
Adv. Appl. Prob. 42, 994–1012 (2010)
Printed in Northern Ireland

© Applied Probability Trust 2010

GAUSSIAN PHASES IN GENERALIZED
COUPON COLLECTION

HOSAM M. MAHMOUD,∗ The George Washington University

Abstract

In this paper we consider a generalized coupon collection problem in which a customer
repeatedly buys a random number of distinct coupons in order to gather a large number n
of available coupons. We address the following question: How many different coupons
are collected after k = kn draws, as n → ∞? We identify three phases of kn: the
sublinear, the linear, and the superlinear. In the growing sublinear phase we see o(n)

different coupons, and, with true randomness in the number of purchases, under the
appropriate centering and scaling, a Gaussian distribution is obtained across the entire
phase. However, if the number of purchases is fixed, a degeneracy arises and normality
holds only at the higher end of this phase. If the number of purchases have a fixed range,
the small number of different coupons collected in the sublinear phase is upgraded to
a number in need of centering and scaling to become normally distributed in the linear
phase with a different normal distribution of the type that appears in the usual central
limit theorems. The Gaussian results are obtained via martingale theory. We say a few
words in passing about the high probability of collecting nearly all the coupons in the
superlinear phase. It is our aim to present the results in a way that explores the critical
transition at the ‘seam line’between different Gaussian phases, and between these phases
and other nonnormal phases.

Keywords: Urn model; random structure; martingale; central limit theorem; coupon
collection
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1. Classical coupon collection

Combinatorial problems underlying coupon collection procedures became popular in the
1930s, when the Dixie Cup ice cream company sold ice cream cups with a cardboard cover that
had hidden on the underside a coupon (such as the picture of a well-known baseball player).
The idea in this marketing strategy was to encourage fans, mostly young boys, to go for more
purchases to complete a set of pictures and receive some kind of reward. The underlying
structure is the following. A purchase of a certain product is awarded with one of n distinct
equally likely coupons. When a coupon is collected, the purchaser keeps it, and the company
replaces the product in the market. The classical problem deals with the waiting time (in terms
of the number of purchases) until a purchaser collects all n different coupons.

Coupon collection can be visualized in terms of schemes of drawing balls from urns. For
example, we can think of the problem as an urn containing n balls, of n different colors, sampled
repeatedly with replacement. The classical question is: How many draws are necessary to
observe the n colors? A second helpful scheme is that of an urn containing white and red balls:
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at any stage, the white balls represent unobserved coupons and the red balls represent coupons
that have already appeared in a previous draw. At each stage a ball is picked; if the sampled
ball is red, we put it back in the urn. If the sampled ball is white, paint it red and put it back in
the urn. In this scheme the classical question becomes: How many draws are necessary for an
all white urn to become all red for the first time?

2. Generalized coupon collection and questions about urn composition at different stages

Coupon collection problems have a long history and can be traced back to Laplace and
De Moivre. Stadje (1990) provided a good background to the history of the problem and posed
additional nonclassic questions. We will focus on the generalized coupon collection problem
and the more recent bibliography related to it.

A generalized form of the classical coupon collector’s problem assumes that the customer
purchases a random number, S ≥ 1, of items each time and that the company guarantees that the
S associated coupons are distinct. The customer obtains S coupons at each purchase, of which
some or all may already be in his/her possession. The classical coupon collection problem
corresponds to the case in which S ≡ 1. The generalized problem was addressed in Sellke
(1995) and Adler and Ross (2001). For a review of its scope, see Kobza et al. (2007).

The average waiting time till all n coupons are collected has been investigated in the literature.
Pólya (1930) tackled the problem and provided a formula, for fixed S, for the average waiting
time till all the coupons are collected. For a large number, n, of coupons, the formula is
unwieldy—it is difficult to compute as it contains a sum of very large terms with alternating
signs, for which Pólya (1930) worked out an alternative approximation. Johnson and Sellke
(2010) and Ivchenko (1998) dealt with a more general setup, in which at each purchase a random
number, S, of items is obtained, and the realizations of S at each purchase are independent,
identically distributed random variables. For this generalized version, Johnson and Sellke
(2010) and Ivchenko (1998) also obtained exact formulae and various approximations for the
average waiting time.

