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Abstract

We establish the Bernstein-centre type of results for the category of mod p representations of GL,(Q)). We treat
all the remaining open cases, which occur when p is 2 or 3. Our arguments carry over for all primes p. This allows
us to remove the restrictions on the residual representation at p in Lue Pan’s recent proof of the Fontaine—Mazur
conjecture for Hodge—Tate representations of Gal(@/ Q) with equal Hodge-Tate weights.
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1. Introduction

Recently, Lue Pan gave a new proof of the Fontaine-Mazur conjecture for Hodge-Tate representations
of Gal(Q/Q) with equal Hodge-Tate weights [38]. One of the ingredients in his proof are the Bernstein-
centre type of results for the category of mod p representations of GL,(Q),) proved in [39, 41]. This
caused him to impose some restrictions on the Galois representations at p, when p = 2 and p = 3.
In this paper we remove these restrictions by proving the required finiteness results in these remaining
cases (Theorem 7.3).

Let L be a finite extension of Q,, with ring of integers O and residue field k. Let G = GL>(Q),) and
let ModgZ'(0) be the category of smooth G-representations on O-torsion modules. Let Modléﬁ“(@) be
the full subcategory of Mody:'(0) consisting of representations which are equal to the union of their
subrepresentations of finite length. This is equivalent to the requirement that every finitely generated
subrepresentation be of finite length, and we call such representations locally finite. We fix a character
¢ : Z — 0% of the centre of G, and let Modlc‘;ﬁ}(@) be the full subcategory of Modlc‘;ﬁ“(@) consisting

of representations with central character £. The category Mod%;ﬁ}(@) is locally finite and by general
results of Gabriel [31] decomposes as a product ‘

Mod™ (0) = 1_[ Modg™ (0)s
B

of indecomposable subcategories, called blocks. Moreover, each block is antiequivalent to the category
of pseudocompact modules over a pseudocompact ring Eg. The centre of the ring Eg, which we denote
by Zg, is naturally isomorphic to the centre of the category Modl(';ﬁfg (O)s, which by definition is the ring
of natural transformations of the identity functor. This means that Zg acts functorially on every object
in Modléfi“ (0). The finiteness result in the title is an analogue of a result of Bernstein in the theory of

¢
smooth representations of p-adic groups on C-vector spaces [5, Proposition 3.3]:

Theorem 1.1. The ring Zy is Noetherian, and E is a finitely generated Zg-module.

To prove the theorem we use in an essential way the direct connection between the GL»(Q,)
representations and the representations of the absolute Galois group of Q,, which we denote by &q,,,
discovered by Colmez in [19], via his celebrated Montreal functor V, which we review in Section 4.4.

For each fixed block Modléffz (O)g there is a finite extension L’ of L with ring of integers ©’, such that

Modléﬁ"z (0)p ®p O’ decomposes into a finite product of indecomposable subcategories, each of which
remains indecomposable after a further extension of scalars. Such absolutely indecomposable blocks
have been classified in [40], and they correspond to semisimple representations p : &g, — GL2(k),
which are either absolutely irreducible or a direct sum of two characters. This bijection realises the
semisimple mod p local Langlands correspondence established in a visionary paper of Breuil [9].

If p is absolutely irreducible, then Modlcﬁ’}(@)%p contains only one irreducible object r, satisfying

V(nV) = p, where V denotes the Pontryagin dual. Moreover, 7 is not a subquotient of any parabolically
induced representation; such representations are called supersingular.

If p = x1©x2, where x1, x2 : &g, — k™ are characters, then the irreducible objects in Modlc';ﬁ,} (0)p,
are the irreducible subquotients of the representation

(Ind§ x1 ® 20 m ® (IndG x2 ® x10™ s,

where we consider x1, x2 as characters of Q}; via the Artin map Artg, : Q) — fﬁéb , and w(x) = x|x|
P
(mod p) for all x € Q; corresponds to the cyclotomic character modulo p. (See Section 4.1 for an
explicit list.)
All the blocks, except when p is either 2 or 3 and p = y ® yw, have been well understood in [39, 41].
These exceptional blocks are the main focus of this paper, but our arguments work for all p and all blocks.
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The action of Zg; induces a functorial ring homomorphism
cr i Zg, — Endg(7)
for every object 7 in Modl fin (@)q; Since V is a functor, it induces a ring homomorphism
Endg (1) — Endg (V(r")™, ¢ V(p).

We denote the action of ¥, on V(") by P/ (rv)-

Let Rfrsg_){g be the universal deformation ring parameterising pseudorepresentations lifting tr o with
determinant {&, where ¢ is the p-adic cyclotomic character. We may evaluate the universal pseudorep-

resentation 7 : G, — Rf:fg at g € Yo, to obtain an element T(g) € R} [g.

Theorem 1.2. There is an O-algebra homomorphism

v RPN s Zyy (1)

satisfying the following compatibility property with the Colmez’s functor: For all T € Mod1 fin (@)g;
andall g € ?Qp, we have

V(e (u(T(8)))) = py () (8) + Py (rv) (87 E()
in End" (V(zV)).

The construction of the map (1) is the main point of this paper. Outside the exceptional cases, it has
been established in [39, 41] using a different argument from ours. Our main result is the following:

Theorem 1.3. The map (1) makes Zg, and Eg, into finitely generated Rtr 5 “_modules.

Since Rfrsé’{s is known to be Noetherian by the work of Chenevier [18], Theorem 1.3 implies
Theorem 1.1. Moreover, Theorems 1.2 and 1.3 are sufficient to remove the restrictions in Lue Pan’s
paper. Further, we can re-prove most of the results concerning Banach-space representations in [39] (see
Section 6.2 and Corollary 6.16).

To give a flavour of the results on Banach-space representations, we will explain a special case. Let
Banaldm (L) be the category of admissible unitary L-Banach-space representations of G with central
character {. This category is abelian [44]. By [21], Colmez’s functor induces a bijection between the
equivalence classes of absolutely irreducible nonordinary IT € Banadm (L) and absolutely irreducible

Galois representations p : Gg, — GL(L). We show that there are no extenswns between IT and other
irreducible representations in Banéé‘;im (L); hence Banadm (L)H is a direct summand of Ban%‘}“} (L)f,
where the superscript ‘I’ indicates ﬁmte length and the subscrlpt IT indicates that all the irreducible
subquotients are isomorphic to IT. We show in Corollary 6.16 that V induces an antlequlvalence of
categories between BanaClm (L)n and the category of modules of finite length over RS?, the universal
deformation ring of p parameterlsmg deformations of p with determinant equal to & to local Artinian
L-algebras. Such results were known before for p > 5 [39], and under assumptions on the reduction
modulo p of a G-invariant lattice in [Tif p =2 or p = 3 [41].

Let Rfri’j’(s[?(@ L 11/7 be the largest quotient of Rgsfg[[?(@ , I such that the Cayley—Hamilton theorem
holds for the universal pseudorepresentation with determinant Je lifting tr p. Such algebras have been
studied by Bellaiche and Chenevier [3, 18]; they play a key role in this paper. The subscript ‘tf” will

indicate the maximal O-torsion-free quotient. Our second main result asserts the following:
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Theorem 1.4. The essential image of Modlc';ﬁz (O)g, under V is antiequivalent to the category of

ps,{ e

pseudocompact (R, 5

[%aq, 11/ hs-modules. The map (1) induces an isomorphism
REE11/p] = Zs,[1/p]. @

Moreover, if p # 2, then Zg, = (Rgsé\ig)tf, and if p = 2, then the cokernel of map (1) is killed by 2.

Corollary 1.5. Zg is a complete local Noetherian O-algebra with residue field k. It is O-torsion-free,
and Zg,[1/p] is normal.

If we are not in the exceptional cases, then Theorem 1.3 is proved in [39, 41] essentially by computing
first Eg and then its centre Zg. Moreover, it is proved there that map (1) is an isomorphism and
RESE(EH?QP]] /J is O-torsion-free. The argument in this paper, sketched in Section 1.1, is different: We
do not compute Eg.

Our original strategy for proving formula (2) in this paper was to use an argument of Gabber in [34,
Appendix]. We showed that RP%4# [1/p]isnormal, Zg[1/p] is reduced, and map (1) induces a bijection

trp
on maximal spectra m-Spec Zg[1/p] — m-Spec Rgsl’f “[1/p] and an isomorphism of the residue fields.

However, this is replaced by a different argument in the final version, which also proves the first part
of Theorem 1.4. One important ingredient in the proof is results of Colmez, Dospinescu and the first
author [21, 22] which imply that the universal framed deformation of o with determinant {& lies in the
image of V. We show in Appendix A that (Rf’r;’“[[?Qp 11/J )¢ acts faithfully on this representation using
the theory of Cayley—Hamilton algebras [43].

The normality of the ring Rfrsfg [1/p] is proved in Appendix A, where we show that if the generic
fibre of the framed deformation ring RE‘ [1/p] is normal, then RES;VE [1/p] and the corresponding rigid
analytic space (Spf Rgsl’f “)rig are normal. The same applies to the deformation rings without the fixed-
determinant condition. In fact, we prove this statement not only for &g, but for any profinite group
satisfying Mazur’s finiteness condition at p. We then show that Rp'E’ [1/p] is normal for all 2-dimensional
semisimple representations of g, ; the hard cases are precisely those corresponding to the exceptional
blocks. If p = 2, then the assertion has been shown in [22], and if p = 3, then we give a proof in
Appendix A based on Bockle’s explicit description of the framed deformation ring in [7]. We note
that the argument of [22] has been generalised by Iyengar [33], showing that when p is the trivial d-
dimensional representation of the absolute Galois group of a p-adic field, containing a 4th root of unity
if p = 2, then Rg [1/p] is normal, so our results also apply in this setting. We expect! the rings Rp‘? [1/p]
to be normal for any d-dimensional representation g of &, where F is a finite extension of Q.

1.1. A sketch of the proof

We will now explain the construction of the map (1). To fix ideas we will discuss a special case: p = 2,
p =1@® w and ¢ = 1. Since the cyclotomic character is trivial modulo 2, p = 1 ® 1. The corresponding
block has two irreducible representations: the trivial 1 and the smooth Steinberg representation Sp.
Instead of working with representations on @-torsion modules, it is more convenient to use Pontryagin
duality and work with representations of G on compact ©-modules. We denote by €(0)g the category
antiequivalent to Modl(';ff} (O)g under Pontryagin duality.

Let Pyv and Pg,v be projective envelopes of 1V and Sp" in €(0)s, respectively. Then Pg := Pyv ®Pg,v
is a projective generator of € (0)g, and by results of Gabriel [31] the category €(0)g is equivalent to the
category of pseudocompact modules of Eg := Endg () (Ps). The equivalence is induced by the functors

NF—)HOII](;(@)(P%,N), mHméE% PQ;.
The centre Zg of the category €(0)g is naturally isomorphic to the centre of the ring Es.

IThis has now been proved in [8, Corollary 4.22].
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Colmez’s functor kills all objects on which SL,(Q),) acts trivially, and these form a thick subcategory.
Thus V factors through the quotient category, which we denote by Q(0)g;let T : €(0)g — Q(O)g be
the quotient functor. Moreover, V induces an equivalence of categories between Q(0)y and its essential
image under V. To prove this, one needs to show that V sends nonsplit extensions to nonsplit extensions;
such arguments are originally due to Colmez, and in the case p = 2 this has been shown by the second
author [47].

Since 7 (1Y) = 0, then 7 (Sp") is the only irreducible object in Q(0)g up to isomorphism. Moreover,
itis shown in [39] that 7 (Pg,v) is a projective envelope of I~ (SpY), and 7 induces an isomorphism

EéS = Endg(@) (PSpV) = Endg(@) (gPSpv).

Since J (Sp") is the only irreducible object in Q(0O)y, then T (Pspv) is a projective generator of
Q(0)p, and thus Q(O)g is equivalent to the category of pseudocompact Eg-modules. This implies
that 7 (Pg,v) — and hence, by equivalence of categories, \V’(Pspv) — is flat over Ej;. Since V(SpY) is
a 1-dimensional representation of ?Qp, in fact the trivial representation with our normalisations, an
application of Nakayama’s lemma shows that V(Pspv) is a free Eg-module of rank 1. The action of &g,
on V(Pspv) commutes with the action of Eg; and so induces a homomorphism

a: @[[?Qp]] — End,n;&3 (V(Pspv)) = (Eg).

We show that this map is surjective. In general, the argument is carried out in Section 2 in an abstract
setting, and then in Proposition 4.18 we verify that the conditions of the abstract setting are satisfied.
However, in the special case under consideration, the argument is easier: Since V induces an equivalence
of categories between L(0)g and its essential image, the Eg;-cosocle and @[[?QP]]—cosocle of V(Pspv)
coincide. This implies that there is v € \V’(Pspv), which is a generator of V(Pspv) as both an Eg;- and
an O[[%q,, ]|-module. This implies that « is surjective.

We also show in Section 3 that the natural map

B:0[%g,] — RE (%, 1/7

is surjective, where Rpif‘s [€g,1/J is the largest quotient of R éV'S|[?Qp]] such that the Cayley—
Hamilton theorem holds for the universal pseudorepresentation W1th determinant (e lifting tr p.

The idea is to show that Ker a contains Ker 3, since this implies that the action of &g, on V(Pspv)
induces surjections:

O[%a, 1 » R “[%0, /7 - E. 3)

This is proved using the results of Berger and Breuil [4] on universal unitary completions of locally
algebraic principal series and density arguments already used in [21] and also in [46]. Morally, the argu-
ment should be that V( Pg,v) injects into the product of all 2-dimensional crystabelline representations
of g, with mod p reduction isomorphic to ¢ and determinant {'; then an element in Ker 8 would kill
this product, and hence V(Pspv). In reality the argument is technically a bit more complicated: We also
have to consider deformations of such representations to local Artinian L-algebras (see Section 5).
Wang-Erickson proved in [48] that Rgs;_fs[[?(@p 11/J is a finitely generated Rfr;’(s-module. The

surjection (3) implies that the image of Rfrsl’fg is contained in the centre of Eg;, which we denote by Zg,.

Moreover, both E é; and Zés are finite Rfri’_f's-modules. We show that formula (3) induces an isomorphism

(RE 21, 1/ s — Ey

by showing that the universal framed deformation of 5 with determinant ¢ lies in the image of V using

[21, 22], and (Rffp('s[[?(@p]] /J ) acts faithfully on it (see Proposition A.11). The assertions about the
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centre in Theorem 1.4, with Z{; instead of Zg, are proved by studying the centre of ( R{’rsééy £ [%a, 1/
This argument is carried out in Appendix A for d-dimensional representations of any profinite group,
satisfying Mazur’s finiteness condition at p.

We then transfer this result from Ey and Z to Eg and Zg. Let Mgy be the kernel of Pg —

(P)sL,(q,)- We show that
Endg (s) (M) = Endg () (Pg) = Ep

by examining various exact sequences and showing that certain Ext-groups vanish. We also show that
the cosocle of Mgy is a direct sum of finitely many copies of Sp”. Thus Mg is a quotient of (Pg)®"
for some n > 1. This allows us to conclude that Endg (o) (Ms) and its centre are finitely generated Z%—
modules, which finishes the proof of Theorem 1.3. The arguments showing the finiteness of Eg and Zg
over Zg, are carried out in Section 4.3. Then with some more effort we are able to show that Zy, = Zg
(Corollary 6.15).

