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Abstract. This paper reviews a series of investigations of the orbits of stars in the regions of the Lindblad 
resonances of a spiral galaxy. The analysis is formulated in an epicyclic approximation. Analytic solutions 
of the epicyclic equations of motion are obtained by the method of harmonic balance of Bogoliubov and 
Mitropolsky. These solutions represent the resonance phenomena exhibited by the orbits in generally 
excellent agreement with numerical solutions. 

1. Introduction 

In recent years, it has become apparent that the clarification of important aspects 
of the dynamics of spiral structure in galaxies would require a systematic study of 
stellar orbits in the regions of the so-called Lindblad resonances. In a series of in­
vestigations (Vandervoort, 1973, 1975; Vandervoort and Monet, 1975), it has been 
possible to formulate an analytic theory of these orbits in an epicyclic approxima­
tion, to test this theory with the aid of numerical solutions of the epicyclic equations 
of motion, and to make use of these analytic and numerical studies in order to survey 
the resonance phenomena exhibited by the orbits. Apart from its applications to 
problems of spiral structure, the work is of interest, because it deals with a relatively 
simple dynamical system which exemplifies important features of the study of reso­
nant orbits in stellar dynamics. 

2. The Epicyclic Theory of the Orbits 

Specifically, we consider the orbit of a star in the plane of a galaxy in which the pre­
vailing gravitational potential is a superposition of a dominant axisymmetric com­
ponent and a small non-axisymmetric perturbation of the form 

®(m,9) = Wa)(w) + Re[Wl\w) exp(im9)~] 
= » ( f l ) H + »(1)(m,0), (say), ( } 

where m is an integer. Here w and 9 are the radial and azimuthal coordinates of the 
star, respectively, in a frame of reference rotating uniformly with angular velocity Q. 
The canonical momenta conjugate to these coordinates are the m-component of the 
velocity 77 and the angular momentum h, respectively. We introduce epicyclic vari­
ables mu #!, nu and hl9 by referring the motion of the star to a circular orbit in the 
potential 33(a)(m). Let the circular orbit have a radius w0 and an initial azimuthal co­
ordinate 0O, and let Q0 — Q denote its angular velocity (in the rotating frame) and h0 
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its angular momentum. The epicyclic variables are defined by the relations 

ro = fn0 + tn1, 8 = 0o + (Qo-Q)t + 0l9 

n = nl9 and h = h0 + hl9 

where t denotes the time. 
In the epicyclic approximation, the equations of motion happen to be the canon­

ical equations associated with the Hamiltonian 

^l« l+^—2 
w0 ztn0 

ffi=iJI?+±©2ro; - G 7 A + — ^ + 9 3 ( 1 V , 0 ) , (3) 

where co is the epicyclic frequency, the arguments of 95(1) are interpreted in accordance 
with Equations (2) and 77x and hx are the canonical momenta conjugate to the co­
ordinates wl and 0l9 respectively. The quantity 

H£ = H1+(fl0-Q)fci (4) 

is an exact integral of these equations of motion, and this integral expresses (in the 
epicyclic approximation) the constancy of Jacobi's integral. The Hamiltonian char­
acter of the epicyclic equations and the existence of an exact integral of those equa­
tions which is both approximate and analogous to Jacobi's integral ensure that the 
epicyclic theory will provide a good model of the orbits. 

For the sake of definiteness, we shall concentrate on the orbits in the region of 
the inner Lindblad resonance where the quantity 

m(Q0-Q) 
v = (5) 

co 

has the value + 1 . A similar treatment applies to the region of the outer resonance 
where v= — 1. 

The epicyclic equations are solved by the method of harmonic balance (Bogoliubov 
and Mitropolsky, 1961). This is a perturbation theory in the amplitude of 93(1)(m, 9). 
The essence of the method is the manner in which it allows for large perturbations 
of the amplitudes and phases of the epicyclic motion by the resonance. The solution 
is written in the form 

i&i =ro10(t) sin[vc»t + p(*)]+—=—Jiio(0+'"-> (6) 
CO &Q 

2Qa 
0 i = ro10Wcos[vcor + ^(r)] + e 1 o ( t ) + - , (7) 

cow0 and 
*i = M 0 + -> (8) 

where we are showing only the dominant terms, and we are omitting the solution 
for n1 as inessential to the present discussion. The functions ml0(t), q>(t), hl0(t\ and 
910(t), satisfy certain differential equations which are determined by a requirement 
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that the time-dependence of these functions gives rise to terms in the equations of 
motion which just balance the resonant parts of the perturbing forces. This proce­
dure eliminates terms with small denominators and secular terms which appear in 
solutions obtained with the aid of more conventional perturbation theories. 