In our investigation we consider the case of random S, 1 ≤ S ≤ n, but we address a set of
issues other than waiting times. The application we have in mind is that of a family with three
boys, say, who purchases three ice cream cups most of the time. Occasionally, one of the boys
may want something else or the boys are in the company of a few friends and the mother treats
everybody. A random S distributed on a small range suits this model. For transparency, we
will present the results for S with a distribution on {1, 2, . . . , s} for fixed s, and only mention
in the concluding remarks possible extensions that cover larger ranges.

We ask about the number of different coupons collected after a certain number of purchases.
This question is of interest to market planners. For example, knowing that there are n coupons,
a family may be willing to allocate a budget for at most 4n purchases, hoping that they will
collect most of the coupons.

An underlying urn has the following scheme. White balls represent uncollected coupons
and red balls represent collected coupons. Initially, there are n white balls in the urn. A sample
of size S is taken out of the urn without replacement and the white balls in it are recolored red.
The entire sample is then returned to the urn. The process is then repeated k times, and at each
step an independent copy of S is generated for the sample size. We refer to the picking out of a
sample of size S as a sample draw. In terms of the urn, we are interested in the number of red
balls present in the urn after a certain number of sample draws. In other words, what is the urn
composition after say k sample draws? We allow k to depend on n and the question we ask is:
How many red balls are in the urn after k := kn sample draws, as n → ∞?
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We point out here that the set of S balls is drawn without replacement, meaning that the S

balls are obtained randomly, one at a time, and an extracted ball is kept out of the urn until
all the other members of a sample draw are taken from the urn. In other words, the sample is
obtained by drawing a ball at random from among the n balls in the urn and setting it aside,
then a second ball is drawn at random from among the remaining n − 1 balls in the urn and set
aside, and so forth until a sample of size S is obtained, at which point the white balls in the urn
are colored red and the whole sample is put back in the urn.

We will identify three phases of kn:

(a) the sublinear phase, when kn = o(n);

(b) the linear phase, when kn ∼ αnn for some αn > 0 of a magnitude bounded from above
and below;

(c) the superlinear phase, when n = o(kn).

Trivially, for the sublinear phase, the different coupons collected are relatively few. When S

has genuine variability (positive variance), there is enough dispersion via the variability in the
sample, when kn goes sublinearly to ∞, to warrant normality under appropriate centering and
scaling. However, when S is deterministic, variability for normality comes from an extended
number of draws, and kn has to be sufficiently high to achieve this. For fixed S, normality
(under appropriate centering and scaling) is reached at the upper end of the sublinear phase,
when

√
n = o(kn), and kn = o(n) still. In the linear phase centering and scaling by

√
nvn

(where nvn, with vn nonzero but O(1), is the asymptotic variance), as is usually the case in
central limit theorems, give a different limiting Gaussian distribution. In the superlinear phase
almost all the coupons are collected with high probability. In all the Gaussian phases identified
the results are proved via martingale theory. We are able to extend several of these results to
cases with a large (deterministic and random) number of purchases.

The rest of this paper has the following organization. Section 3 contains a brief description
of the notation used throughout. In Section 4 we set up exact formulae, starting from an exact
stochastic recurrence and ending with an exact calculation of the mean and variance of the
number of white balls after n sample draws. In Section 5 we derive the underlying martingale.
In Section 6 we discuss the three phases, the sublinear, the linear, and the superlinear, with a
subsection devoted to each phase. The concluding remarks in Section 7 give interpretations for
how the results in different phases conjoin at the ‘seam lines’. The last of the remarks connect
this work to areas of research in graph theory and occupancy problems.

3. Notation

At each sample draw a set of S balls is drawn from the urn, with 1 ≤ S ≤ sn ≤ n, and S has
a discrete distribution on the set {1, 2, . . . , sn}. The random sample size S is independent of
the urn content and all past sample sizes. In other words, we generate a sequence S1, S2, . . .

of independent random variables having the distribution of S, and use Si as the sample size in
the ith stage.