1.2. What is left to do?

Although we believe that our results will suffice for most number-theoretic applications — for example,
[38] — to complete the programme started in [39], one would have to compute the ring Eg in the
exceptional cases. This will be harder than [39, Section 10.5], which is already quite involved. We
expect that the map (3) induces isomorphisms

RPN Gg, /] — Eg,  RYY T — Zy.

This is known to hold for all blocks except for the exceptional ones. Theorem 1.4 implies that to

prove this result, it would be enough to show that Rps,{.S[[(ng I/J is O-torsion-free, and for the second

trp
isomorphism in the case p = 3 it would be enough to show? that Rfrs[’f‘g is O-torsion-free.

It seems likely that using the results of this paper, one can remove the restriction on the prime p in Lue
Pan’s work [37] on the Fontaine—Mazur conjecture in the residually reducible case, which generalises
the work of Skinner and Wiles. We hope to return to these questions in future work.

2. Endomorphism rings

Let E be a pseudocompact O-algebra and let PC(E) be the category of left pseudocompact E-modules
(see[12], [31, Section IV.3]. Let Irr( E) be the set of equivalence classes of irreducible objects in PC(E).

Let M be in PC(E). We assume that we are given a continuous E-linear action of a profinite group
€ on M, which makes M into a pseudocompact module over the completed group algebra O €]. The
action induces a homomorphism of O-algebras O €] — End®™(M). In this section we will study
when this map is surjective, as well as its kernel.

If N is a pseudocompact E-module, which is finitely generated as an E-module, then we may present
it as

l_[E—>E$"—>N—>O.

iel
By applying Hom$™ (%, M) we obtain an exact sequence
0 — Hom%™(N, M) > M®" — @;/ M.

We thus may identify Hom®™ (N, M) with a closed submodule of M®", which makes Hom™ (N, M)
into a pseudocompact left O] € ]-module.

2This follows from [8, Corollary 5.11].
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Lemma 2.1. Let N be a finitely generated projective E-module and let m be a right pseudocompact
O[ € ]|-module. Then the natural map

m &gz Homy™ (N, M) — HomyP™ (N, m &gz M) 4)

is an isomorphism.

Proof. Since N is finitely generated and projective, we may present it as
F-5F—N—0,

where F = E®" and e is an idempotent. In particular, N is a pseudocompact E-module. The map (4) is
induced by a continuous bilinear map

(v,0) > [w > v@d(w)].

Itis anisomorphism if N = F. The general case follows by applying the idempotent e to the isomorphism
obtained for N = F. O

Lemma 2.2. Let {p;}ic; be a family of pairwise distinct absolutely irreducible right pseudocompact
O Z]-modules. Then the map

0[9] — [ | Endi (o) ©)
i€l
is surjective.

Proof. Since & is profinite, each p; is a finite-dimensional k-vector space. Thus ¢; : O[%] —
Endg (p;)°P, given by the action, is continuous for the discrete topology on the target. Since p; is
absolutely irreducible, ¢; is surjective. Moreover, Ker ; is an open maximal two-sided ideal of O Z].
If i # j, then p; # p;, and thus Ker ¢; + Ker ¢; = O[ €]). This implies that for every finite subset F of
I, the map O[ €] — [1;er Endg (p;)°P is surjective. Thus the image of map (5) is dense for the prod-
uct topology on the target. On the other hand, map (5) is a continuous map between pseudocompact
O-modules, and thus its image is closed, which implies surjectivity. O

If M is in PC(E), then we let t(M) be the intersection of open maximal submodules of M. Then
t(E) is a closed two-sided ideal of E and t(M) is the closure of t(E)M inside M.

Proposition 2.3. Let us assume that the following hold:

1. M is a finitely generated projective E-module.
2. M/x(M) = cosocg M.
3. Forall S € Irr(E) such that

ps = Hom®" (M, S) + 0,

dimy ps is finite and pgs is an absolutely irreducible representation of &.
4. IfS,8" e Irr(E) and S # S, then Homg (ps, ps') = 0.

Then the map O[ €| — EndX™ (M) is surjective.

Proof. For S € Irr(E), we let Mg be the smallest quotient of M such that
ps = Hom%®™ (M, S) = Hom™ (M, S).

It follows from assumption (3) that these subspaces are finite-dimensional. Thus Ms = §9 gych
that d - dimy End™(S) = dimy pg. Since S is irreducible, End2™(S) is a skew field. It acts on pg,
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and this action commutes with the action of &. Since pgs is absolutely irreducible, we conclude that
End$™(S) = k and dimg ps = d. Thus End%om(ﬁs) = M, (k) and thus does not have nontrivial
two-sided ideals. Hence, the natural right action of Endﬁf“t(ﬁs) on ps induces an injective ring
homomorphism

End™ (M) — Endg (ps)®, (©6)

which has to be surjective, as both k-vector spaces have dimension equal to d’.
The isomorphism M /t(M) = [[scpr(g) Ms induces an isomorphism

EndS™(M /x(M)) = ]_[ EndS™(M).
Selrr(E)

Since ps # ps if S & 5, it follows from Lemma 2.2 together with isomorphism (6) that the action of
O[] on M /x(M) induces a surjection

O[€] » End™ (M /x(M)). @)
Since M is projective and M /(M) is prosemisimple, we have
End$™(M) » Hom$™ (M, M /t(M)) = End$™ (M /x(M)). (8)

If m is an irreducible right pseudocompact O] & ]-module and a is its annihilator, then O[€]/a
is a finite-dimensional simple k-algebra, and thus O %] /a is semisimple as a left O Z]-module,
and thus (O[%]/a) @gﬂg]] M is semisimple as a left O Z]-module. Hence, the surjection M —»

(0[%]/a) ®ppz) M factors through as
M — cosocg M - (O[Z]/a) 65@[[5]] M.
Moreover, the maps become isomorphisms after application of m @J@ﬂg]]. Thus
mé@[[?]] M= rn@)@[[g]] cosocg M = mégﬂgg]] M/t(M), )

as M /t(M) = cosocg M by assumption. Lemma 2.1 together with formula (9) implies that by applying
m @)@[[g]] to formula (8), we obtain isomorphisms

m ®g[ Endg™ (M) = Hom{™ (M, m®qpz) M)
5 Hom&®™ (M, m ®gyg) M /t(M)) 10
5 m @z Hom™ (M, M /x(M))

> m®pzy End™ (M /r(M)),
where the ¥-action on End™ (M) and End$™ (M /x(M)) is given by (g.¢) (v) := g(¢(v)).
If the map O] €] — Endy™ (M) is not surjective, then its cokernel is a nonzero left pseudocompact
O[ € ]-module and thus will have an irreducible quotient m’. If we let m = Homy (m’, k) with the right

O[ €] -action, then mQS@M m’ is nonzero, as the evaluation map m@@ugﬂ m’ —» k is nonzero. By
construction, the composition

m é@ﬂg]} O[€] —» m @@[[g]] Endg’nt(M) —->» m @@[{g]} m’
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is the zero map. Thus m@)@[g]] olg] - m§@[[g]] EndX™ (M) cannot be surjective. However, the
commutative diagram

m@)@[[g]] olg] —— m@)@[[g]] End%om(M)

l= (H))le

> Q) > con
m®@[[g]] @[[?]] —> 1’Il®@|[g]] EndE t(M/r(M))

implies that the top horizontal arrow is surjective, yielding a contradiction. m}

We remind the reader that as a consequence of the topological Nakayama’s lemma [32, Exposé VI,
Lemma 0.3.3], the following holds:

Lemma 2.4. Let N be a pseudocompact left E-module. Then N is projective in PC(E) if and only if the
Sfunctor m — m®g N from the category of right pseudocompact E-modules to the category of abelian
groups is exact. In this case, N - N [t(N) is a projective envelope of N [t(N).

Corollary 2.5. If in addition to the assumptions of Proposition 2.3 we assume that M [t(M) = E [t(E)
as E-modules, then M is a free E-module of rank 1 and the action of O[| €] on M induces a surjection

o] » E,

which is uniquely determined up to a conjugation by E*.

We will now give a characterisation of the kernel of O[ €] — End%?“t(M ) in favourable settings.

Let m be a finite-dimensional L-vector space with continuous O-linear action of E on the right. The
image of E in End; (m) is a compact ©-module, and thus E stabilises an @-lattice m” in m. The action
of O[] on M induces a continuous left action of O[] on m® ®z M and hence on

meg M = (m’ & M)[1/p] = (m’®x M)[1/p].

Lemma 2.6. Let {m;};c; be a family of finite-dimensional L-vector spaces with continuous right O-
linear action of E. For each i € I, let a; be the E-annihilator of m; and let b; be the O| € |-annihilator
of m; ®g M. If M is a free E-module of finite rank and ;¢ a; = 0, then

Ker(6[ ] — End™(M)) = ﬂ b:.
iel

Proof. For eachi € I, let ¢; be the End®™ (M)-annihilator of m; ®¢ M. Since b; is the preimage of ¢;
in 6[ %], it is enough to show that (;¢; ¢; = 0.

Let wy, ..., w, be an E-basis of M. Then we may identify End>™ (M) with M, (E) by mapping ¢ to
the matrix (ax;), given by

n

p(wg) = Zakjo

j=1
foralll < k < n. Ifv € m;, then
v p(wy) = Z(vakj) @wj.
j=1

Thus ¢ annihilates m; ® M if and only if vai; = 0 for all v € m; and all 1 < k,j < n, which is
equivalent to ¢ € My, (a;). Since (;¢7 a; = 0, we have ();¢; My (a;) =0 and thus (;¢; ¢; = 0. O
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3. Pseudorepresentations

Let & be a profinite group and let p be a continuous semisimple representation of & on a 2-dimensional
k-vector space. We fix a continuous group homomorphism ¢ : & — 0* lifting det g. Let DP>¥ be the
functor from the category of augmented Artinian O-algebras with residue field & to the category of sets,
which maps (A, my4) to the set of continuous functions 7 : & — A satisfying the following conditions:

t(1)y=2

t(g) =trp(g) (mod my), Vged.

t(gh) =t(hg), Vg,heg.

w(g)t(g7 h) —1(g)t(h) +t(gh) =0, Vg, heg.

The data (7, ) determines a continuous polynomial law of homogeneous degree 2 on & (see [ 18, Lemma
1.9]). This deformation problem is prorepresentable by a local O-algebra RPS¥ with residue field k,
complete with respect to profinite topology. We denote by T : € — RPY the universal deformation.
We extend it RP*¥-linearly to a continuous function 7 : RP*Y[€] — RP*Y. The homomorphism
¥ : € — 0% induces a continuous @-algebra homomorphism ¢ : 6 €] — O, which we extend RP*Y -
linearly to a continuous RP*¥-algebra homomorphism ¢ : RPSY[€] — RPSY. Let J be the closed
two-sided ideal of RP>¥[[ €] generated by a> — T(a)a + ¢(a) for all a € RP¥[[€].

O O O O

Proposition 3.1. The ring homomorphism O €] — RP>Y[ €] /J is surjective.

Proof. Let R and C be the images of RP>Y and O[[ €] in RP>Y[ €] /J, respectively. Since RP>Y, O[]
and RP>Y[€]/J are pseudocompact O-modules, R and C are closed subrings of RPS¥[€]/J. It is
enough to show that C contains R, since in this case we deduce that C contains the image of RP>¥[¢]],
which is equal to R[] /J.

Let B = R N C and let mp be the intersection of B with the maximal ideal of R. Then B is a closed
subring of R. This implies that B is complete for the profinite topology. If x € mp, then 1 + x has an
inverse in B given by the geometric series. Since B is an O-algebra and the residue field of R is k, we
conclude that (B, mp) is a local ring with residue field .

Let T be the specialisation of T along RP>¥ — R. The relation g> —T(g)g+¢(g) = 0in RP>¥[€] /J
implies that T(g) = g + g~ '¢(g). Thus T takes values in B. The universal property of RP*¥ implies
that there is a continuous homomorphism of @-algebras ¢ : RP>¥ — B, such that ¢(T(g)) = T(g) for
all g € ¥. Using the universal property of RP* 24 again, we conclude that if we compose ¢ with the
inclusion B C R, we get back the surjection RP>¥ — R that we started with. Thus B = R. O

Remark 3.2. The proposition does not hold if we do not fix the determinant or consider representations o
of dimension greater than 2. Counterexamples may be obtained with & = Z,, and p trivial representation
of & on an n-dimensional k-vector space, using [18, Examples 1.7(i) and 1.11(i)].

4. Representations of GL,(Q),)

Let G be a p-adic analytic group and let Z be its centre. We let Mod(' (0) be the category of smooth
representations of G on O-torsion modules. Using Pontryagin duality, 7 +— n¥ := Homg(nr, L/0)
equipped with the compact open topology induces an antiequivalence of categories between Mod(;' (0)
and the category Modgo(@) of linearly compact ®-modules with a continuous G-action [28, Lemma
2.2.7]. The inverse is given by M +— M" := HomZ™ (M, L/0). In particular, if G is compact, then
Mod?’(0) is the category of linearly compact O G ]-modules, where O[G] is the completed group
algebra. We define Mod3' (k) and Modgo(k) the same way, with O replaced by k. Moreover, for a
continuous character ¢ : Z — 0%, adding the subscript ¢ in any of these categories indicates the
corresponding full subcategory of G-representations on which Z acts by . Denote by Mod1 fin (@)
the full subcategory of Mod3' G.l (0) consisting of representations in Modzl;‘f ¢ (0) which are equal to the
union of their subrepresentations of finite length. We let €(0) be the full subcategory of Modgo(@)
antiequivalent to Modl fin (@) under the Pontryagin duality.

https://doi.org/10.1017/fms.2021.72 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2021.72

Forum of Mathematics, Sigma 11

4.1. Blocks

From now on, we will assume G = GL»(Q,,). Every irreducible object 7 of Mod5'(0) is killed by @
and hence is an object of Mod' (k).

Let Irrg,, be the set of irreducible representations in Modgj g(k). We write 7 & n’ if 1 = 2’/ or
Extg’f(ﬂ,ﬂ/) # 0 or Ext};’g(n’,n) # 0, where Exth’g(n, n’) is the Yoneda extension group of 7’
by 7 in Modz';‘j((k). We write 7 ~ n’ if there exist ny,...,m, € Irrg s such that 7 = 7y, 2’ = 7,
and m; & m;yy for 1 < i < n— 1. The relation ~ is an equivalence relation on Irrg . A block is an
equivalence class of ~.

Barthel and Livné [2] and Breuil [9] have classified the absolutely irreducible smooth representations
m admitting a central character. The blocks containing an absolutely irreducible representation have been
determined in [40, Corollary 6.2]. We have the following cases:

(i) B = {x} with & supersingular.
(i) B ={(Ind§ x1 ® Y20 s, (Id§ x2 ® 10 )sm} with yox;" # 1, w*.
(i) p >2and B = {(Ind§ ¥ ® yw sm}-
(iv) p=5and B = {1, Sp, (Indgw ® w sm} ® y o det.
(v) p=3and B = {1, Sp, w o det, Sp ®w o det} ® y o det.
(vi) p=2and B = {1, Sp} ® y o det.