With the solutions which are obtained for m10(f), cp(t\ h10(t), and 01O(r), Equations 
(2), (6), (7), and (8), reproduce, at least qualitatively, all of the resonance phenomena 
which Contopoulos (1970) has found in numerical solutions for the orbits. (1) There 
are solutions in which m10, hl0, and the linear combination m910 + q>, are all con­
stants. In this case the circular and epicyclic motions are commensurate, and the 
orbits are periodic. Both stable and unstable periodic orbits are represented. (2) There 
are solutions in which m10, h10, and m0lo + q>, are all periodic functions of time. 
These solutions represent tube orbits which oscillate around stable periodic orbits. 
The circular and epicyclic motions are commensurate only in the sense of a long­
time average. (3) Finally, there are solutions in which w10 and hl0 are periodic func­
tions of time whereas m610 + q> is a superposition of periodic and linear functions of 
time. In this case, the circular and epicyclic motions are not commensurate even in 
the sense of a long-time average. These solutions represent non-resonant orbits. 

The solution of the epicyclic equations along these lines leads to the construction 
of a formal, isolating integral of the motion in addition to the integral of the Jacobi 
type given in Equation (4). Near the inner Lindblad resonance, the new integral is 
of the form 

/ = hl0 + ̂ ma>m\0 + • • • (9) 

through its dominant terms. 

3. The Comparison of Analytic and Numerical Solutions of the 
Epicyclic Equations of Motion 

We have compared the analytic solutions of the epicyclic equations with numerical 
solutions in case 

3Sil)(w) = Aexp(ikm) (10) 

in the perturbation in Equation (1), where the amplitude A and the wavenumber k 
are complex constants. This choice of the form of the perturbation reduces the Ham-
iltonian given in Equation (3) to a well-defined model problem suitable for systematic 
numerical tests of the analytic theory. Moreover, it is of a form which is appropriate, 
at least locally, for a tightly-wound spiral pattern. For the latter reason, the calcula­
tions performed in the comparison of analytic and numerical solutions also provide 
a useful survey of the resonance phenomena. 

It is actually the surfaces of section derived from corresponding families of an­
alytic and numerical solutions which have been compared. In the case at hand, a 
surface of section is essentially the (w, J7)-plane for a fixed value of Jacobi's integral 
(Contopoulos, 1970). A given orbit is represented in the surface of section by points 
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defined by the pairs of values (m, 77) which occur when the azimuthal coordinate 9 
returns to a specified value 0h say. If the orbit is one for which the equations of 
motion admit a second isolating integral, in addition to Jacobi's integral, then these 
points lie on a simple closed contour called an invariant curve. 

In Figure 1, we compare the analytic and numerical versions of a particular sur­
face of section. This example is representative of the situations which might occur 
in the Galaxy. The important parameters of the problem have been assigned the 
values Q0 = 0.65, m = 2, v = 0.93, and k = 20 — 2i, where we have adopted w0 as the unit 
of length and a>~x as the unit of time. The value of A is chosen so that the amplitude 
of the spiral component of the field is 5% of the strength of the axisymmetric com­
ponent. The choice of the values of xu0 and Jacobi's integral is such that HE = 0 (see 
Equation (4)). 

The main features of this surface of section are three stable periodic orbits, their 
associated families of tube orbits, and two unstable periodic orbits. The analytic and 
numerical versions agree very well in the representation of these features. Solid con­
tours represent well-defined invariant curves in both versions. All orbits have well-
defined invariant curves in the analytic theory in virtue of the existence of the second 
isolating integral. While most orbits are found numerically to have well-defined in­
variant curves, a few do not. In the numerical version of the surface of section, orbits 
without invariant curves are represented schematically by dashed contours. The first 
three dashed contours, as we count outward from the central periodic orbit, repre­
sent orbits which form islands in the surface of section. One such system of island, 
corresponding to the innermost dashed contour in Figure 1, is shown in Figure 2. 
The remaining two dashed curves in Figure 1 represent invariant curves which have 
dissolved as a consequence of their proximity to the unstable periodic orbit which 
lies between them. The two dissolved invariant curves are shown in Figures 3 and 4. 