We will give the full exposition for sn = s fixed, and only mention in the concluding remarks
extensions to cases with increasing sn. For fixed sn = s, we denote the mean and variance of
S by µS and σ 2

S .
Throughout, we will use the following standard probability notation. We denote the normally

distributed random variate with mean 0 and variance ν2 by N (0, ν2). We use the symbols ‘
d−→’,

‘
p−→’, and ‘

a.s.→’ respectively for convergence in distribution, convergence in probability, and
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almost-sure convergence, and use ‘
L=’ to denote exact equality in law. The notation oL1(g(n))

will stand for a sequence of random variables that is o(g(n)) in the L1 norm, that is, when we
describe a sequence of random variables Xn to be oL1(g(n)), we mean that E[|Xn|]/g(n) → 0.

Let Hypergeo(N, m, a) be a hypergeometric random variable that represents the number of
amber balls in a sample of m balls drawn at random (all subsets of size m being equally likely)
from an urn containing a total of N amber and black balls, of which a are amber. The mean
and variance for this standard distribution are given by

E[Hypergeo(N, m, a)] = am

N
, (1)

var[Hypergeo(N, m, a)] = am(N − a)(N − m)

N2(N − 1)
. (2)

Unless otherwise stated, all asymptotics will mean asymptotic equivalents and bounds as
n → ∞. The number n/(n − µS) will appear often, and we will give it the designation ρn.
We will repeatedly use well-known facts about ρ

yn
n for y > 0, such as the fact that ρ

yn
n is

asymptotically eµSy + O(1/n).
We will also need the backward difference operator ∇, which, when applied to a function

h(i), with integer argument i, gives the difference between two successive steps, that is, ∇h(i) =
h(i) − h(i − 1). The indicator 1E is a function of a sample space that assumes the value 1 if E
occurs and 0 otherwise.

4. Exact moments

In the generalized coupon collection problem there are initially n balls in the urn. We
sample S, 1 ≤ S ≤ s, balls at a time and return them to the urn with all white balls in the
sample recolored red. Let Rj be the number of red balls (collected coupons) and let Wj be the
number of white balls (uncollected coupons) after j such sample draws. For any j ≥ 0, we
have Rj + Wj = n. There is stochastic dependence between Wj−1 and Wj . After j sample
draws, the number of white balls in the urn is equal to the number of white balls after the
(j − 1)th draw minus ωj , the number of white balls that are recolored red. Given S and Wj−1
(which are independent), the number of white balls appearing in the j th sample is distributed
as Hypergeo(n, S, Wj−1). Hence,

Wj = Wj−1 − ωj , (3)

with
(ωj | Wj−1, S)

L= Hypergeo(n, S, Wj−1). (4)

It follows from the stochastic recurrence (3) and the conditional hypergeometric distribu-
tion (4) of ωj (the mean of which is given in (1)) that

E[Wj ] = E[Wj−1] − E[ωj ]
= E[Wj−1] − E[E[ωj | Wj−1, S]]
= E[Wj−1] − E

[
SWj−1

n

]

= E[Wj−1] − 1

n
E[S] E[Wj−1]

=
(

1 − µS

n

)
E[Wj−1]
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=
(

1 − µS

n

)2

E[Wj−2]
= · · ·

=
(

1 − µS

n

)j

n, (5)

where in the final step we used the initial condition W0 = n.
The second moment, and subsequently the variance, also follows from (3) in its squared

form:
W 2

j = W 2
j−1 − 2ωjWj−1 + ω2

j .

Upon taking the conditional expectation (given Wj−1 and S), we obtain

E[W 2
j | Wj−1, S] = W 2

j−1 − 2Wj−1 E[ωj | Wj−1, S] + E[ω2
j | Wj−1, S].

Then, (ωj | Wj−1, S) has the distribution of a Hypergeo(n, S, Wj−1) random variable, for
which the mean and variance are given by the standard forms (1) and (2). If we substitute these
forms into the last equality and simplify, we obtain

E[W 2
j | Wj−1, S] = (n − S)(n − S − 1)

n(n − 1)
W 2

j−1 + S(n − S)

n(n − 1)
Wj−1.