In these cases, x, x1, x2 : Q}, — k* are smooth characters and w : Q% — k™ is the character w(x) = x|x|
(mod @), and Sp is the Steinberg representation defined by the exact sequence

0 — 1— (Ind§ 1)4u — Sp — 0.

If 7 € Irrg,; is not absolutely irreducible then there is a finite extension k’ of k, such that 7 ®; k" is a
finite direct sum of absolutely irreducible representations, see [39, Proposition 5.11], so no information
is lost by working with absolutely irreducible representations.

Given a block B, we denote by g the direct sum of all representations in B and let Pg be a projective
envelope of n% in €(0). Then Ey = Endg ) (Pg) is a pseudocompact @O-algebra. We denote the centre

of Eg by Zg.
By [39, Corollary 5.35], the category €(0) decomposes into a direct product of subcategories
co= [| coOw (11)
Belrrg o/~

where the objects of €(0)g are those M in €(0) such that for every irreducible subquotient S of M,
SV lies in B. Moreover, the category €(0)y is equivalent to the category of compact right Eg-modules
and the centre of €(0)g is isomorphic to Zg [39, Proposition 5.45].

Lemma 4.1. If B contains an absolutely irreducible representation, then Zg is a local pseudocompact
O-algebra with residue field k.

Proof. If n is absolutely irreducible, then Endg () = k, and thus the action of Zg on 7 defines a
homomorphism of @-algebras ¢, : Zg — k. If 7,1’ € B are distinct and there is a nonsplit extension
0—>m— 71— 7" - 0,then Endg (1) = k, and we conclude that ¢, = ¢ = ¢, . Using the transitivity
property of the relation ~ on Irrg s, we conclude that ¢, = ¢, for all m,n" € B. It follows from
the proof of [31, Proposition IV.4.12] that the Jacobson radical of Zg consists of elements that kill all
the irreducible representations. Thus Ker ¢, is the maximal ideal of Zyg with residue field k. The last
assertion follows from the fact that Zg is closed in Eg and [31, Proposition IV.4.13]. m]
Lemma 4.2. Let P be projective in €(0). Then PS(@) =0,

Proof. Let J be the Pontryagin dual of P. Then J is injective in Mod'cﬁ’}(@) and the assertion is
equivalent to Jsi,(g,) = 0. Let N be the unipotent subgroup ( é le ) Then by [29, Proposition 3.6.2]
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and [30, Corollary 3.12], we have Jy = 0. Thus JSLZ(Q[)) = 0 and the lemma follows. Alternatively, one
can deduce the statement from Proposition 4.3. O

Proposition 4.3. Let P and M be in €(0), such that P is projective and M [w M is of finite length. Then
Homg ) (M, P) = 0.

Proof. Let K’ be a compact open pro-p subgroup of SL,>(Q,,) such that K’ N Z = {1}. Then P is
projective in Mody, (6) by [30, Corollary 3.10], and thus P = [];c; O[K’] for some index set /. Thus
it is enough to show that Hom%o[f“lg,]] (M,O[K’]) = 0. The topological Nakayama’s lemma for compact
O-modules implies that it is enough to show that Homi‘f[‘}t(,]] (M /@M, k[K']) = 0. Since M /wM is of
finite length, it is enough to show that Homy g (7", k[K'])) = O for every 7 € B. This follows from
[42, Lemma 5.16]. Note that if K,, = 1+ M>(2p"Z,,) and K, = K,, N SL»(Q,), then K, = K, (ZN K,,)
and so 75 = 7Kn as Z N K, acts trivially on ; so the argument in [42, Lemma 5.16] carries over to

the restriction of 7 to SL>(Q),). O
We will denote by Ordg Emerton’s functor of ordinary parts [28].

Lemma 4.4. Let 1 — J be an injective envelope of 1 € B in Modlc';ﬁ"}(@). If nt is supersingular, then
Ordp J = 0. If m is an irreducible subquotient of (Ind% X)sm for some character y : T — k*, where B
is the subgroup of lower triangular matrices, then Ordp J is isomorphic to an injective envelope of x in
Mod;™2 (0), and also in Modi" , (6).

Proof. Since J is injective and Ordp is adjoint to parabolic induction, which is an exact functor, Ordg J

is injective in Mod]T'ﬁg (0). Thus it is a direct sum of injective envelopes of characters of 7. Moreover,

Hom (x, Ordg J) = Homg ((Ind x)sm, J)- (12)

Since J is an injective envelope of x, this group is nonzero if and only if 7 is a subquotient of (Indg X)sms
in which case the dimension of the spaces in formula (12) is equal to the multiplicity with which 7
occurs as a subquotient of (Indg X)sm- If 7 is supersingular, then it does not occur as a subquotient of
principal series, and thus Ordg J = 0. Otherwise, it follows from [2] that there is a unique character y
such that the multiplicity is nonzero, in which case it is equal to 1. This proves the first assertion. The
same (albeit easier) proof as in [39, Proposition 5.16] implies that every injective object in Mod]T'f:‘E (0)
is also injective in Mod;" ¢ (0). m|

Lemma 4.5. Let 1 — J be an injective envelope of ©1 € B in Modl(';ﬁ} (0O). If m is not a character, then

IS @) = 0; otherwise (J52 @)Y s nonzero and finitely generated over O.
Proof. IfJ SL2(Qp) g nonzero, then 1 N J SL2(Qp) jg nonzero, as © < J is essential. Since 7 is absolutely

irreducible, we deduce that it is a character and is the G-socle of J5L2(@»)  Note that the action of G on
JSE2(@p) factors through

Z)2Z X Z)2Z ifp>2,

~ X X\2 ~
G/Z8L2(Qp) = Qp/(Qp)” = {Z/2ZxZ/2Z><Z/ZZ if p =2.

It follows that JS2(@)[w] is a finite-dimensional k-vector space. Dually, this implies that
(JS2( @)V /5 (J32(@))V s finite-dimensional over k, and the lemma follows from Nakayama’s
lemma. o

Lemma 4.6. Let J be injective in Modl(';ff} (O)andk € Mole'f:‘E (0) be such that k" is a finitely generated
O-module. Then Homr (Ordg J, k) = 0. ‘

Proof. The following is an analogue of Proposition 4.3 in an easier setting. Let Tj to be an open torsion-
free pro-p subgroup of 7' N SL»(Q,). Since Ordp J is injective in ModST“"((@) by Lemma 4.4, it is
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injective in Mod}?(@), as restriction to 7Tp is adjoint to c-IndgTO, which is exact. Thus the Pontryagin
dual of Ordg J is isomorphic to [T,;<; O[[To] for some index set I. Hence, it suffices to show that

HOH%?[%]] («',0[To]) = 0.

This is clear, as O[Ty is isomorphic to the ring of formal power series in one variable and «" is a
finitely generated ©-module. O

Lemma4.7. Let T be a smooth representation of G whose irreducible subquotients consist of characters
in B. Then SLy(Qp) acts trivially on T and there is an exact sequence

0— 17— (Ind§ 7)sm — 0 — 0. (13)
Moreover, the irreducible subquotients of Q are twists of Sp by a character. In particular,
Homg (1,Q) = 0.

Proof. Since SL,(Q),) acts trivially on 7 by [47, Lemma 1.2.1], the unipotent radical of B acts trivially
on 7. Thus (Indg 7|B)sm coincides with the parabolic induction. Since the map 7 — (Indg T)sm defined
by v - (g — gv) is G-equivariant and injective, we obtain the first assertion.

To show the second assertion, we choose an increasing and exhaustive filtration {R/} j>0 of 7 such
that R7/R/~" is a character for each j. Then we have R//R/™! — (Indg R/ /R/=1)g, with quotient
isomorphic to a twist of Sp by a character. Thus the second assertion follows from the exactness of
(Ind§ —)sm. o

Lemma 4.8. Let J be injective in Modléﬁ’z(@) and let T and Q be as in Lemma 4.7. If T is finitely
generated over O, then '

Homg (J, 7) = Homg (J, (Ind§ 7)sm) = Homg (J, Q) = 0.
Proof. Since 7V is finitely generated over O, then 7[w] is a finite k-vector space, and thus
(Ind§} 7),/@ = (Indg t[@])s,

is of finite length in €(0) and the assertion follows from Proposition 4.3. O
Proposition 4.9. Let J and 7 be as in Lemma 4.8. Then Exth’ ¢ J,7t)=0.

Proof. Consider an exact sequence 0 — 7 — I — J — 0. Applying Ordp to it, we get an exact
sequence

0— Ordgt — Ordg I — OrdgJ —» R'Ordgr —» R' Ordg I — R! Ordg J

of smooth T-representations. It is proved in [30] that the functors H' Ordp in [29] coincide with the
derived functors RY Ordg. Moreover, H'! Ordg coincides with the N-coinvariants twisted by the character
a”!, where @ ((¢ 9)) = w(ad™"), by [29, Proposition 3.6.2].

Since SL,(Q),) acts trivially on 7, we have Ordg 7 = 0 and R!Ordg v = 7 ® @~ !. Thus the exact
sequence reduces to

1

0> Ordgl »O0rdgJ > 7t®a ! 5 Iy®a™' - 0. (14)

Since the middle map is zero by Lemma 4.6, the map 7 < [ induces an isomorphism 7 = Iy of
T-representations and hence

Homg (1, (Indf 7)m) = Homg (7, (Ind§ 7)sm) (15)
by the adjunction formula.
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It follows from Lemma 4.8 that the first three terms in the long exact sequence obtained by applying
Homg (J, —) to formula (13) are zero. Thus by applying Homg (1, —) — Homg (7, —) to formula (13),
we obtain the following commutative diagram with exact columns:

Homg (I,7) «— > Homg (7, 7)

l )

Homg (1, (Ind§ 7)sm) (I—~5)> Homg (7, (Ind§ 7)sm)

l l

Homg (I,Q) —— Homg (7, Q).

The last part of Lemma 4.7 says that Homg (7, Q) = 0 and hence Homg (1, Q) = 0. Thus all the maps
in the top square of the diagram are isomorphisms. The preimage of id, € Homg (7, 7) in Homg (1, 7)
splits the exact sequence 0 — v — I — J — 0. This proves the proposition. O

4.2. Quotient category

Let T(O) be the full subcategory of €(0) whose objects have trivial SL,(Q),)-action. By [39, Lemma
10.25] (for p > 2) and [47, Lemma 1.2.1] (for p = 2), T(0O) is a thick subcategory of €(0) and hence
we may consider the quotient category Q(0) := €(0)/T(0). Let T : €(O) — Q(O) be the quotient
functor; we note that 7 is the identity on objects. It is shown in [39, Section 10.3] that Q(0) is an
abelian category with enough projectives and I is an exact functor.

For a block B, we denote

Péﬁ = @ P, Eé} = Endg ) (P%), Zé; = Z(Eés)s
B

e
2S12(@p)

where P v is a projective envelope of 7V in €(0).

Proposition 4.10. Let B be a block.

1. T Py is a projective object of Q(0) and Eg = Endg (o) (T Pg).

2. The functor M +— Homg ) (T Py, M) defines an equivalence of categories between Q(0)g and
the category of pseudocompact right Eg-modules, with the inverse given by m — m ® E} T Pg.

Proof. See [39, Lemma 10.27] for the first assertion and [31, Section IV.4, Theorem 4, Corollaries 1
and 5] for the second assertion. O

4.3. The centre

In this section we will prove key results toward showing that Eg and Zg are finite over Zg. If B is of
type (i), (ii) or (iii), then we have Pg = Pé} and thus Zg = Zés'

Lemma 4.11. Let E be a ring with centre Z and let m be a finitely generated (right) E-module. Assume
that Z is Noetherian and E is (module) finite over Z. Then Endg (m) and its centre Z(Endg (m)) are
Noetherian and finite over Z.

Proof. Since m is finitely generated over E, there is a surjection E®" — m for some n. This induces an
injection Endg (m) < Homg (E®", m) and a surjection M, (E°?) = Endg(E®") » Homg (E®", m)
of Z-modules. Since M,,(E°P) is finite over E°P, it is finite and Noetherian over Z. It follows that
Homg (E®*, m) and thus Endg (m), which can be identified with a Z-submodule of Homg (E®", m),
are finite and Noetherian over Z. This proves the lemma. O
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Lemma 4.12. Let Mg = ker(Pg — (Pg)sL,(q,))- Then the following hold:

1. (Mg)sL,(q,) =0.
2. Forall m € B, Homg (o) (Mg, V) is finite-dimensional over k.

Proof. It suffices to consider the block B of type (iv), (v) or (vi); otherwise Mg = Pg and the assertion
SL, (Qp)

is trivial. Let Jg be the Pontryagin dual of Pg. Then we have an exact sequence 0 — Jg

M% — 0. By applying Homgy, (g,,) (7r, —), we get a long exact sequence

- Jg —
];LZ(QP)) N HOIHG(TF» J%) — HOmG(ﬂ-, M%)

Bt (. 52

0 — Homg (n,

= Exth’g(ﬂ, Jg) =0,

where Ext};’ ¢ is the extension group in Modl(';ff} (0).
If 7 € B is a character, then both Homg (7, J%LZ(Q”

and Extb’((ﬂ, J;LZ(Q”)) = 0 by [47, Lemma 1.2.1]. Thus Homg (7, M%) = 0 and the first assertion
follows (see [20, Lemma II1.40] for another proof).
SLZ(Qp)
B
Since 7 is killed by @, for the second assertion it is enough to show that Extg’{ (7, (Up[w])S2(@)) is

)) and Homg (7, Jg) are 1-dimensional over k,

If 7 € B is not a character, then Homg (7, J. ) = 0 and Homg (7, Jg) is 1-dimensional over k.

finite-dimensional over k. This holds, because (Jg[@])S2(@r) is of finite length by Lemma 4.5, and if
x is a character, then Exth, ¢ (7, x o det) is finite-dimensional. o

Corollary 4.13. There is a surjection (Pés)@" —» Mg for some n € N,

Proof. This follows from Lemma 4.12, which shows that the cosocle of Mg contains no characters and

each irreducible representation in B appears with finite multiplicity. O
Lemma 4.14. Both Homg 6y (P /Mg, P%) and Exté(@) (Pg /Mg, Pyg) are equal to zero.

Proof. The first assertion follows because SL,(Q),) acts trivially on Py /Mg and PiLZ(Q‘” ) = 0 (see
Lemma 4.2), and the second assertion follows from Proposition 4.9 applied to J = P% and 7 = J;LZ(Q” ),
It follows from Lemma 4.5 that 7V is a finitely generated ©-module. [

Proposition 4.15. There is a natural isomorphism Eg = Endge)(Ms). In particular, Zg =
Z(Endg (o) (M3)).

Proof. Set ¢ € Eg = Endg ) (Ps). Then the composition Mg i) Py —» Pg/Mgy is the zero map,
since SL»(Q),) acts trivially on Pg /Mg = (Pg)sL,(q,) and (Mg)sL(g,) = 0 by Lemma 4.12. Thus ¢
maps Mg to Mg, and restriction to My induces a ring homomorphism Eg — Endg () (Msg).

