof of Proposition A.9 shows that the abso-
lutely irreducible locus is dense in Spec 𝑅�,𝜓𝜌̄ [1/𝑝]. Then the same proof goes through. �

Proposition A.12. If 𝑝 = 3, 𝒢 = 𝒢Q3 and 𝜌̄ = 1 ⊕ 𝜔, then 𝑅�𝜌̄ [1/𝑝] is normal.4

Proof. We will first relate the framed deformation ring 𝑅�𝜌̄ to the ring studied in [7]. Let 𝜇3 be the
group of 3rd roots of unity in Q3, let 𝐸 = Q3 (𝜇3) and let 𝐸 (3) be the compositum of all extensions
𝐸 ⊂ 𝐸 ′ ⊂ Q3 such that [𝐸 ′ : 𝐸] is a power of 3. Then the Galois group Gal(𝐸 (3)/𝐸) is the maximal
pro-3 quotient of Gal(Q3/𝐸), and thus the map 𝜌� : 𝒢Q3 → GL2 (𝑅�𝜌̄ ) factors through the surjection
𝒢Q3 � Gal(𝐸 (3)/Q3). Since Gal(𝐸/Q3) has order 2, Schur–Zassenhaus implies that the surjection
Gal(𝐸 (3)/Q3) � Gal(𝐸/Q3) has a splitting, which gives us an isomorphism

Gal(𝐸 (3)/Q3) � Gal(𝐸 (3)/𝐸) � 𝐺,

where𝐺 = {1, 𝜎} is a subgroup of Gal(𝐸 (3)/Q3). One may define a closed subfunctor, denoted by EH1
in [7], of the framed deformation functor 𝐷� such that EH1 (𝐴) consists of pairs (𝑉𝐴, 𝛽𝐴), where𝑉𝐴 is a
deformation of𝜔⊕1 to A and 𝛽𝐴 = (𝑣1, 𝑣2) is an A-basis of𝑉𝐴 lifting a fixed basis 𝛽𝑘 of𝜔⊕1, such that
𝜎 acts by −1 on 𝑣1 and by 1 on 𝑣2. It follows from the Iwahori decomposition for the group 1+𝑀2 (𝔪𝐴)
that a framed deformation (𝑉𝐴, 𝛽𝐴) ∈ 𝐷� (𝐴) can be conjugated to a framed deformation in EH1 (𝐴) by
a unique element of the form

( 1 𝑏
0 1

) ( 1 0
𝑐 1

)
, with 𝑏, 𝑐 ∈ 𝔪𝐴. Hence if EH1 is represented by R, then

𝑅�𝜌̄ � 𝑅
𝑥, 𝑦�.

Now R is a complete intersection by [7, Theorem 1.1], thus so is 𝑅�𝜌̄ ; and to show the normality of
𝑅�𝜌̄ [1/𝑝], it is enough to show that the singular locus in 𝑅[1/𝑝] has codimension at least 2.

Let 𝜌 : Gal(𝐸 (3)/Q3) → GL2(𝑅) be the representation obtained for the action of the Galois group
on𝑉𝑅 with respect to the basis 𝛽𝑅 such that 𝜌(𝜎) =

( −1 0
0 1

)
. It follows from the argument of [22, Lemma

4.1] that 𝑥 ∈ m-Spec 𝑅[1/𝑝] is singular if and only if there is an exact sequence 0→ 𝛿→ 𝜌𝑥 → 𝛿𝜀 → 0
for some character 𝛿 : Gal(𝐸 (3)/Q3) → 𝜅(𝑥)×. Thus the singular locus is contained in the reducible
locus, and it is enough to show that it has positive codimension inside the reducible locus: We know that
R is a domain by [7, Theorem 1.1], and there are absolutely irreducible lifts of 𝜌̄, so that the reducible
locus has codimension 1 inside Spec 𝑅.