The second unconditional moment follows from the last equation by taking its expectation,
yielding the recurrence

E[W 2
j ] = E

[
(n − S)(n − S − 1)

n(n − 1)

]
E[W 2

j−1] + E

[
S(n − S)

n(n − 1)

]
E[Wj−1],

which has the solution

E[W 2
j ] = n

[
(n − 1)

(
(n − µS)(n − µS − 1) + σ 2

S

n(n − 1)

)j

+
(

n − µS

n

)j]
.

Therefore, the variance is

var[Wj ] = n

[
(n − 1)

(
(n − µS)(n − µS − 1) + σ 2

S

n(n − 1)

)j

+
(

n − µS

n

)j]
−

(
n − µS

n

)2j

n2.

(6)

5. A martingale underlying the urn scheme

Let Fj be the sigma field generated by the first j sample draws. This sigma field contains
all the information that can be gleaned from j sample draws. With (ωj | Wj−1, S) having the
distribution of Hypergeo(n, S, Wj−1), with average SWj−1/n (as given in (1)), we obtain

E[Wj | Fj−1] = Wj−1 − E[ωj | Fj−1] =
(

1 − µS

n

)
Wj−1.

It then immediately follows that

Yj =
(

n

n − µS

)j

Wj = ρ
j
nWj

is a martingale.
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The fact that Yj is a martingale is key to proving central limit theorems in all the Gaussian
phases. We will deal with the centered martingale

Ỹj = Yj − n

(which has mean 0) to employ the martingale central limit theorem, which requires calculations
on a zero-mean martingale. Sufficient conditions for the central limit theorem for a zero-mean
martingale Xj,n are the conditional Lindeberg condition and the conditional variance condition
on the martingale differences ∇Xj,kn = Xj,kn − Xj−1,kn ; see Theorem 3.2 and Corollary 3.1
of Hall and Hyde (1980, p. 58).

Specifically, in our case, the conditional Lindeberg condition requires that, for some positive
increasing sequence λn and all ε > 0,

Un :=
kn∑

j=1

E

[(∇Ỹj

λn

)2

1{|∇Ỹj /λn|>ε}

∣∣∣∣ Fj−1

]
p−→ 0, (7)

and a Z-conditional variance condition requires that

Vn :=
kn∑

j=1

E

[(∇Ỹj

λn

)2 ∣∣∣∣ Fj−1

]
p−→ Z. (8)

When both conditions hold, the sum
∑kn

j=1 ∇Ỹj /λn = (Ykn − Y0)/λn = (Ykn − n)/λn con-
verges to a mixture of normally distributed random variables with characteristic function
E[exp(−Zt2/2)]. When Z is the constant c2, the mixture is simply the N (0, c2) random
variable.

To derive a martingale central limit theorem in any of the phases, we need to identify
the appropriate scale λn for that phase. For calculations involved in Lindeberg’s conditional
condition, we need E[(∇Ỹj )

2 | Fj−1] (see the definition of Vn in (8)); we find that

E[(∇Ỹj )
2 | Fj−1] = E[(ρj

nWj − ρ
j−1
n Wj−1)

2 | Fj−1]
=

(
E

[
(n − S)(n − S − 1)

n(n − 1)

]
ρ

2j
n − 2 E

[
n − S

n

]
ρ

2j−1
n + ρ

2j−2
n

)
W 2

j−1

+ E

[
S(n − S)

n(n − 1)

]
ρ

2j
n Wj−1

= (σ 2
S − µS)n + µ2

S

n2(n − 1)
ρ

2j
n W 2

j−1 + µSn − µ2
S − σ 2

S

n(n − 1)
ρ

2j
n Wj−1.

Summarizing, we construct Vn as

Vn = (σ 2
S − µS)n + µ2

S

λ2
nn

2(n − 1)

kn∑
j=1

ρ
2j
n W 2

j−1 + µSn − µ2
S − σ 2

S

λ2
nn(n − 1)

kn∑
j=1

ρ
2j
n Wj−1. (9)

6. Phases during long-term drawing

Imagine indefinitely drawing from the urn according to the rules. Many stochastic paths
will deplete the white balls after some time, and the urn will remain all red after a number of
sample draws. We will see that, as the drawing continues, the process experiences different
phases.
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6.1. The sublinear phase

Suppose that 0 ≤ kn = o(n). Trivially, at most skn = o(n) white balls can turn red, and
n − skn ≤ Wkn ≤ n. Thus,

Wj = n + O(kn) (10)

for each 0 ≤ j ≤ kn, and
Wkn

n

a.s.→ 1. (11)

Lemma 1. In the sublinear phase the absolute differences |∇Ỹj | are uniformly bounded for
all n greater than some integer N0.