Applying the functor Homg 6y (M, —) to the exact sequence 0 — My — Py — Pg/Myg — 0, we
get the exact sequence

0 — Endgs) (Mg) — Homgs) (Mg, Pg) — Homg ) (M, Ps/Msy).

Since the last term is equal to zero by Lemma 4.12, we obtain Endg (6) (M) = Homg ) (Mg, Pg). On
the other hand, by applying the functor Homg ) (—, Pg) to the same short exact sequence, we get the
exact sequence
0 — Homg o) (Pg/M3, Pg) — Endg (o) (Pg) — Homg o) (Mg, Py)
— Exté(@) (P%/M%, PgB).

Since Homg p) (Pg/Ms, Pg) = 0 and Extlc(@)(P%/Mg,P%) = 0 by Lemma 4.14, we deduce

Endgg)(Pg) = Homg ) (Ms, Pg) and the proposition follows. m]
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Corollary 4.16. There is a natural surjective homomorphism
ZE,B — Z(Endg p) (Ms)) = Zs.

Proof. Note that we have (Mg)S2(%) = 0 by Lemma 4.2 and (Mg)sL,(q,) = 0 by Lemma 4.12. It
follows from [39, Lemma 10.26] that the functor  induces an isomorphism

Endg (6) (Mg) = Endg(@)(yMgg), o T .

Since Zy; is the centre of Q(0O)g, it acts on I Mg, and this action induces a homomorphism Zg, —
Z(Endgs) (9 Ms)), which we may compose with the previous isomorphism to obtain ahomomorphism
Zy — Z(Endg(p)(Mg)). Since Zg is the centre of €(0)g, a similar argument shows that Zg; is a
Zg-algebra and the surjection (Pg)®" —» Mg in Corollary 4.13 is Zg-equivariant. It induces a Zg-
equivariant surjection (I P’%)@" —» I Myg. We deduce that the map

Z% — Z(End(;;(@) (Mg))
is a homomorphism of Zg-algebras. Proposition 4.15 implies that the composition
Zy — Zg — Z(Endg o) (Myp)) = Zy

is the identity map, which implies that the homomorphism is surjective. O

4.4. Colmez’s Montreal functor

Let g, be the absolute Galois group of Q,,. We will consider { as a character of &g, via local class
field theory, normalised so that the uniformisers correspond to geometric Frobenius. Let & : &g, — Z};
be the p-adic cyclotomic character.

Colmez [19] has defined an exact and covariant functor V from the category of smooth, finite-length
representations of G on O-torsion modules with a central character to the category of continuous finite-
length representations of &g, on O-torsion modules. This functor is modified in [39, Section 5.7] to an
exact covariant functor

V:E(0) - Modggp (0)

as follows. Let M be in €(0); if it is of finite length, we define V(M) := V(MV)Y(Z¢), where V denotes
the Pontryagin dual. For general M € €(0), we may write M = yﬂlMi’ with M; of finite length in

€(0), and define V(M) := liLn\v’(Mi). With this normalisation, we have the following:

V(zV)=0if r = y o det.

V(x") = x1if 7 = (Ind§ x1 ® x2)sm-

V(nV) = yifr = Sp®y o det.

V(xnV) = V() is a 2-dimensional absolutely irreducible Galois representation if 7 is supersingular.

O O O O

The functor V induces a bijection B +— pg between blocks containing an absolutely irreducible
representation and equivalence classes of semisimple representations p : &g, — GLa(k) such that all
irreducible summands of p are absolutely irreducible. The representation pg can be described explicitly
according to the classification of blocks given in Section 4.1: in case (i), pg = V(nV) is absolutely
irreducible; in case (ii), pg = x1 ® x2; in cases (iii) and (vi), pg = x @ x; and in cases (iv) and (v),
P8 =X ® yw.

Since the functor V : €(0) — Mod%r:p (O) kills characters and hence every object in T (0), it factors

through 7 : €(0) — Q(0). We denote V : Q(0) — Modgg (0) by the same letter.
2p
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Proposition 4.17. For each block B, the functor V induces an equivalence of categories between Q(0)gg
and its essential image in Mod’;g (0).
P

Proof. This is due to [39] for cases (i)—(iv), [46, Proposition 2.8] for case (v) and [47, Proposition 1.3.2]
for case (iv). m]

Proposition 4.18. The map 0[%q, | — End"om(V(P )) is surjective. Moreover, if B is supersingular,
then End‘g’,m(V(P ) = Ma((Eg)P); otherWlse End%o,m(V(P ) = (Eg)P.

Proof. Tt suffices to show that M = V(P ) satisfies all four conditions in Proposition 2.3. We note that
the functor m — m ®Eés V(P’%) is exact by the equivalence of categories in Proposition 4.10(2), the

exactness of V and the isomorphism
V(m®g, Py) = m&g;, V(Py)

(see the proof of [39, Lemma 5.53]). Thus by Lemma 2.4, V(P ) is a projective Eg-module. Let v be
the Jacobson radical of Eg. Since

(B /v) @k, V (Py) = V((Eg/T) @y Py)

is either a 1- or a 2-dimensional k-vector space, the topological Nakayama’s lemma implies that V(P )
is a finitely generated Eg-module, and thus Proposition 2.3(1) holds. Proposition 4.17 implies that
Proposition 2.3(2) holds.

If m is a right pseudocompact Eg-module then [12, Lemma 2.4] implies that

Homcont(m ®E’ V(P ) k) Homcom(V(Pl%) Homcom(m k)) (16)

Since in our situation Eg; is a compact O-algebra, the irreducible (left or right) Eg;-modules are finite-
dimensional vector spaces with discrete topology, and thus the map m +— m* := Homy (m, k) induces
a bijection between irreducible left and irreducible right E;-modules. Moreover, if m is an irreducible

right Eg;-module, then it follows from formula (16) that pme = (m ®E/ V(P ))*; thus Proposition
2.3(3) and (4) follow from Proposition 4.17.

If B is supersingular, then it contains only one irreducible 7, which is not a character. Thus Py = P},
Eg = Eg is a local ring and k ®ky Py = V. Thus k ®g, V(Pg) = V(n¥) = pg is an absolutely
irreducible 2-dimensional representation. Since Eg is a local ring, we deduce that V(Pg) is a free
Eg-module of rank 2. Thus End%’;t(V(P%)) = My((Eg)P).

If B is of type (iii) or (vi), then the block in the quotient category contains only one irreducible
object, and Colmez’s functor maps it to a 1-dimensional &g, -representation. The same argument as in

the supersingular case shows that E¢; is a local ring and V(P ) is a free Eg;-module of rank 1, and thus
End%",m(V(P ) = (Eg).

If EB is of type (ii), (iv) or (v), then Q(0)g contains exactly two irreducible objects, and Colmez’s
functor sends them to distinct 1-dimensional &g, -representations x1, x2. It follows from Corollary 2.5

that V(P ) is a free Eg;-module of rank 1, and thus End%’,m(V(P ) = (Ey). o

4.5. Banach-space representations

Let Bana‘clm (L) be the category of admissible unitary L-Banach-space representations [44, Section 3] on
which Z acts by the character £. We note that Banadm (L) is an abelian category [44, Theorem 3.5]. Any

II e Banadm (L) has an open, bounded and G- 1nvar1ant lattice ®, and ® ® k is an admissible smooth
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k-representation of G. Let ®? = Homy(©, 0) be the Schikhof dual of ® endowed with the topology of
pointwise convergence. Then ©¢ is an object of Modme(@) [39, Lemma 4.4]. If ©¢ is in €(0), then 2¢
is in €(0) for every open bounded G-invariant lattice E in II, since ® and E are commensurable and
€(0) is closed under subquotients [39, Lemma 4.6].

IfII € Ban*g,“zv(L), then we let

V(1) = V(09) @ L,

where @ is any open bounded G-invariant lattice in I1. Then V is exact and contravariant on Banagnél (L).

5. Density
5.1. Capture

Let G = GL2(Qp) and K = GL,(Z,,). Write Z for the centre of G and Z(K) for the centre of K. Let

Y : Z(K) — O be a continuous character. We identify Z with Q7 and Z(K) with Z via the map
x 0

( 0 x ) = X

Lemma 5.1. Let {V;};er be a family of continuous representations of K on finite-dimensional L-vector

spaces with central character W, and let M € Modl;(ri) w(@) be O-torsion-free. The following conditions

are equivalent:

1. Foralli € I, the smallest quotient M —» Q such that HomC@O[lnI[(J] (Q, V) = Homcﬁounlzu (M, V) is equal
to M.

2. The intersection of the kernels of all ¢ € Homzofé]] (M, V) for each i € I is equal to zero.

3. The image of the evaluation map
(D Homg (Vi, TL(M)) 1. V; — T1(M)
iel
cont

is a dense subspace, where II(M) := HomZ™ (M, L) is an L-Banach space equipped with the
supremum norm.

Proof. See [21, Lemmas 2.7 and 2.10]. m]

Definition 5.2. We say that {V;};e; captures M if it satisfies one of the equivalent conditions in
Lemma 5.1.

Since 1 + pZ,, (resp., 1 +4Z,) is a free pro-p group of rank 1 if p > 2 (resp., p = 2), there are a
smooth nontrivial character y : Z;; — L* and a continuous character 1 : Z; — L* such that ¢ = XU%-
Let e be the smallest integer such that y is trivial on 1 + p¢Z,,. Let

Jo( % %
P°Zp Zj

and let y ® 1 : J — L* be the character which sends (? Z) to y(a). Then the representation 7 =
Indf (x ® 1) is a principal series type. That is, for an irreducible smooth L-representation 7 of G,
we have Homy (7, 7) # 0 if and only if 7 = (Indg W1 ® ¥7)sm, where B is a Borel subgroup and
1//1|Z;) = y and l//2|Z; =1[11, Section A2.2].

Proposition 5.3. The family

{IndIJ< o) ® Symz“ L*® (det)™ ® o o det}aen, y,

>

where 1) runs over all the characters with n* = 1, captures every projective object in Mod?{ro = (0).
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Proof. See [41, Proposition 2.7]. O

We will denote the family of representations in this proposition by {V;};e;. We note that each V;
is a twist of a locally algebraic representation by a unitary character 779, which might not be locally
algebraic. However, twisting by its inverse will get us to a locally algebraic situation, which is sufficient
for all arguments that follow.

5.2. Locally algebraic vectors in I1(P)

Let £ : Z — O be a continuous character and ¢ = {|k. Let P be a projective object in €(0) and
E = Endg ) (P). In particular, P is a torsion-free compact linear-topological O-module. Define

II(P) := Homy™ (P, L)

with the topology induced by the supremum norm. Then we have E[1/p] = Endg™ (IT1(P)).
If V is a continuous representation of K on a finite-dimensional L-vector space, then

Homg (V,II(P)) = Homcﬁ"[[n;(]](P, V). (17)

Since P is projective in ModII)(m = (0) by [30, Corollary 3.10], the family of finite-dimensional K-

representations associated to ¢ in Proposition 5.3, which we denote by {V;};¢;, captures P. We view V;

as a representation of KZ by letting ( T g ) act by {(@).

Proposition 5.4. For each i € I, we define A; = Endg(c—lndg 2 Vi). Then

1. A; is isomorphic to L[T] and
2. c—Inng Vi is flat over A;.

Proof. We may write V; = Indf (x ® 1) ®, W;, where the action of KZ on W; extends to an action of
G (see Proposition 5.3). Then

c-IndgZ Vi = c-Inng (Indlf (x®1)) L W;.

Here we view Indj< (x ® 1) as a representation of KZ by letting (T 2 ) act on Indj< (y®1) by

0 @
L(w)l ‘_Vt (@), where {w, is the central character of W;. Since the restriction of W; to any compact open

subgroup of G remains absolutely irreducible, the isomorphism induces an isomorphism of L-algebras
Endg (c-Ind$, Vi) = Endg (c-Ind$, (IndX (v ® 1))).
Thus we may assume that W; is the trivial representation.

By [14], the K-type Ind5 (y ® 1) is a G-cover of the Ky/-type y ® 1, where M = Q) x Q) and
Ky =73 X Zj,. Thus there is an algebra isomorphism

jm - Endyy (c-IndII‘gM (x ®1)) = Endg (C-Ind? (x®1))
such that for each f € Endy, (c-IndJI‘(/[M x ® 1), we have Supp(jar f) = J Supp(f)J. It follows that

L[T] = Endy (c-Indf ,(x ® 1)) — A;,
M

where T maps to an element in A; supported at JZ (‘8 (1)) JZ. Here we view y ® 1 as a representation

of KpZ by letting (¥ 2 ) act by {(w). This shows the first assertion.
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To prove the second assertion, it suffices to show that c-Indg - Vi is torsion-free, since A; is a principal
ideal domain. After tensoring with L, this is equivalent to c-Ind,(z ~ Vi having no T — A torsion, which is
easily seen using the fact that the functions in c-Indg Vi are compactly supported. O

In particular, Frobenius reciprocity gives
Homg (V;, TI(P)) = Homg (c-Ind$,, V;, TI(P)). (18)

Hence Homg (V;, I1(P)) is naturally an A;-module and we may transport the action of A; onto
HomC@‘i[“Itql (P, V?) via formula (17).

If V is a continuous representation of K on a finite-dimensional L-vector space and if © is an
open, bounded K-invariant lattice in V, let |-| be the norm on V* given by |{| := sup,, .g|€(V)|, so that

®9 = Homy (®, 0) is the unit ball in V* with respect to |-|. The topology on Homcﬁ‘ﬁ"}{ﬂ (P,V*) is given
by the norm ||¢|| := sup, cp|¢(v)|, and HomC@"[[“;{]] (P, ©®7) is the unit ball in this Banach space.
Proposition 5.5. For all i € I, the submodule

Homgii 1 (P, Vi 1= {¢ € Homggi (P, V) : £a,(Aig) < oo}

is dense in Homcﬁolfllt(]] (P, V7), where {a; (A;@) is the length of A;¢ as an A;-module.
Proof. See [21, Proposition 2.19]. |

Proposition 5.6. Let m be a maximal ideal of A; and let I1 be a completion of A;/m" ®4, c-IndgZ Vi
with respect to a G-invariant norm. Then I1 is the universal unitary completion of A; /m" ®a, c-Indg 2 Vi
Moreover, the action of A; on A;/m" ®a, C-Indgz Vi extends to a continuous action of A; on I1.

Proof. Let I1° be a G-invariant O-lattice of I1. Then
© :=11° N (A;/m" ®4, c-Ind%, V)

is a G-invariant O-lattice of A;/m" ®4, c—IndIG<Z V;i. By [27, Proposition 1.17], it suffices to show that
© is of finite type over O[G].

By Proposition 5.4(i), we have that x(m) := A;/m = L[T]/f(T) — where f(T) € L[T] is an
irreducible polynomial — is a finite extension of L. Define a finite, increasing, exhaustive filtration
{R}n5)0 of A;/m" ®4, c-Ind$,, V; by G-invariant A;-submodules R/ = m"™/ /m" ®,, c-Ind$, V;.
Then we have

RI/RI™" = k(m) ®4, c-Ind$, V;

for each j and {®/ := ® N R/}, >j>0 is a finite, increasing, exhaustive filtration of ® such that 0/ is
a G-invariant O-lattice of R/ for each j. Moreover, ®/ /@71 gives rise to a G-invariant O-lattice of
R//RI™" = A;/m ®,, c-Ind$, V;, and thus is finitely generated over O[G] by the proof of [4, Theorem
4.3.1]. This implies that © is finitely generated over O[G], and the first assertion follows.