Fig. 1. The surface of section described in the text as derived from analytic and numerical solutions of 
the epicyclic equations. Note that in this and the following figures the ro-axis has been labeled with the 

values of m — w0 (—w— 1 in the adopted system of units). 
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Fig. 2. An example of a system of islands. 
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Fig. 3. An example of the dissolution of an invariant curve. 
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Fig. 4. An example of the dissolution of an invariant curve. 
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Fig 5. An example of a well-defined invariant curve. 

https://doi.org/10.1017/S0074180900015576 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900015576


RESONANT STELLAR ORBITS IN SPIRAL GALAXIES 243 

Finally, we show in Figure 5 the points in the surface of section representing an orbit 
which is judged to have a well-defined invariant curve. 

The results described above are typical of what have been obtained under a wide 
range of conditions. However, two points should be noted. First, it is more commonly 
the case that a surface of section will contain only two stable periodic orbits, their 
associated families of tube orbits, and only one unstable periodic orbit. Secondly, 
when we reduce the amplitude of the perturbation by a factor 10, as may be appro­
priate if the spiral structure is damped in the resonance region, the numerical results 
show no detectable tendency for the dissolution of invariant curves or for the forma­
tion of islands. 

4. Concluding Remarks 

(1) The solutions of the epicyclic equations obtained by the method of harmonic 
balance account for the main resonance phenomena in a simple and natural manner. 
The agreement of analytic and numerical solutions is very good, especially when one 
considers that the analytic solutions used in these comparisons were truncated at the 
lowest order of approximation. 

(2) The construction of two isolating integrals of the motion is an important aspect 
of the theory. It is in terms of such integrals that one would hope to incorporate the 
resonance phenomena into the dynamics of spiral structure. 

(3) The tendency for the dissolution of invariant curves and for the formation of 
islands is more fully developed than might have been expected for the perturbations 
considered. However, these phenomena do not appear to be so fully developed that 
they would vitiate applications of the analytic theory to the dynamics of spiral 
structure. 

(4) The qualitative agreement of the present results, all obtained at the level of the 
epicyclic approximation, with the properties of numerical solutions of the exact 
equations of motion (Contopoulos, 1970) confirm the validity of the epicyclic orbits 
as models of the exact orbits. However, more quantitative comparisons are of prac­
tical interest, and they will be made. 
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DISCUSSION 
Contopoulos: I was glad to check that Dr Vandervoort's results about the new integral near the inner 
Lindblad resonance agree with mine (Astrophys. J. 160, 113, 1970). Perhaps the most simple way to de­
scribe these resonance phenomena is by using action-angle variables (introduced in spiral structure theory 
by Kalnajs and Lynden-Bell). In these variables the Hamiltonian takes the form 

H=a)lIl+a>2I2+f2l(Il, / 2 ) c o s ( 0 i - 2 0 2 ) + higher order terms. 

Near the resonance we can use canonical changes of variables to eliminate all trigonometric terms ex­
cept those containing the combination (6l—292). Thus we find a resonant integrable case of the type dis­
cussed earlier this morning. 

It is easy to see that the combination J2 = I2 + 2Il is an integral of motion. This is the appropriate 
adiabatic invariant near resonance, while / t and I2 separately are not. 

I will discuss this problem further at the Paris Meeting next week. 
Vandervoort: The problem is one in two degrees of freedom. Therefore, the epicyclic motion is de­

scribed in terms of two amplitudes and two phases. However, the construction of the second integral 
involves only a linear combination of the phases, and this is precisely your linear combination of angle 
variables. 

Lynden-Bell: I would like to point out the physical reason for the constant of the motion at resonances. 
If one looks in the axes rotating with the spiral wave the resonant orbits exactly close and the near res­
onant orbits move slowly. The circulation around the orbits is rapid compared with the slow movement 
of the near resonant orbit so the action corresponding to that circulation is adiabatically invariant. This 
adiabatic invariant is the constant of the motion. Born in his book The Mechanics of the Atom shows a 
beautiful method of treating all these problems in Angle and Action variables and combining them into 
slow and fast changing variables near resonances. This is the best way of treating this problem. 

Contopoulos: I would only like to add that the appropriate adiabatic invariant is a different combina­
tion of Ix and 12 at each resonance. 

Colin: Have you made some identical work for corotation resonance ? 
Vandervoort: No, I have not. I suspect that the method might encounter difficulties near the corotation 

point. 
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