Proof. Consider 1 ≤ j ≤ kn = o(n). For large enough n (greater than some N0 > 2s),

ρ
j−1
n =

(
n

n − µS

)j−1

≤ 2.

Take n > N0, and write the absolute differences as

|∇Ỹj | = |(Yj − n) − (Yj−1 − n)|
= ρ

j−1
n |ρn(Wj−1 − ωj ) − Wj−1|

≤ 2|(ρn − 1)Wj−1 − ρnωj |
≤ 2

((
n

n − µS

− 1

)
Wj−1 + n

n − µS

ωj

)
.

The number of white balls at any stage is at most n, and the change (the reduction by ωj ) is at
most s. Then it follows that

|∇Ỹj | ≤ 2
2sn

n − µS

≤ 8s.

This completes the proof.

By appropriate centering and scaling, we can refine the strong law in (11) and find that,
for σ 2

S > 0, its rate of convergence is a Gaussian random variable across the entire growing
sublinear phase (kn → ∞ and kn = o(n)). For the degenerate case of fixed purchases each
time (S = s, that is, σ 2

S = 0), the argument breaks down for kn of the order
√

n (or lower), and
a different Gaussian random variable takes over as the limit when

√
n = o(kn) and kn = o(n);

we call this phase the upper sublinear phase. By contrast we call the rest of the sublinear range
the lower sublinear phase. In the lower sublinear phase kn may grow to ∞, or stay bounded. We
call the lower sublinear phase in which kn → ∞ the growing lower sublinear phase. We refer
to the growing lower sublinear phase and the upper sublinear phase as the growing sublinear
phase.

Theorem 1. Let Rkn be the number of collected coupons (red balls in the urn) after kn purchases
(sample draws from the urn), where kn is in the growing sublinear phase. Then,

(a) if σ 2
S > 0,

Rkn − n + (1 − µS/n)knn√
kn

d−→ N (0, σ 2
S );
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(b) in the case where the number of purchases at each step is fixed at s (the sample draws
are of fixed size s, with σ 2

S = 0), a Gaussian law holds in the upper sublinear phase:

Rkn − n + (1 − s/n)knn

kn/
√

n

d−→ N

(
0,

1

2
s2

)
.

Mikhaǐlov (1980) considered similar cases to Theorem1(b) using the method of moments.
We present a proof via martingales, which can be generalized to the case of a large number of
purchases (deterministic but growing with n).

Proof of Theorem 1. (a) Assume that σ 2
S > 0, and that kn grows to ∞ in any sublinear

manner (kn = o(n)). For this sublinear phase, take the scale factor λn = √
kn. Recall the

expressions for Un (cf. (7)) and Vn (cf. (8)). The proof will be complete if we show that Un

converges to 0 in probability and Vn converges to σ 2
S in probability.

For the conditional Lindeberg condition, we have the uniform upper bound of 8s for |∇Ỹj |
for all n greater than some N0 > 2s (see Lemma 1). Therefore, for any ε > 0,

Un =
kn∑

j=1

E

[(∇Ỹj√
kn

)2

1{|∇Ỹj /
√

kn|>ε}

∣∣∣∣ Fj−1

]
,

where the sets {|∇Ỹj | > ε
√

kn} are all empty, for all n greater than some n0(ε) > N0. For
large n, we have

Un =
n0(ε)∑
j=1

E

[( ∇Ỹj√
kn

)2

1{|∇Ỹj /
√

kn|>ε}

∣∣∣∣ Fj−1

]

≤ 1

kn

n0(ε)∑
j=1

E[(∇Ỹj )
2 | Fj−1]

≤ 64s2n0(ε)

kn

→ 0 as n → ∞.