We will now describe the ring R as computed in [7] and compute the reducible locus. We know
from [7, Lemma 3.2] that the representation 𝜌 : Gal(𝐸 (3)/Q3) → GL2 (𝑅) factors through a quotient
Gal(𝐸 (3)/Q3) � 𝑃 � 𝐺, where P is a pro-p group with generators 𝑥1, 𝑥2, 𝑥3, 𝑥4 and one relation

𝑟 = 𝑥3
1 [𝑥1, 𝑥2] [𝑥3, 𝑥4] [𝑥4, 𝑥

−1
3 ] [𝑥2, 𝑥

−1
1 ]𝑥

3
1,

where [𝑔, ℎ] = 𝑔ℎ𝑔−1ℎ−1. The action of 𝜎 ∈ 𝐺 on the generators is given by

𝜎(𝑥1) = 𝑥−1
1 , 𝜎(𝑥2) = 𝑥2, 𝜎(𝑥3) = 𝑥−1

3 , 𝜎(𝑥4) = 𝑥4.

Let 𝑆 = 𝒪
𝑎, 𝑎′, 𝑏, 𝑏′, 𝑐, 𝑐′, 𝑑, 𝑑 ′� and let 𝐴𝑖 ∈ GL2(𝑆) be the matrices

𝐴1 =
( √

1+𝑏𝑐 𝑏

𝑐
√

1+𝑏𝑐

)
, 𝐴2 =

√
1 + 𝑎

( √
1+𝑑 0
0
√

1+𝑑−1

)
,

𝐴3 =
( √

1+𝑏′𝑐′ 𝑏′

𝑐′
√

1+𝑏′𝑐′

)
, 𝐴4 =

√
1 + 𝑎′

( √
1+𝑑′ 0
0
√

1+𝑑′−1

)
,

4The statement is proved in [8, Corollary 4.22] without computing the equations for the deformation ring.
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and let

𝐵 = 𝐴3
1 [𝐴1, 𝐴2] [𝐴3, 𝐴4] [𝐴4, 𝐴

−1
3 ] [𝐴2, 𝐴

−1
1 ]𝐴

3
1.

Then [7, Theorem 4.1(c)] asserts that 𝑅 = 𝑆/𝐼, where I is the ideal of S generated by the matrix entries
of 𝐵 −

( 1 0
0 1

)
and 𝜌 : 𝑃 �𝐺 → GL2(𝑅) is obtained by mapping 𝜎 ↦→

( −1 0
0 1

)
and 𝑥𝑖 ↦→ 𝐴𝑖 for 1 ≤ 𝑖 ≤ 4.

It follows from this description that the locus in Spec 𝑅 parameterising reducible representations,
where 𝜎 acts on the rank 1 subrepresentation by −1 (resp., 1), is equal to 𝑉 (𝑐, 𝑐′) (resp., 𝑉 (𝑏, 𝑏′)).

The images of 𝐴1 and 𝐴3 in GL2(𝑅/(𝑐, 𝑐′)) are unipotent upper-triangular matrices. It is easy to
compute the commutator of a unipotent upper-triangular matrix with a diagonal matrix. One obtains
that the image of B in GL2(𝑆/(𝑐, 𝑐′)) is the matrix

( 1 6𝑏−2𝑏𝑑−2𝑏′𝑑′
0 1

)
. Thus

𝑅/(𝑐, 𝑐′) = 𝑆/(𝑐, 𝑐′, 3𝑏 − 𝑏𝑑 − 𝑏′𝑑 ′)

is an integral domain, as 𝑆/(𝑐, 𝑐′) � 𝒪
𝑎, 𝑎′, 𝑏, 𝑏′, 𝑑, 𝑑 ′� is factorial and 3𝑏−𝑏𝑑−𝑏′𝑑 ′ is an irreducible
element in 𝑆/(𝑐, 𝑐′).