If ¢ € A;, then ¢(©) C @w"O for some n € Z, as O is finitely generated over O[G]. This implies the
second assertion. O

We denote the universal unitary completion of A;/m" ®4, c-Indg 7 Vi by I sy n. If n = 1, then
I1; 1,1 is the universal unitary completion of k(1) ®4, c-Inng V; studied in [4, Theorem 4.3.1] and
[10, Proposition 2.2.1].

Corollary 5.7. If ¢ € Homgﬁn;(ﬂ (P, VI )fin is such that A;¢ = A;/m" for a maximal ideal m of A;, then
¢ induces an injection I; m n — I1(P). Moreover, I1; m , admits a filtration of length n such that each

graded piece is isomorphic to the universal unitary completion I1; ;.1 of k(M) ®a4, C—Indg 2 Vi
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Proof. The assumption A;¢ = A;/m” implies that A;/m” ®4, c-IndgZ V; injects into II(P). The first
assertion follows immediately from Proposition 5.6. To show the second assertion, we let {R/},> ;>0
be the filtration of A;/m" ®4, c-IndIG<Z V; defined in Proposition 5.6. Let I/ be the closure of R/ in
IT; m n; then IT"* = II; 1 . Since mR/ = R/7!, we have mIl/ = I1/~! and hence [TV = m"‘jl'[i,m,,,. If
I/ = /7!, then T/ = mIT/ and hence IV = m/TI/ = m"I1; v, = 0. Since TIV # 0 for 1 < j < n, we
conclude that I/ # T/~ for I < j < n. Moreover, I/ /TI/~! contains R/ /R/™" = A;/m®,, c-Ind$,, V;
as a dense subspace, and thus is isomorphic to I1; ,, ;. This proves the corollary. O

Note that the image of any ¢ € Homg (A;/m” ®g, c-IndgZ Vi, TI(P)) is isomorphic to A;/mk ®4,
C-Indgz V; for some 0 < k < n. Hence it induces an injection I1; y x < I1(P) by Corollary 5.7.

Proposition 5.8. Let P be a projective object in €(0). Then the image of the evaluation map

P B HomE™ (10; .. TI(P)) @1 T .0 — TI(P),

iel m,n
where m runs through maximal ideals of A; and n € N is a dense subspace.

Proof. Let II be the closure of the image of the evaluation map and M the image of P under
Hom$*™(IT(P), L) - Hom{* (I, L). Then we have

HomC@"[“IEJ] (P, V)1 fin = ®m Homg’l[“;q (P, Vi) [m*]
= @y Homg (V;, I1(P)) [m™]
= @,y Homg (c-Ind$, Vi, TI(P))[m™]
~ By h_n)lHomG (c-Inng Vi, II(P)) [m"]
n
= Oy h_r)nHomg(Ai/m" ®A; C'Indgz Vi, I1(P))

= @y lim Hom™ (IT; yn, TT(P)).

n

Here the first isomorphism is due to the fact that any module M over a commutative ring A such that
every finitely generated submodule is of finite length admits a decomposition M = @, M [m™] with m
running through maximal ideals of A. The second isomorphism is given by formula (17), and the last
isomorphism is due to Corollary 5.7. Similarly, we have

HomC@O[[“It{]] (M, V)Lfin = &m HomC@O[[“I‘{]] (M, V) [m*]
= &y Homg (V;, IT) [m™]
= @, Homg (c-Inng Vi, I [m™]
= Py li_r)nHomc(A,-/m" ®a; c—Inng V;, )

= @y lim Homg™ (IT; ., IT)
n
=®n l_ill)lHomgmt(Hi,m,m I(P)).

n

Thus by Proposition 5.5, we have Homcﬁoﬂnlz]] (P, V) = HomC@"ﬂ“]‘{" (M, V?) for eachi € I. Combining this

with Lemma 5.1, we deduce the proposition. O

Corollary 5.9. Define m; 1, , := Homgg) (P, 0%) ® L, where © is an open bounded G-invariant
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lattice in I1; 1 . Then

ﬂ ﬂ Qi m,n = 0,

iel m,n
where a; . = anng (M m n).

Proof. Forll € Banaémz (L) with a G-invariant @-lattice ®, we have

Homg (o) (P, 0%) ® L = Hom" (1, TI(P)).

Thus the evaluation map in Proposition 5.8 induces an E[1/p]-homomorphism

@ @ m; mn OL Hi,m,n i H(P)

iel m,n

with a dense image. Since E[1/p] acts faithfully on the right-hand side of the map, it acts faithfully
on the left-hand side as well. This proves the corollary, since the E-action on the left-hand side factors
through the quotient £/(M;c; M. Qi m,n- O

6. Main results

Given a block B, we have defined g, Py and Eg in Section 4.1 and Py and Ej; in Section 4.2. We
assume that all irreducibles in B are absolutely irreducible. This can be achieved by replacing k with a
finite extension. Let pg be the 2-dimensional semisimple Galois representation of &g, over k defined

by \V’(ng\é) in cases (i), (ii), (iv) and (v), and by a direct sum of two copies of V(n%) in cases (iii) and
(vi); see Section 4.4 for an explicit description. We write Rfrsl;ia for the universal pseudodeformation
ring of tr pg with a fixed determinant {e. This ring is Noetherian by [18, Proposition F]. We let

T : ?QF — Rfrsl;ia be the universal object (see Section 3).

6.1. Finiteness

Let {V;};<s be a family of K-representations defined in Proposition 5.3 and let A; = Endg (c-Indg 2 Vi).
For eachi € I, amaximal ideal m of A; and n € N, we write I1; ,,, , for the universal unitary completion
of A;/m" ®q, c-Inng V;.

Lemma 6.1. Assume I1; 1, is a subrepresentation ofH(P’%). Then \V/(Hi,m,n) is a finite free A; /m"-
module of rank equal to dimy, jm, (V(IT;m.1)) < 2. Moreover,

(i) ifrank g, /mn V(Hi,m,n) =2, then V\V/(H[,m,n) is a deformation to A; /m" of the absolutely irreducible
2-dimensional L-representation V(I1; 1) of Sq,,; and

(ii) if rank4, jmn \V’(Hi’m,n) = 1, then the action of G, on \V’(Hi,m,n) is given by an (A; /m™)*-valued
character lifting V(I1; m.1).

Proof. Since V; is a principal series type, the &g, -module
V(Hi,m,n)/mv(ni,m,n) :’ V(Hi,m,l)

has dimension r < 2 over k(m) := A;/m by [4, Theorem 4.3.1] and [10, Proposition 2.2.1]. Nakayama’s
lemma implies that we have a surjection

(Ai/m™")®" = V(I ).
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Proposition 5.7 and the exactness of V imply that \V’(Hi,m,n) has length nr as an A; /m"™-module. Hence
the surjection is an isomorphism and the lemma follows. O

. jPLE

Lemma 6.2. Under the same assumptions as in Lemma 0.1, there is a natural map 6;mn @ Ry

A;/m", which induces a map

R[5, 1/ — Enda, mn (V (T .n)).-
Proof. If V(H,-’m,n) is of rank 2 over A;/m", it follows from Lemma 6.1(i) that V(Hi,m,n) is a defor-
mation of the 2-dimensional Galois representation V(I1; i, 1) to A;/m”™ with determinant e. It follows
from [18, Section 4.1, Theorem 3.17] that there is an O-algebra map 6; ., : Rfrséis — A;/m" such that
the specialisation of T along 6; w , is equal to try, jm» V(Hi,m,n). This map induces a homomorphism
of O0-algebras

RY 190, 1 = Enda e (V (I,
and Cayley—Hamilton for M>(A;/m") implies that J lies in the kernel of this map.

If V(IT; m,») is given by a character x; m.» : Tg, — (Ai/ m™)*, then the same argument applies to
the representation x;i m,» ® X;. :n,n{ &, so that we get a map

R [ G, 1/ — Enda, jmn (Xiomn ® Xi &)

Its image commutes with the idempotent which projects onto the direct summand yx; m, .. Hence, the
image is contained in End 4, jm» (Xi,m,n) XEnd 4, jmn ()(;1‘“ ,£€), and we may project to End 4, jmn (Xi,m,n)
to obtain the required homomorphism. m}

In Propositions 3.1 and 4.18, we established surjections

a:0[%g, ] » EndZ"(V(Py)).  B:0[%, ] » Riyy %0, 1/J.

trpg
Theorem 6.3. The maps just given induce a surjection

Rie 1%, 1/7 > EndZ (V(Pg)).

trpg

ps.L e

In particular, Ey and Zg are finite over R s and hence Noetherian.

Proof. For the first part we have to show that Ker 8 ¢ Kera. Let M = V(P’%) and define m; m , =
m(Il; m n), With i,m,n as in Corollary 5.9. Then the assumptions in Lemma 2.6 are satisfied by
Corollary 5.9. It follows that the kernel of « is given by N;e; Nm.n Bi.m 1, Where b; y_, is the @H?QP]]-
annihilator of

m; m,n ®Eé§ V(Pég) = v(mi,m,n ®Eé§ Pé;) = v(Hi,m,n)-
Since the action of 0[g, ]| on V(II;m.,) factors through Rps’gg[[?Qp]]/J by Lemma 6.2, B; m.»

trpg
contains the kernel of S and hence Ker 5 c Ker .
The second assertion is a consequence of the first assertion and the finiteness of Rg}is[[?Q ,11/J over

R{’f;;;‘;s [48, Proposition 3.6]. .
Corollary 6.4. Eg and Zy are finite over Rgsl’jis and hence Noetherian.
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Proof. By [39, Lemma 10.26], we have

Endg(s) (M) = Endg(s) (T M),
HomQ(@)(P;B,M%) = Homg(@) (9P%,9M3),

SL,(Q, , L .
. 2(Qp) _ (MEB)SLQ(Q,;) = (P,%)SLz(Qp) = 0. Define m := Homg ) (PSB’ M), which is a finitely

generated right Eg;-module by Corollary 4.13. Moreover, we have

since M.

EndE/% (m) = Endg () (T M) = Endg () (My)

by Proposition 4.10(2) and the isomorphism above. Theorem 6.3 implies that the conditions of
Lemma 4.11 are satisfied with £ = ES’B and Z = Zé;. Thus Endg sy (Ms) and its centre are finite

over Zéa’ and thus finite over Rgs’_’cs by Theorem 6.3, and hence Noetherian. This implies the corollary,
since Endg () (M) = Eg and Z(Endg (o) (Mp)) = Zg by Proposition 4.15. O

Remark 6.5. Since Zg is Noetherian, the m-adic topology coincides with the linearly compact topology
in Lemma 4.1.

ps,{ &
trpg
acts functorially on every object in €(0)g, the homomorphism R
homomorphism

— Zg constructed in Corollary 6.4. Since Zg

ps.{ &€
trpg

Let us spell out the properties of the map R

— Zg induces a functorial ring
cMm Rfrsf’_)ia — Endg sy (M)
for every object M in €(0). Since V is a functor, it induces a ring homomorphism

Endg (g) (M) — EndZ™ (V(M)), ¢ = V(p).
r

We denote the action of &g, on V(M) by P (M) Finally, for all g € g, we may evaluate the universal
ps.{ e

pseudorepresentation T : &g, — Rfrs[’_)ig at g € &g, to obtain an element T'(g) € Ry -

Proposition 6.6. For each M € €(0O)g and each g € &g,

Vew (T(@)) = pyany (8) + Pyian (& Ee(8)

. cont (¢

in Endep (V(M)).

Proof. Since g2 —T(g)g +e(g) =0in Rg;ig[[?(@p]]/], the equality T(g) id = g + Z£(g)g ™" holds in
that ring. The rest is just unravelling the definitions. O

Since Pg is a projective generator for €(0)g, the functor
N — rn(N) = Homq(@) (PSB, N)

induces an equivalence of categories between €(0)g and the category of right pseudocompact Eg-
modules. The inverse functor is given by m — m ®g,, Ps.

Corollary 6.7. For N in €(0)g the following assertions are equivalent:

1. There is a surjection Pg" —» N for somen > 1.
2. m(N) is a finitely generated Eg-module.

3. m(N) is a finitely generated Rfrséis-module.
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4. k §Rps,gg N is of finite length in €(0).
Lyeh
5. The cosocle of N in €(0) is of finite length.

The equivalent conditions hold if N is finitely generated over O[H] for a compact open subgroup
Hof G.

Proof. (1) implies (2), since m is exact. (2) implies (3) by Corollary 6.4. Since

k®Rps(.s m(N) m(k @Rps,_{.‘; N),
rpg rog
and the functor m is an antiequivalence, (3) implies (4). Let N - cosoc(N) be the cosocle of N. Since

RPS49 acts trivially on every semisimple object, the surjection factors through

the maximal ideal of s

k ®Rps ¢e N = cosoc(N),

rpg

and so (4) implies (5). If cosoc(N) is of finite length, then there is a surjection n%" —» cosoc(N) for

some n > 1. Since Pg is projective, there is a map ¢ : P%" — N lifting (Pg)®" —» n%" —» cosoc(N).
The cokernel of ¢ will have zero cosocle and hence ¢ is surjective, so that (5) implies (1).

If N is finitely generated over O H]|, which we may assume to be pro-p, then (N/@N)¥)H is a
finite-dimensional k-vector space, and hence the G-socle of NV is of finite length, which dually implies
that (5) holds. ]

Since every irreducible in B is admissible, its Pontryagin dual is ﬁnitely generated over O[H] for
any compact open subgroup H of G. It follows from Corollary 6.7(4) that k ® gr¢e P is also a finitely

Kp%
generated O H ]|-module. This implies that the assumptions made in [39, Section 4] are satisfied with

the category €(0) there equal to €(0)g, and we will record some consequences.

6.2. Banach-space representations

The category BanaGIm (L) decomposes into a direct sum of categories [39, Proposition 5.36]:

Bani™ (L) = EB Bani™ (L), (19)

Belrrg, o/~

where the objects of Banadm (L)g are those IT in Banadm (L) such that for every open bounded G-
invariant lattice ® in I1, the 1rredu01ble subquotients of G) ®@ k lie in B. This condition is equivalent to
requiring that ®¢ be an object of €(0)g.

Asin the previous subsection, we fix a block B consisting of absolutely irreducible representations.
Let Mod's Ewll/p] be the category of finitely generated right Eg[1/p]-modules. The functor

m: BanaGIm (L)g — Mod,; fe IT — m(IT) := Homg s (P, 0% &y L

sll/p]’
where O is any open bounded G-invariant lattice in IT and is exact, contravariant and fully faithful by
[39, Lemma 4.45]. Moreover, it induces an antiequivalence of categories

m: Banadm (L)% — Mod (20)

Eg[1/p]’
where the superscript ‘fI” indicates the subcategories of objects of finite length in the respective cat-
egories [39, Theorem 4.34]. We write antiequivalence instead of equivalence to indicate that m is
contravariant.