Hence, the conditional Lindeberg condition is verified in the entire growing sublinear phase.
In (9) replace Wj−1 by the asymptotic equivalent in (10) to obtain

Vn = (σ 2
S − µS)n + µ2

S

λ2
nn

2(n − 1)

kn∑
j=1

ρ
2j
n (n + O(kn))

2 + µSn − µ2
S − σ 2

S

λ2
nn(n − 1)

kn∑
j=1

ρ
2j
n (n + O(kn))

= σ 2
S

kn

(
1 + O

(
kn

n

)) kn∑
j=1

ρ
2j
n .

The geometric series An = ∑kn

j=1 ρ
2j
n can be asymptotically summed as follows:

An = (n/(n − µS))2kn+2 − 1

(n/(n − µS))2 − 1
− 1

= (n − µS)2

µS(2n − µS)
(e(2kn+2) ln(n/(n−µS)) − 1) − 1
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= (n − µS)2

µS(2n − µS)

((
1 + 2µSkn

n
+ O

(
k2
n

n2

))
− 1

)
− 1

= kn + o(kn). (12)

It follows that

Vn = σ 2
S

kn

(
1 + O

(
kn

n

))
(kn + o(kn)) → σ 2

S .

Hence, the σ 2
S -conditional variance condition is verified in the entire growing sublinear phase.

With both conditions checked, the martingale central limit theorem gives

kn∑
j=1

(∇Ỹj√
kn

)
= Ykn − Y0√

kn

d−→ N (0, σ 2
S ).

Subsequently, we write

ρ
kn
n Wkn − ρ0

nn√
kn

= (n/(n − µS))knWkn − n√
kn

d−→ N (0, σ 2
S ).

Using the fact that (n/(n − µS))−kn converges to 1 in the growing sublinear phase and an
application of Slutsky’s multiplicative theorem (see Karr (1993, p. 147)), we obtain

Wkn − (n/(n − µS))−knn√
kn

d−→ N (0, σ 2
S ).

Theorem 1(a) follows in its stated form from the relation Rkn + Wkn = n.
(b) Suppose that S = s deterministically (that is, σ 2

S = 0). Assume that
√

n = o(kn) and
kn = o(n). Recall the expressions for Un (cf. (7)) and Vn (cf. (8)). For this sublinear phase,
take the scale factor λn = kn/

√
n. The proof will be complete if we show that Un converges to

0 in probability and Vn converges to s2/2 in probability.
For the conditional Lindeberg condition, we have the uniform upper bound of 8s for |∇Ỹj |

for all n greater than some N0 > 2s (see Lemma 1). Therefore, for any ε > 0,

Un =
kn∑

j=1

E

[( ∇Ỹj

kn/
√

n

)2

1{|∇Ỹj /(kn/
√

n)|>ε}

∣∣∣∣ Fj−1

]
,

where the sets {|∇Ỹj | > εkn/
√

n} are all empty, for all n greater than some n′
0(ε) > N0. For

large n, we have

Un =
n′

0(ε)∑
j=1

E

[( ∇Ỹj

kn/
√

n

)2

1{|∇Ỹj /(kn/
√

n)|>ε}

∣∣∣∣ Fj−1

]

≤ n

k2
n

n′
0(ε)∑

j=1

E[(∇Ỹj )
2 | Fj−1]

≤ 64s2n′
0(ε)n

k2
n

→ 0 as n → ∞.

Hence, the conditional Lindeberg condition is verified in the upper sublinear phase.
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An asymptotic analysis of the exact variance formula (6) shows that in this upper sublinear
phase the variance is of order k2

n/n. By Chebyshev’s inequality, for any 0 ≤ j ≤ kn and any
ε > 0, we have

P(|Wj − E[Wj ]| > εkn) ≤ var[Wj ]
ε2k2

n

= O(k2
n/n)

ε2k2
n

= O

(
1

n

)

→ 0.