Let 𝑋sing be the singular locus in Spec 𝑅[1/𝑝]. The point 𝑥 ∈ Spec 𝑅/(𝑐, 𝑐′) corresponding to
the representation

(
𝜀3 0
0 1

)
will not lie in 𝑋sing, since this representation is not an extension of 𝛿𝜀

by 𝛿. Thus 𝑋sing ∩ Spec 𝑅/(𝑐, 𝑐′) [1/𝑝] is of codimension at least 1. In the same way, we obtain
that 𝑋sing ∩ Spec 𝑅/(𝑏, 𝑏′) [1/𝑝] is of codimension at least 1 in Spec 𝑅/(𝑏, 𝑏′) [1/𝑝]. Thus 𝑋sing is
of codimension at least 1 in the reducible locus in Spec 𝑅[1/𝑝] and of codimension at least 2 in
Spec 𝑅[1/𝑝]. �

Proposition A.13. If 𝒢 = 𝒢Q𝑝 , then 𝑅�𝜌̄ [1/𝑝] is normal and the absolutely irreducible locus is dense
in Spec 𝑅�𝜌̄ [1/𝑝] for all semisimple 2-dimensional 𝜌̄.

Proof. Since 𝑅�𝜌̄ [1/𝑝] is excellent, the singular locus is closed in 𝑅�𝜌̄ [1/𝑝]. If it is nonempty, then it
will contain a maximal ideal x such that

Hom𝒢Q𝑝
(𝜌�𝑥 , 𝜌�𝑥 (1)) ≠ 0

(see [22, Lemma 4.1]). Thus 𝜌̄ is of the form 𝜒̄ ⊕ 𝜒̄𝜔. After twisting by a character, we may assume
that 𝜌̄ = 1 ⊕ 𝜔. If 𝑝 = 2 or 𝑝 = 3, then 𝑅�𝜌̄ [1/𝑝] is normal by [22, Proposition 4.3] or Proposition A.12,
respectively. If 𝑝 ≥ 5, it follows from the proof of [39, Proposition B2, Theorem B.3], based on the work
of Böckle [6], that 𝑅�𝜌̄ is formally smooth over𝒪
𝑥, 𝑦, 𝑧, 𝑤�/(𝑥𝑦− 𝑧𝑤). (The only change is that because
in our setting 𝜌̄ is split, the generator 𝑥𝑝−2 maps to the matrix

( 1 𝑥
0 1

)
instead of

( 1 1
0 1

)
. This adds an extra

variable but does not change the relation coming from [39, equation (261)].) Thus 𝑅�𝜌̄ [1/𝑝] is normal.
Hence, 𝑅�𝜌̄ [1/𝑝] is a product of normal domains, and if the absolutely irreducible locus were not

dense, there would be a component without absolutely irreducible points. (Let I be the ideal of 𝑅�𝜌̄
generated by the matrix entries of (𝜌�(𝑔ℎ) − 𝜌�(ℎ𝑔))2 for all 𝑔, ℎ ∈ 𝒢Q𝑝 . Then a specialisation of
𝜌� at 𝑥 ∈ m-Spec 𝑅�𝜌̄ [1/𝑝] is absolutely irreducible over 𝜅(𝑥) if and only if 𝑥 ∉ 𝑉 (𝐼). Thus if an
irreducible component of 𝑅�𝜌̄ [1/𝑝] contains an absolutely irreducible point, then such points are dense
in the component.) In the course of the proof of Proposition A.11, we have shown that 𝑅ps [1/𝑝] is a
subring of 𝑅�𝜌̄ [1/𝑝]. Thus there would exist an irreducible component of 𝑅ps [1/𝑝] without absolutely
irreducible points. This would contradict [17, Theorem 2.1]. �

Corollary A.14. If 𝒢 = 𝒢Q𝑝 , then 𝑅ps,𝜓 [1/𝑝], 𝑅ps [1/𝑝] and the corresponding rigid analytic spaces
are normal for all semisimple 2-dimensional 𝜌̄.

Proof. The assertion follows from Proposition A.13, Theorem A.1 and Corollary A.10. �
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