If m is a maximal ideal of Rf);pig[l/ p], then we let Banadm (L)QS ., be the full subcategory of

Banadm (L) consisting of finite-length Banach-space representations, which are killed by some power
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of m. The functor m induces an antiequivalence between this category and the category of Eg[1/p]-
modules of finite length, which are killed by a power of m. The Chinese remainder theorem [39, Theorem
4.36] implies that we have an equivalence of categories

Bani™ (L) = @ Bani™ (L) . @21)
mem-Spec Rf;pg: [1/p]

Corollary 6.8. If I1; € Banadm (L)% m and 11, € Banadm (L)% . Sor distinct maximal ideals m; and

my ongsl’ji'S [1/p], then the Yoneda Ext’ (IT;, 1) computed in Ban‘“jlm (L) vanish for all i > 0.

Proof. 1t follows from formula (21) that the assertion holds for the Yoneda Ext groups computed in
Ban"“llm (L) . It follows from [39, Proposition 4.46, Corollary 4.48] that these coincide with Yoneda Ext

groups computed in Banadm (L)g, which is a direct summand of Banadm (L) (see formaul (19)). m]

We will determine the set of isomorphism classes Irr(m, L’) of irreducible objects in Banadm (L’)EB m
for a sufficiently large finite extension L’ of L. Recall that IT € Banadm (L) is absolutely lrreduable
if [T ®, L’ is irreducible in Banadm (L") for all finite extensions L’ of L It follows from formula (20)
that for such II, Schur’s lemma holds, so that End®™ (IT) = L. This result is also proved in [26] in a
much more general setting. It follows from formula (20) that irreducibles in Banadm (L)%, m correspond
to irreducible modules of the algebra Eg ® R k(m). Corollary 6.4 implies that th1s algebra is finite-

dimensional over x(m), and thus Irr(m, L") is finite for every finite extension L’ of L, and there is a
finite extension L’ of L such that all IT in Irr(m, L’) are absolutely irreducible.

Proposition 6.9. Let L’ be a finite extension of L and let I1 be absolutely irreducible in Banadm (L")g.

Letcpy : Rgspgs — L’ be the composition

Rf:pga — Zg — Endcé’m(l'[) =L

Then one of the following holds:

1. IfI1 is a subquotient of (Indg Y1 ® Y2 Veont for some unitary characters yry, vy Qy — (L),
then Ty =Y + 2

2. otherwise, V(IN) is a 2-dimensional absolutely irreducible L’-representation of o, det V(IT) = Z&
and Top = tr vV(II),

where T, is the specialisation of the universal pseudorepresentation T : Gg,, — Rgp( along c.

Proof. Let W be the unitary principal series representation in (1). If ¢y # Y&, then ¥S2(@p) = 0,
and by looking at its reduction modulo p one may conclude that ¥ is absolutely irreducible. If ¢ = ¢¢,
then ¥ is a nonsplit extension

O—>t//10det—>‘I‘—>§E®t//10det—>0,

where §f) is the universal unitary completion of the smooth Steinberg representation. This representation
is absolutely irreducible, since its mod p reduction is. In both cases, EndCGO"t(‘I‘) = L’, and thus
Rf’fp{ “
regarded as a representation of &g, via the class field theory, g + & (g)g~" acts on it via the scalar
Yo (g) + (g el (g) = Ya(g) + i (g) forall g € %, - Proposition 6.6 implies that the specialisation
of T at cy is the character | + 5.

If we are not in part (1), then [21, Corollary 1.2, Theorem 1.9] imply that V(IT) is absolutely
irreducible 2-dimensional and det V(IT) = Z&. A calculation with 2x2 matrices implies that g+ £(g)g ™"

acts on all irreducible subquotients of ¥ via the same homomorphism cy. Since V(‘I‘) =Y,
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acts on V(IT) by a scalar (tr V(IT))(g). Proposition 6.6 implies that the specialisation of T at ¢y is the
character tr V(IT). O
Corollary 6.10. Let L’ be a finite extension of L and let x : Rgséis — L’ be an O-algebra homomor-
phism. If Tx = Y1 + 2 for characters Y1, 2 : Gg, — (L), then one of the following holds:

L Ifyy;" =1, then Irr(my, L') = {(Ind§ 1® & Heon ® ¥y o det}.

2. Ifz//ﬂpz’l =&*! then Irr(my, L) = {1, E\p, (Indg £®& Neont} ® ¥ o det.

3. Ifd/ﬂ//z_l # &*1 1, then

Irr(mx» L,) = {(Indg U1 ® W2871)C0m, (Indg U2 ® wlgil)cont},

where we consider W\ and Y, as unitary characters of Q; via the class field theory and  in (2) is either

Y1 oryn.

Proof. We have explained in the course of the proof of Proposition 6.9 that the representations listed in
this corollary are absolutely irreducible and are contained in Irr(m,, L’). Moreover, using the functor
of ordinary parts one may show that they are pairwise nonisomorphic.

We will show that the list is exhaustive. We may enlarge L’ so that all IT € Irr(m,, L’) are absolutely
irreducible. Since cp; = x, we cannot be in part (2) of Proposition 6.9, and thus we must be in part (1),
and hence II is already in our list. m}

Proposition 6.11. Let L’ be a finite extension of L and let x - Rgi;i‘g — L’ be an O-algebra homomor-
phism. If Tx = tr p, where p : &g, — GLa(L’) is absolutely irreducible, then Irr(my, L") = {I1}, with
I1 absolutely irreducible nonordinary and V(I1) = p.

Proof. 1t follows from [21, Theorem 1.1] that such IT exists. We may enlarge L’ so that all IT" €
Irr(my, L) are absolutely irreducible. Since ¢y = x, we cannot be in part (1) of Proposition 6.9; thus
we must be in part (2), and tr V(IT) = tr V(IT’). Since both V(IT") and V(IT) are absolutely irreducible,
we deduce that V(IT) = V(IT’), and [21, Theorem 1.8] implies that IT = IT". O

6.3. The centre

We fix a block B as in the previous section and explore the relation between Rg;ig and Zg. So far we
have constructed a finite map

Rﬁ}i C o Zgy > Zy (22)
(Theorem 6.3 and Corollary 4.16). We show in Corollary A.14 that Rfrs;_)ig [1/p] is normal, and we know
by [17, Theorem 2.1] that it is equidimensional, and the locus corresponding to absolutely irreducible
pseudorepresentations is Zariski dense in Spec Rg;is [1/p].

Proposition 6.12. Let jog be the universal framed deformation ring of pg with fixed determinant

L&, let S be its maximal O-torsion-free quotient and let Vs be a free S-module of rank 2 with g, -
action induced by the universal deformation g, — GLQ(REQ’fS) - GLy(S). There is N in €(0) with
a continuous action of S, which commutes with the action of G, such that we have an isomorphism of
S[%q, |-modules V(N) = Vs.

Proof. If x € m-Spec S[1/p], then the specialisation of Vg at x lies in the image of v by [22, Theorem
10.1]. Since S[1/p] is reduced (Propositions A.9 and A.13) and Jacobson, such points will be dense,
and the existence of such N follows from [19, Theorem I1.3.3]. ]

The subscript ‘tf” will indicate the maximal O-torsion-free quotient.
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Theorem 6.13. The surjection Rps’:(‘g[[?(@p]] /J > End‘g’,m(V(P )) in Theorem 6.3 identifies

rpg
Endif’/m(V(P )) with (Rfrspis[[?Qp]]/J)tf. In particular, map (22) induces an isomorphism
Ry [1/p) = Zg[1/p). (23)

Moreover, if p # 2, then Zg = (Rf:pie)tt, and if p = 2, then the cokernel of map (22) is killed
by 2.

Proof. Asalready explained in the proof of Proposition 4.3, projective objects in € (0) are also projective
in the category of compact O[ K’ ] -modules, where K’ is an open pro-p subgroup of SL, (Q),) intersecting
Z trivially, and thus are O-torsion-free. Hence, P’% is O-torsion-free. Since E . and Z - act faithfully on
Pg,, we deduce that both rings are O-torsion-free. Since Endg’gt(V(P )) is elther (E )% or M, (E

by Proposition 4.18, we deduce that the map in Theorem 6.3 factors through

)

RS 1%, 1/ — Endi2 (V(PR)). (24)

HP%

If a lies in the kernel of this map, then it will kill V(P ) and hence m ® E}, V(P ) for all compact right

Eg-modules. Thus a will kill all objects in the essential image of V, and it will therefore also kill the
representation Vs defined in Proposition 6.12.
It follows from Propositions A.9 and A.13 that the ring R?)je [1/p] is normal and the absolutely

irreducible locus is dense in Spec Rgfs [1/p]. Corollary A.7 implies that (Rg;ig[[?Qp 1/7)¢ acts
faithfully on Vs, hence a = 0 and formula (24) is injective.
The assertions about the centre follow from Proposition A.11. O

We immediately obtain the following:

Corollary 6.14. Z, is a complete local Noetherian O-algebra with residue field k. It is O-torsion-free
and Zg |1/ p] is normal.

Corollary 6.15. Zg = Zj,.

Proof. Since Zg acts faithfully on Pg it is O-torsion-free. Thus it is enough to show that the surjection
Zg, —» Zg (see Corollary 4.16) induces an isomorphism after inversion of p. Since Zg, [1/p]isreduced by
Corollary 6.14, itis enough to show that m-Spec Zg[1/p] contains a subset £ of m-Spec Z [1/p], which

is dense in Spec Zg [1/p]. We may take X to be the absolutely irreducible locus in m-Spec RPS4 [1/p],

rpg
as it is dense in Spec Rgsf’jig[l/p] by [17, Theorem 2.1] and lies in m-Spec Zg [1/p] by the main result

of [21]. O

Corollary 6.16. Let L’ be a finite extension of L and let x : R L€ _, L' be an O- -algebra homomor-

tr pg
phism. If the specialisation of the universal pseudodeformation T : G, — stpg

form ¥ + We, then Bana‘“lm (L' )23 m, IS equivalent to the category of modules of finite length over the

completion of(Rgs;jiE[[?Qp]]/J) ®¢ L' at my.

Moreover, if Ty = tr p, where p : Gg, — GLa(L’) is absolutely irreducible, then Banadm (L )% -

at x is not of the

equivalent to the category of modules of finite length over the deformation ring RS ¥, which parameterises
the deformations of p with determinant (¢ to local Artinian L’-algebras.

In particular, if I1" € Banaﬁlm (L) is killed by my then 1’ is isomorphic to a direct sum of finitely
many copies of I1 in Proposmon 6.11.
Proof. After extending scalars, we may assume that L = L’. If T, # ¢ + & for any character i, then it
follows from Corollaries 6.10 and 6.11 that Irr(m,, L) does not contain characters. We may apply [39,
Theorem 4.36] to deduce that Bana‘]lm (L' )SB - is antiequivalent to the category of Ej; ®g Rm -modules
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of finite length, where R = Rfrsl;ia. Theorem 6.13 implies that this ring coincides with the completion

of (RES“[[%q, 1/)[1/p] at my.

Let us assume that T, = trp with p absolutely irreducible. Then Irr(m,, L") = {I1}, with II
absolutely irreducible by Proposition 6.11 and V(IT) 2 p. It follows from [18, Sections 4.1 and 4.2]
that (R[%q, /7)) ®r me is an Azumaya algebra over me. Since p is an absolutely irreducible 2-
dimensional module of (R[[%g, ]/J) ®r «(x), we conclude that (R[[Zg, ]|/J) ®r «(x) = Ma(k(x)),
and thus (Rﬂng]]/J) ®R me is isomorphic to the ring of 2 X 2 matrices over me. Since Mz(ﬁmx)
is Morita equivalent to ﬁmx, which is isomorphic to Rgs by [35, Lemma 2.3.3, Proposition 2.3.5], we
obtain the first assertion.

In particular, the full subcategory of Ban“‘jlm L )% consisting of representations killed by m,
is equivalent to the category of finite- dlmensmnal vector spaces over L’, and hence the last assertion
follows. O

6.4. Complements

We will prove Theorem 1.1. Let B be an arbitrary block, so that we do not assume that it contains an
absolutely irreducible representation.

If 1, my € Irrg ¢ (k), then it follows from [39, Proposition 5.11] that there is a finite extension &’ of
k such that m; ®; k’ is a finite direct sum of absolutely irreducible representations; then 7, ®; k' is a
finite direct sum of irreducible representations, each of them occurring with multiplicity 1. It is implied
by [39, Proposition 5.33] that

EXt;([GL{(ﬂl,ﬂ'z) Qi k' = EXt}a[G],g (my ® k', mp @ k). (25)

If Ext,lc[c]’ ((m, ) # 0, then it follows from this formula that there are irreducible summands ﬂ;
of 1 ® k" and n/, of 7 ® k’ such that Ext}c,[G],{(ni, n5) # 0. Since 7| is absolutely irreducible, we
conclude by inspecting the list of blocks in Section 4.1 that 7} is absolutely irreducible, and thus if B
is the block containing 71, then m ® k' is a finite direct sum of absolutely irreducible representations
for all r € B.

Let L’ be a finite extension of L with ring of integers ©” and residue field k. If n{, 7}, € Irrg, ¢ (k)
are absolutely irreducible, then it follows from [39, Proposition 5.11] that there exist unique 71,1, €
Irrg,; (k) such that 7r’ is a direct summand of 71 ® k’ and 7r2 is a direct summand of 75 ®; k’. It follows
from formula (25) that if 7r{ and ), lie in the same block in Modl -fin (@ ), then 7| and 75 lie in the same
block in Modg!"} (0).

Thus if 7, e B and we let By, ..., B, be the blocks of irreducible subquotients of 7| ®; k’ in
Mo d1 fin (@ ) and B @y k’ be the set of 1som0rph1sm classes of irreducible subquotients of 7 ®; k’ for
allm e 23 then

B k' = |8
i=1
It follows from [39, Corollary 5.40] that Pg ®5 O’ = [];_, Py, and
Eg ®0 0 = El’ld@(@/) (Pg ®¢ @,) = l_[ Eggl..
i=I

Since the blocks B; contain only absolutely irreducible representations, it follows from Corollary 6.4
that Eg ®p O’ is a finite module over its centre Z(Eg ® 0’) and

Z(Ep)®0 0" = Z(Eg ® 0') = | | Zs,
i=1
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is Noetherian (see the argument in the proof of [25, Lemma 4.14] for the first isomorphism). Since 0" is
a finite free O-module, this implies that Z(Eg) is Noetherian, and Eg is a finitely generated Zg-module,
which finishes the proof of Theorem 1.1.

7. Application to Hecke eigenspaces

Let R be a linearly compact local Rfrsl’ais—algebra with residue field k; we do not assume that R is
Noetherian. If x : R — @], is an @O-algebra homomorphism, then we denote by 7, the specialisation of

the universal pseudorepresentation 7' : &g, — Rgs[’_)is along Rgs;_)ig SRS @p.

Let M be an object of €(0)g, which we assume to be O-torsion-free. Then ITI(M) := HomC@"m(M ,L)
is a unitary L-Banach-space representation of G.

We assume that we are given a continuous action of R on M, which commutes with the action of G,

such that the following hold:

o the action of R on M is faithful;

o the two actions of Rgi;ia on M induced by the maps
ps.{ & ps.{ €
Rtrp% — R, Rtrﬁgg — Zy

coincide; and
o M is a finitely generated R[[ K |-module.