Whence, (Wj − E[Wj ])/kn
p−→ 0, and we have the asymptotic representation

Wj =
(

1 − s

n

)j

n + oP(kn) = n − sj + oP(kn) (13)

for all 0 ≤ j ≤ kn.
In (9) replace Wj−1 by the asymptotic equivalent in (13) to obtain

Vn = (σ 2
S − µS)n + µ2

S

λ2
nn

2(n − 1)

kn∑
j=1

ρ
2j
n (n − s(j − 1) + oP(kn))

2

+ µSn − µ2
S − σ 2

S

λ2
nn(n − 1)

kn∑
j=1

ρ
2j
n (n − s(j − 1) + oP(kn))

= s(n − s)

(n − 1)k2
n

(
s

kn∑
j=1

jρ
2j
n + oP(kn)

kn∑
j=1

ρ
2j
n

)
;

here there are two sums of geometric series type:

Bn =
kn∑

j=1

jρ
2j
n and An =

kn∑
j=1

ρ
2j
n ,

with An already handled in (12), where it was shown that An = O(kn).
The factor Bn is more delicate to analyze owing to multiple cancellations that necessitate

we go further with local expansions:

Bn = ρ2
n

ρ
2kn
n (kn(ρ

2
n − 1) − 1) + 1

(ρ2
n − 1)2

= n2

s2(2n − s)2

((
n

n − s

)2kn

[skn(2n − s) − (n − s)2] + (n − s)2
)

= n2

s2(2n − s)2

((
1 + 2skn

n
+ s2kn

n2 + 2s2k2
n

n2 + O

(
kn

n3

))

× [skn(2n − s) − (n − s)2] + (n − s)2
)

= 1
2k2

n + O(kn).
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Putting it all together we see that

Vn = s(n − s)

(n − 1)k2
n

(sBn + AnoP(kn))

= s

k2
n

(1 + o(1))

[
s

(
1

2
k2
n + O(kn)

)
+ oP(k2

n)

]

→ 1
2 s2.

Hence, the 1
2 s2-conditional variance condition is verified in the upper sublinear phase.

With both conditions checked, the martingale central limit theorem gives

kn∑
j=1

( ∇Ỹj

kn/
√

n

)
= Ykn − Y0

kn/
√

n

d−→ N

(
0,

1

2
s2

)
.

We complete the proof of Theorem 1(b) with a few adjustments by Slutsky’s theorem, similarly
to those given at the end of the proof of part (a).

6.2. The linear phase

In the linear phase kn ∼ αnn for some αn > 0 of a magnitude uniformly bounded from
above and below, that is, for two positive constants, M1 and M2, and all n, M1 ≤ αn ≤ M2. The
result in this linear phase is similar to that in the sublinear phase. We address this similarity in
a few brief remarks in Section 7.

At this phase of the drawing, we have the asymptotic equivalents (as n → ∞), following
from (5) and (6),

E[Wkn ] = e−µSαnn + o(n) (14)

and
var[Wkn ] ∼ nvn + o(n), (15)

where

vn = eµSαn + αn(σ
2
S − µS) − 1

e2µSαn
= O(1).

We start with a first-order result for Wkn .

Theorem 2. For kn = αnn + o(n) for some αn > 0 of a magnitude bounded from above and
below,

Wkn

ne−µSαn

p−→ 1.

Proof. By Chebyshev’s inequality,

P(|Wkn − E[Wkn ]| ≥ ε E[Wkn ]) ≤ var[Wkn ]
ε2(E[Wkn ])2

∼ nvn

ε2e−2µSαnn2

→ 0 as n → ∞.

Hence,
Wkn

E[Wkn ]
p−→ 1.

From the convergence E[Wkn ]/(ne−µSαn) → 1, and Slutsky’s theorem in its multiplicative
form (cf. Karr (1993, p. 147)), the result follows.
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Before we dwell on the proof of a central limit theorem for the number of coupons collected
by the end of some linear phase, we need a technical lemma, which shows that Wkn grows
linearly with n like its mean. The purpose of this calculation is for later summation to verify
Lindeberg’s conditional condition.

Lemma 2. Let Wkn be the number of white balls in the urn after kn draws, where kn = αnn

+ o(n) for some αn such that 0 < M1 ≤ αn ≤ M2 < ∞. Then

Wkn = e−µSαnn + oL1(n).