Theorem 7.1. Let x : R — @p be an 0-algebra homomorphism and let TI(M)[m,] be the subspace
of TI(M) annihilated by the kernel of x. Then under the foregoing assumptions, I1(M)[m,] is nonzero

adm

and is of finite length in Bang; ¢ (L). Moreover,

o if Ty is the trace of an absolutely irreducible Galois representation defined over k(x), then
(M) [m,] = 1"

for some multiplicity m > 0, where Il is an absolutely irreducible nonordinary k(x)-Banach-space
representation of G satisfying tr V(I1) = Ty, and

o if Ty is the trace of a reducible Galois representation, then (after a possible extension of scalars) all
the irreducible subquotients of TI(M)[m] occur as subquotients of a direct sum of unitary
parabolic induction

(Indg Y1 ® llfzg_l)cont D (Indg U2 ® ‘;l’lg_l)cont,
where Y1,y : Gg, — k(x)* are characters such that Tx = Y| + 3.

Proof. Since Py is a projective generator for €(0)g, the functor N +— m(N) := Homg ) (Pg, N)
induces an equivalence of categories between €(0)g and the category of right pseudocompact Eg-
modules. The inverse functor is given by m +— m@E% Pg. In particular, the assumption that R acts
faithfully on M implies that R acts faithfully on m(M).

We claim that m(M) is a finitely generated R-module. The topological Nakayama’s lemma
implies that it is enough to show that k ®g m(M) is a finite-dimensional k-vector space. Since
k®g m(M) = m(k®g M), it is enough to show that k ®g M is of finite length in €(0). Since by
assumption M is a finitely generated R[K]-module, k ®g M is a finitely generated k[[K]-module.
Since by assumption the actions of Rfr;ig on M induced by Zg and by R, coincide we deduce that the

maximal ideal of Rgsf’jig annihilates k ®g M. Corollary 6.7(4) applied to N = k ®g M implies the claim.
Since m(M) is a finitely generated and faithful R-module, its localisation m(M)y,, is a finitely gen-
erated faithful Ry, -module. If m(M) ® «(x) = 0, then m(M),,, = 0 by Nakayama’s lemma, and since

https://doi.org/10.1017/fms.2021.72 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2021.72

Forum of Mathematics, Sigma 31

Ry, acts faithfully, Ry, = 0 and hence «(x) = 0, giving a contradiction. In particular, m(M) ®g «(x) is
a nonzero, finite-dimensional k(x)-vector space. Since R is a compact ©-module and «(x) is a subfield
of Q,,, we have that k(x) is a finite extension of L and the image of R is contained in the ring of integers
of k(x).

Let Q be the maximal O-torsion-free Hausdorff quotient of M /m, M. It follows from [44, Propo-
sition 1.3] that IT(Q) is a closed subspace of IT(M), which then implies that TI(Q) = IT(M)[m,]. It
follows from the equivalence of categories already explained that m(Q) is isomorphic to the image of
m(M) in m(M) ®g k(x). In particular, Q and thus I1(Q) are nonzero.

The last two assertions follow from the antiequivalence (20) and Corollaries 6.10 and 6.16. ]

Remark 7.2. If M is finitely generated as a O[ K ]-module, then the argument in the proof of Theorem 7.1
ps’ g
trpg
a finitely generated Rgi;ig-module and hence is Noetherian.

shows that m(M) is a finitely generated R"":* “-module, and since R acts faithfully on m(M), then R is

The result allows us to remove the restrictions imposed on the Galois representation Py , in
[38, Corollary 6.3.6], by taking M to be the Pontryagin dual of the representation denoted by
H' (KP,E/O)y, ¢ in [38, Theorem 6.3.5] and taking R to be the closure of the subring generated by the
Hecke operators in EndC@"m(M ). Since [38, Corollary 6.3.6] is the only place where the restriction on p
is used, the proof of [38, Theorem 6.4.7] goes through without a change to give the following result:

Theorem 7.3 (Lue Pan + ¢). Let p : Gal(Q/Q) — GL,(L) be promodular and absolutely irreducible.
If p is unramified outside finitely many places and p|g;Qp is Hodge—Tate with weights 0,0, then p is
associated to a weight 1 modular form.

The promodular condition means that the Hecke eigenvalues associated to p appear in completed
cohomology; see [38, Definition 6.1.2] for the precise definition. The original theorem in Lue Pan’s
paper had to additionally assume that if p is 2 or 3, then (p_|<§qp )% is not isomorphic to y @ yw for any
character y : &g, — k*.

A. Normality of RP*[1/p]

Let & be a profinite group satisfying Mazur’s finiteness condition at p: The group of continuous group
homomorphisms Homgﬁgt(?’,Fp) is finite for every open subgroup &’ of €. Let p : & — GLy4(k)
be a continuous semisimple representation such that all the irreducible summands of p are absolutely
irreducible. Lety : € — ©O* be a character lifting det 5. Let D : k[€] — k be the pseudorepresentation
associated to g in [18], so that D(1 +tg) = det(1 +t5(g)) for all g € €. We may consider the framed
deformation ring Rg, its quotient Rg’lp parameterising framed deformations of p with determinant equal
to i, the universal deformation ring RP* of D, and its quotient RP>Y parameterising deformations of D
with determinant . This lastring is constructed as follows: If D* : & — RP* is the universal deformation
of D, then for each g € €, we have that D*(1 +tg) = ag(g) + - - - + aq(g)t¢, with a;(g) € R, and
RPSY is the quotient of RP® by the ideal generated y(g)ay(g) — 1 for all g € €. The finiteness condition
on & ensures that all these rings are Noetherian. The characteristic polynomial of the universal framed
deformations of p induces maps RP — RE‘ and RP>Y — Rg’l/'.

Theorem A.1. If Rg‘ [1/p] is normal, then both RP*[1/p] and the associated rigid space (Spf RP*)"¢
are normal.

We also prove a version of the theorem with a fixed determinant. We apply this theorem to & = &g,
to prove that the rings RP>¥, RPS and associated rigid analytic spaces are normal for all 2-dimensional
p. There is essentially one case that we need to handle, namely p = 1 ® w, where w is the cyclotomic
character modulo p; in the other cases, all the rings are regular. The trickiest cases are when p = 2 and
p = 3. The case p = 2 is treated in [22]. We deal with the case p = 3 using the work of Bockle [7].
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The argument of [22] has been extended by Iyengar in [33], to the case when p is the trivial
d-dimensional representation of a Galois group of a p-adic field F, under the assumption that F' contains
a primitive 4th root of unity if p = 2. Thus our theorem applies in that setting.>

We will split the proof into several steps. We start with commutative algebra lemmas and recall that
all excellent rings are G-rings [45, Tag 07QS].

Lemma A.2. Let A be a G-ring and set p € Spec A. Then A, satisfies Serre’s condition (R;) (resp.,
(8;)) if and only if the completion Ay at p does.

Proof. Let B = Ay and let B be the completion of Ay atp. Since A is a G-ring, the fibre rings x(q) ®3p B
are regular for all q € Spec B. The assertion follows from [36, Theorem 23.9]. O

Lemma A.3. Let A be a complete local Noetherian O-algebra with residue field k and B
Allx1,...,x.], set g € Spec B[1/p], and let p be the image of q in Spec A[1/p]. Then A, satisfies
Serre’s condition (R;) (resp., (S;)) if and only if Bq does. In particular, A[1/p] is normal if and only if
B[1/p] is normal.

Proof. The proof is a variation on [15, Appendix A]. We may assume that A and hence B are O-torsion-
free. Set p’ € Spec A, C Spec A. We claim that the ring x(p’) ®4 B is regular. By Cohen’s structure
theorem, there is a subring C C A/p’ such that C is formally smooth over © and A/p’ is finite over C.
Then

k(p") ®4 B = k(p’) ®4p B/D'B.

Since A/p’ is finite over C, we have

B/p'B=(A/p)x1,....x ] = A/p" ®c C[x1,...,x].

Thus

k(") ®a B = k(p) ®g(c) Q(C) ®c Clx1,....x],

where Q(C) is the quotient field of C. Since C is formally smooth over @, the ring C[[xy,...,x,] is
isomorphic to a ring of formal power series over @, and thus is regular. Tensoring with Q(C) over C
is just localisation with respect to the multiplicative set C \ {0}, and thus Q(C) ®c C[x1,...,x.] is
regular. Since Q(C) is of characteristic 0, the extension x(p)/Q(C) is separable, and it follows from
[15, Lemma A.3] that x(p) ®¢(c) Q(C) ®c C|x1,...,x,] is regular. We deduce that x(p") ®a, By is
regular, since it is a localisation of x(p’) ®4 B at q.

It follows from [36, Theorem 23.9] that A, satisfies (R;) (resp., (S;)) if and only if B, does.
To conclude that A[1/p] is normal if and only if B[1/p] is, we only have to show that the map
Spec B[1/p] — Spec A[1/p] is surjective, and this is clear because (p, xy, . .., X, ) maps to p. O

Lemma A.4. Let A — B be a finite étale map of local rings. Then A satisfies Serre’s condition (R;)
(resp., (S;)) if and only if B does.

Proof. If p € Spec A, then the fibre ring k(p) ®4 B is a finite étale x(p)-algebra and hence a product of
fields, and thus is regular. The assertion follows from [36, Theorem 23.9]. O

Proposition A.5. Let L’ be a finite extension of L and let p : € — GL,(L’) be a continuous rep-
resentation with mod p semisimplification isomorphic to p. If Rg[l/ p] is normal, then the ring RY,
representing the framed deformations of p to Artinian L’-algebras, is also normal.

Proof. We may choose a finite extension L”’ of L’ with the ring of integers O’ and residue field k"’ such
that p ®, L’ has a &-invariant 0"’-lattice ® with ® ®u~ k"’ = p ®; k" (see the proof of [22, Lemma
9.5]). Thus © is a deformation of p ® k”" to ©”.

3This has been further generalised in [8] for all p-adic fields F and all p.
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It follows from Lemma A4 that RE is normal if and only if L ®;, RE, is normal. The same argument
shows that L” ®f, Rg [1/p] is normal. Moreover, we may identify L” ®;, Ry with the framed deformation
ring of p ®;, L” to local Artinian L”-algebras, and 0" ®p Rg‘ with the framed deformation ring of
p ®r k" to local Artinian ©”'-algebras. After these identifications, we may assume that L = L’ = L",
and so O is a deformation of p to © and hence induces an 0-algebra homomorphism x : Rp'? — 0.

It follows from [35, Lemma 2.3.3, Proposition 2.3.5] that Rj; is isomorphic to the completion of
(qu)p atp = Kerx. Since Rg [1/p] is normal, (Rg)p will satisfy (R;) and (S;). Lemma A.2 implies that
the same holds for the completion. Thus R[) is normal by Serre’s criterion for normality [36, Theorem
23.8]. O

Lemma A.6. Let A be a normal Noetherian ring and let G be a group acting on A by ring automorphisms.
Then the subring of G-invariants AC is normal.

Proof. 1If A is a domain, then the assertion is proved in [13, Proposition 6.4.1]. The same proof works
in our setting, as we will explain for the lack of a reference. Since A is Noetherian and normal, it is a
finite product of normal domains. Let Frac(A) denote its total ring of fractions. Then Frac(A) is a finite
product of fields. The group G acts on Frac(A) and we have

A% = AN Frac(A)°. (26)

We claim that Frac(A)Y is a finite product of fields. The claim implies that Frac(A)€ is its own ring of
fractions. Since A is normal, equation (26) implies that A is reduced and integrally closed in its ring
of fractions and has only finitely many minimal prime ideals — and hence is normal by [45, Tag 037B,
Lemma 10.37.16].

To prove the claim, we note that Spec Frac(A) consists of finitely many primes and is in bijection
with the set & of idempotents e € Frac(A), such that e Frac(A)e is a field. We have 1 = )}, ¢ and
ee’ =0ife # ¢’. If e € Frac(A) is a G-invariant idempotent, then

Frac(A)Y = (e Frac(A)e)® x ((1 — e) Frac(A)(1 —¢))°,

and thus we may assume that the action of G on & is transitive. If x € Frac(A)¢ and ex = 0 for
some e € &, then using the transitivity of the action we obtain that ex = 0 for all e € &, and so
X =Y ,cz ex = 0. Hence, if x € Frac(A)G is nonzero, then ex is nonzero, and we denote its inverse in
the field e Frac(A)e by (xe)~!. If we let y = ¥, »(xe)'e € Frac(A), then xy = 1. Thus x is a unit in
Frac(A) and its inverse y is unique. Uniqueness implies that y is G-invariant. Thus if G acts transitively
on &, then Frac(A)? is a field. o

Proof of Theorem A.1. Let D" : € — RP be the universal pseudorepresentation lifting D. Let CH(D")
be the closed two-sided ideal of RP*[Z] defined in [18, Section 1.17], so that E := RP*[€] /CH(D")
is the largest quotient of RP*[Z] where the Cayley—Hamilton theorem for D* holds. Following [138,
Section 1.17], we will call such an algebra a Cayley—-Hamilton RP*-algebra of degree d. Then E is a
finitely generated RPS-module [48, Proposition 3.6]. If f : E — M;(B) is a homomorphism of RP-
algebras for a commutative RPS-algebra B, then we say f is a homomorphism of Cayley—Hamilton
algebras if detof : E — B is equal to the specialisation of D" along RP* — B.

There is a commutative RP*-algebra A" together with a homomorphism of RP*-algebras j : £ —
M 4 (A&") satisfying the following universal property: If f : E — M (B) is a map of Cayley—Hamilton
RPS-algebras for a commutative RPS-algebra B, then there is a unique map f : A" — B of RPS-algebras
such that f = My(f) o j (see, for example, [48, Theorem 3.8] or [8, Lemma 3.1]). Since E is finitely
generated as an RP*-module, A" is of finite type over RP®.

Let A; : E — RP,0 < i < d, be the coeflicients of the characteristic polynomial of D*; these are
homogeneous polynomial laws satisfying D% (¢t — a) = Z:’:O(—l)"/\i(a)td‘i in RP[¢] forall a € E [18,
Section 1.10]. Now E[1/p] is a Q-algebra and the pair (E[1/p], A}) is a trace algebra satisfying the
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d-dimensional Cayley—Hamilton identity in the sense of [43, Definition 2.6] (see [16, Footnote 10]).
Moreover, for Q-algebras, the homomorphisms of Cayley—Hamilton algebras coincide with the notion
of maps of algebras with traces in [43, Section 2.5]. Thus j : E[1/p] — M (A®"[1/p]) is injective and
its image is equal to the GL z-invariants [43, Theorem 2.6]. Moreover, RP*[1/p] = (AZ"[1/p])C" (see
[16, Proposition 2.3] and [48, Theorem 2.20]). By Lemma A.6 it is enough to show that A%"[1/p] is
normal. Further, it is enough to show that the localisation of A*"[1/p] at every maximal ideal is normal
(see [45, Tag 037B, Lemma 10.37.10]). (The superscript ‘gen’ in A®*" stands for generic matrices in
[43, Section 1.1].)

Let m be a maximal ideal of AS"[1/p]. Its residue field x(m) is a finite extension of L, as A%"[1/p]
is finitely generated over RP*[1/p]. By specialising j at m we obtain a continuous representation
p : & — GLg4(x(m)) such that

det(1 +1p(g)) = D" ®ges k(m)(1 +1g), VgeL.

This implies that if we choose a @-invariant Oy -lattice ® in p, then the semisimplification of
©/@(m)® is isomorphic to p, so that we are in the setup of Proposition A.5. The universal property
of A&" implies that the completion of A%"[1/p] at m is the universal framed deformation ring RS,
which is normal by Proposition A.5. Since A" is finitely generated over RP*, which is a complete
local Noetherian ring, A" and hence its localisation (A%°"[1/p])y, are excellent, and thus a G-ring.
Lemma A.2 implies that (A2"[1/p])n, satisfies (R;) and (S2) and hence is normal.

Let R be the normalisation of RP* in RP*[1/p]. Then (Spf RP*)"€ = (Spf R)"2 [24, Lemma 7.2.2].
Since RP*[1/p] is normal, so is R, and thus (Spf R)" is normal [24, Proposition 7.2.4(c)]. Alternatively,
one could use the fact that the local rings of (Spf RP%)"ig are excellent [23, Theorem 1.1.3] and [24,
Lemma 7.1.9] together with Lemma A.2. O

The following is a corollary to the proof; it does not require the assumption that Rg [1/p] is normal:

Corollary A.7. Let V be a free RE‘ [1/p]-module of rank d with € -action given by p° : & — GLd(RS).
Then (RP[Z]/CH(DY))[1/p] acts faithfully on V. The same holds with the fixed determinant.

Proof. We use the notation of the proof of Theorem A.1, so that £ = RP*[€]/CH(D") and there is a
map j : E — M;(A#™") satisfying a universal property. This map is an injection after inverting p. Let
V& be a free AS"-module of rank d, with E-action given by j. Thus E[1/p] acts faithfully on V&"[1/p].

Suppose that a € E[1/p] kills off V. Since E[1/p] acts faithfully on V&"[1/p], there is a maximal
ideal m of A®"[1/p] such that a acts nontrivially on V& @een A" Let AS™ be the completion of
AS™ with respect to the maximal ideal. Since AS." is faithfully flat over AS:", a acts nontrivially on
the completion of V&"[1/p] at m, which we denote by VE". However, as explained in the proof of
Theorem A.1, V5™ is isomorphic as an E-module to the completion of V at a maximal ideal of R3[1/p].
Since a annihilates V, it will also annihilate the completion, giving a contradiction.

Define E¥ := E ®gps RP>Y and AE™Y ;= A" Qpps RPSY . Then j : E — My(A®") induces a map
j: EY — M;j(A&"Y) which satisfies the same universal property as j. Then the same proof works with
AEMY ingtead of A, O

Lemma A.8. Let R be a complete local Noetherian O-algebra with residue field k, and let p : & —
GL4(R) be a continuous representation. Assume that R is O-torsion-free and reduced, and the set of
x € m-Spec R[1/p] such that p, is absolutely irreducible is dense in Spec R[1/p]. Then

€ :={X € Mu(R):Xp(g) =p(g)X, VgeT}

consists of scalar matrices.

Proof. Set X € € with matrix entries x;;. Let py, . . ., p,, be the minimal primes of R. Since R is reduced,
it embeds into []_, x(ps). It is enough to show that the image of X in My(k(py)) for 1 < s < n is
scalar, since if the images of x;; and x;; — x;; fori # j are zero in k(py) for 1 < s < n, then they are
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zero in A and so X is scalar. If x € m-Spec R[1/p] is such that p, : € — GLg4(k(x)) is absolutely
irreducible, then € ®g «(x) is 1-dimensional. Since q - dim,(q) € ®r «(q) is upper semicontinuous
and such x are dense, we deduce that dim,, ) € ®g k(ps) = 1 for all minimal primes p;. This implies
that € Qg k(ps) consists of scalar matrices. O

Proposition A.9. Assume that R;"w [1/p] is nonzero. Then RE‘ [1/p] is normal (resp., reduced) if and
only ifRE’”D [1/p] is normal (resp., reduced).

Proof. Let T" be the pro-p completion of the abelianisation of &. Because Homg’;t(?,F,,) is finite,

I' = A XZj,, where A is a finite p-group. The map ¥ — (RE‘)X, g — ¥(g) " det p°(g), factors through
I and thus induces an @-algebra homomorphism O[I']| — R; and R;"'p is equal to the quotient of R7
by the augmentation ideal in O[T'].

Let 2 (I") be the functor which sends a local Artinian O-algebra (A, m,4) to the group of continuous
characters y : ' — 1 + my. This functor is represented by Spf O[[T']]. For such (A, m,), the group
Z(T)(A) acts on D"(A) by twisting. The action induces a homomorphism of local ©-algebras y :
R} — R3 ®6 O[T]. Let R™ = {a € RZ : y(a) = a ® 1} be the subring of &'(I')-invariants in
Rg. Analogously, 2 (A) acts on D", the action induces the map 6 : Rg - Rg‘ ® O[A] and we let
R™t={g¢ Rg : 6(a) = a ® 1} be the subring of 2'(A)-invariants in Rg.

The action of 2°(T") and &' (A) on D" is free, since if pa : &g, — GL4(A) is a framed deformation
of p, then for each g € ¥g, at least one matrix entry of pa(g) will not lie in m, and thus is a unit.
Hence, pa(g) = pa(g)xa(g) for all g € G implies that y 4 is the trivial character.

The map R™ — Rg‘ is finite and becomes étale after inversion of p by [1, Proposition 1.1.11(2)].
Thus RE‘ [1/p] is normal if and only if R™-{[1/p] is normal, by Lemma A 4. Since R™ is the subring
of Z(I"/A)-invariants in R™ and I'/A = Z’, we have R™"' = R™[xy,...,x,] by [I, Proposition
1.1.11(2)]. Thus R™"[1/p] is normal if and only if R™[1/p] is normal, by Lemma A.3. The map
R™ — R;"w is finite and becomes étale after inversion of p by [1, Proposition 1.1.11(3)]. Lemma A.4

implies that RE’w [1/p] is normal if and only if R"™[1/p] is normal. Putting all the equivalences together
proves the assertion.
Since reducedness is equivalent to ( Rg) and ( S1), the same proof works. ]

Corollary A.10. If Rg‘[l /pl is normal, then R®Y[1/p] and the associated rigid analytic space
(Spf RP>¥)1E gre normal.

Proof. Proposition A.9 implies that Rg’w [1/p] is normal. The proof of Theorem A.l, with Rg [1/p]
replaced by RE"” [1/p], implies the assertion. O

Proposition A.11. Let E = RP[Z]/CH(D"), Ey the maximal O-torsion-free quotient of E, Z(Eys) the
centre of Ey and Rﬁ? the maximal O-torsion-free quotient of RP. Then Rffs is a subring of Z(E).

If RE‘ [1/p] is reduced and the set x € m-Spec RE‘ [1/p], such that p% is absolutely irreducible, is
dense in Spec Rg‘ [1/p], thend - Z(Ey) C Rffs. In particular, if p t d, then Rffs = Z(E). Moreover, the
same holds for rings with fixed determinant.

Proof. As in the proof of Theorem A.1, there is an injection
Jj:E[1/p] = Ma(A*"[1/p]).

Moreover, troj induces a surjection E[1/p] - RP*[1/p]. Thus R is a subring of Z(E). Corollary
A.7 gives us an injection Ey — My (Rg [1/p]). If a € Ey, then the characteristic polynomial of j(a)
has coefficients in Rf;. Moreover, Z(Ey) is contained in the centraliser of p”(¥) in Ma(R3[1/p]).
According to Lemma A.8, the centraliser is equal to scalar matrices. Since j(z) is a scalar matrix, we
deduce that dz € Rf’fs.
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It follows from Proposition A.9 that Rg’l/'[l /p] is reduced. Since twisting by characters does not
change the property of being absolutely irreducible, the proof of Proposition A.9 shows that the abso-
lutely irreducible locus is dense in Spec Rg’w [1/p]. Then the same proof goes through. m]

Proposition A.12. If p =3, ¥ = &g, and p =1 @ w, then R3[1/p] is normal.”

Proof. We will first relate the framed deformation ring RE‘ to the ring studied in [7]. Let u3 be the

group of 3rd roots of unity in Q;, let E = Q3(u3) and let E(3) be the compositum of all extensions
E C E’ C Qg such that [E’ : E] is a power of 3. Then the Galois group Gal(E(3)/E) is the maximal
pro-3 quotient of Gal(Q3/E), and thus the map p° : G, — GL2(R"§) factors through the surjection
Zo, - Gal(E(3)/Q3). Since Gal(E/Q3) has order 2, Schur-Zassenhaus implies that the surjection
Gal(E(3)/Q3) - Gal(E/Q3) has a splitting, which gives us an isomorphism

Gal(E(3)/Q3) = Gal(E(3)/E) = G,

where G = {1, o} is a subgroup of Gal(E(3)/Q3). One may define a closed subfunctor, denoted by EH;
in [7], of the framed deformation functor D" such that EH; (A) consists of pairs (V4, 84), where V4 is a
deformation of w® 1to A and B4 = (v1, v2) is an A-basis of V4 lifting a fixed basis By of w @ 1, such that
o acts by —1 on vy and by 1 on v,. It follows from the Iwahori decomposition for the group 1+ M>(1m4)
that a framed deformation (V4, 84) € D"(A) can be conjugated to a framed deformation in EH; (A) by

a unique element of the form (} 4) (1 9), with b, ¢ € ma. Hence if EH, is represented by R, then

O ~
R5 = R[x,y].

Now R is a complete intersection by [7, Theorem 1.1], thus so is Rg; and to show the normality of
Rg [1/p], it is enough to show that the singular locus in R[1/p] has codimension at least 2.

Let p : Gal(E(3)/Q3) — GLy(R) be the representation obtained for the action of the Galois group
on Vg with respect to the basis Sg such that p(o) = ( ‘01 (1) ). It follows from the argument of [22, Lemma
4.1]thatx € m-Spec R[1/p] is singular if and only if there is an exact sequence 0 — & — p, — de — 0
for some character § : Gal(E(3)/Q3) — «(x)*. Thus the singular locus is contained in the reducible
locus, and it is enough to show that it has positive codimension inside the reducible locus: We know that
R is a domain by [7, Theorem 1.1], and there are absolutely irreducible lifts of p, so that the reducible
locus has codimension 1 inside Spec R.

We will now describe the ring R as computed in [7] and compute the reducible locus. We know
from [7, Lemma 3.2] that the representation p : Gal(E(3)/Q3) — GL;,(R) factors through a quotient
Gal(E(3)/Q3) -» P < G, where P is a pro-p group with generators xy, x7, x3, x4 and one relation

r=x; [x1, 2] [x3, x4] [x4, 25 ] [0, 67 %],
where [g, h] = ghg™'h™!. The action of o € G on the generators is given by
o(x) =x7, o (x2) = x2, o(x3) = x5, o (x4) = xa.

Let S = O[a,a’,b,b’,c,c’,d,d’] and let A; € GL,(S) be the matrices

_ (Vitbec b _ Vied 0 )
A= (Y ) Ae=Viwa (07 ),

i b N ; Vi+d’ 0 )
A3_( ¢ \/1+b'c')’ As=Vl+a ( 0o viz@ ')’

4The statement is proved in [8, Corollary 4.22] without computing the equations for the deformation ring.
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and let
B = AJ[A1, A2][As, As][Ag, A ][A2, AT A,

Then [7, Theorem 4.1(c)] asserts that R = S/I, where [ is the ideal of S generated by the matrix entries
of B—(4%)and p : PG — GL,(R) is obtained by mapping o — (1 9) andx; > A; for 1 <i < 4.
It follows from this description that the locus in Spec R parameterising reducible representations,
where o~ acts on the rank 1 subrepresentation by —1 (resp., 1), is equal to V(c, ¢’) (resp., V(b, b")).
The images of A and Az in GL,(R/(c,¢’)) are unipotent upper-triangular matrices. It is easy to
compute the commutator of a unipotent upper-triangular matrix with a diagonal matrix. One obtains
that the image of B in GL,(S/(c, ¢”)) is the matrix (|} 2=2b4-20'd") Thus

R/(c,c")=8/(c,c’",3b—bd - b'd")

is an integral domain, as §/(c, ¢’) = O[a,a’,b,b’,d,d'] is factorial and 3b —bd — b’d’ is an irreducible
element in S/ (c, ¢’).

Let X*"¢ be the singular locus in Spec R[1/p]. The point x € Spec R/(c,c’) corresponding to
the representation (803 ?) will not lie in X", since this representation is not an extension of de
by 6. Thus X*"¢ N Spec R/(c,c’)[1/p] is of codimension at least 1. In the same way, we obtain
that X*"¢ N Spec R/(b, b")[1/p] is of codimension at least 1 in Spec R/ (b, b’)[1/p]. Thus X*"¢ is
of codimension at least 1 in the reducible locus in Spec R[1/p] and of codimension at least 2 in

Spec R[1/p]. O

Proposition A.13. If & = &g, then Rp'? [1/p] is normal and the absolutely irreducible locus is dense
in Spec Rg‘ [1/p] for all semisimple 2-dimensional p.

Proof. Since R}S [1/p] is excellent, the singular locus is closed in Rp‘? [1/p]. If it is nonempty, then it
will contain a maximal ideal x such that

Homg,, (. p2(1)) # 0

(see [22, Lemma 4.1]). Thus p is of the form y @ jyw. After twisting by a character, we may assume
that p =1@® w.If p =2 o0r p = 3, then Rg [1/p] is normal by [22, Proposition 4.3] or Proposition A.12,
respectively. If p > 5, it follows from the proof of [39, Proposition B2, Theorem B.3], based on the work
of Bockle [6], that Rg is formally smooth over @[ x, y, z, w]|/ (xy —zw). (The only change is that because
in our setting § is split, the generator x,_, maps to the matrix (} ¥) instead of () }). This adds an extra
variable but does not change the relation coming from [39, equation (261)].) Thus Rg‘ [1/p] is normal.

Hence, RE‘ [1/p] is a product of normal domains, and if the absolutely irreducible locus were not
dense, there would be a component without absolutely irreducible points. (Let / be the ideal of Rg
generated by the matrix entries of (p®(gh) — p°(hg))?> for all g, h € %q, - Then a specialisation of
p" at x € m-Spec Rg[l /p] is absolutely irreducible over x(x) if and only if x ¢ V(I). Thus if an
irreducible component of RE‘ [1/p] contains an absolutely irreducible point, then such points are dense
in the component.) In the course of the proof of Proposition A.11, we have shown that RP*[1/p] is a
subring of Rg [1/p]. Thus there would exist an irreducible component of RP*[1/p] without absolutely
irreducible points. This would contradict [17, Theorem 2.1]. ]

Corollary A.14. If & = Gy, then RPY[1/p], R*[1/p] and the corresponding rigid analytic spaces
are normal for all semisimple 2-dimensional p.

Proof. The assertion follows from Proposition A.13, Theorem A.1 and Corollary A.10. O
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