Proof. From the asymptotics of the mean and variance, as given in (14) and (15), for large
n, we have

E[(Wkn − e−µSαnn)2] = var[Wkn ] + (E[Wkn ] − e−µSαnn)2

= (eµSαn + αn(σ
2
S − µS) − 1)e−2µSαnn + o(n2)

= o(n2).

So, by the Cauchy–Schwarz inequality,

E[|Wkn − e−µSαnn|] ≤
√

E[(Wkn − e−µSαnn)2] = o(n),

which implies that
Wkn = e−µSαnn + oL1(n).

This completes the proof.

Lemma 3. For j ∼ yn ≤ M2n in the linear phase of drawing, the absolute differences |∇Ỹj |
are uniformly bounded (in n > N ′

0 for some integer N ′
0 > 2s).

Proof. Suppose that j ∼ yn, with 0 < y < M2, and write the absolute differences as

|∇Ỹj | = |(Yj − n) − (Yj−1 − n)|
= ρ

j−1
n |ρn(Wj−1 − ωj ) − Wj−1|

≤ 2eyµS |(ρn − 1)Wj−1 − ρnωj | (for n greater than some N ′
0)

≤ 2eM2µS

((
n

n − µS

− 1

)
Wj−1 + n

n − µS

ωj

)
.

The number of white balls at any stage is at most n, and the change (the reduction by ωj ) is at
most s. Then it follows that

|∇Ỹj | ≤ 2eµSM2

(
2sn

n − µS

)
≤ 8seµSM2

for all n > N ′
0.

Theorem 3. Let Rkn be the number of coupons collected (red balls in the urn) after kn purchases
(sample draws), where kn ∼ αnn for some αn such that 0 < M1 ≤ αn ≤ M2 < ∞. Then,

Rkn − (1 − e−µSαn)n√
n((eµSαn + αn(σ

2
S − µS) − 1)/e2µSαn)

d−→ N (0, 1).
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Proof. In this phase we take the scale factor λn to be
√

nvne2µSαn , where

vn = eµSαn + αn(σ
2
S − µS) − 1

e2µSαn
= O(1).

Recall the expressions for Un (cf. (7)) and Vn (cf. (8)). The proof will be complete if we show
that Un converges to 0 in probability and Vn converges to 1 in probability.

The conditional Lindeberg condition can be argued in view of the uniform bound of 8seµSM2

on the absolute differences |∇Ỹj | in the linear phase for n > N ′
0; see Lemma 3. The set {|∇Ỹj | >

ε
√

(eµSM2 + M2(σ
2
S + µS) + 1)n} is empty for all n greater than some n′′

0(ε) > N ′
0 > 2s. The

set {|∇Ỹj | > ε
√

nvne2µSαn} is only a subset of it, so it is also empty for all n greater than some
n′′

0(ε) > N ′
0 > 2s. For large n, we have

Un =
n′′

0(ε)∑
j=1

E

[( ∇Ỹj√
nvne2µSαn

)2

1{|∇Ỹj /
√

nvne2µSαn |>ε}

∣∣∣∣ Fj−1

]

≤ 1

nvne2µSαn

n′′
0(ε)∑
j=1

E[(∇Ỹj )
2 | Fj−1]

≤ 64s2e2µSM2n′′
0(ε)

nvne2µSαn

→ 0 as n → ∞.

Hence, the conditional Lindeberg condition is verified.
The asymptotic equivalents in Lemma 2 apply only in the linear phase. However, before

the linear phase the obvious bound n on Wj−1 is sufficient for our purpose. More precisely, to
asymptotically handle the sums in the conditional Lindeberg condition (going over the range
of indexes 1 to kn ∼ αnn), let us break them up at some point near the beginning of the linear
phase. Choose a small positive ε < M1 and break up the sums in Vn into sums going from 1 to
�εn� − 1 and sums starting at �εn� and ending at kn. Applying the asymptotics of Lemma 2,
we write (9) in the form

Vn = (σ 2
S − µS)n + µ2

S

λ2
nn

2(n − 1)

�εn�−1∑
j=1

ρ
2j
n W 2

j−1 + µSn − µ2
S − σ 2

S

λ2
nn(n − 1)

�εn�−1∑
j=1

ρ
2j
n Wj−1

+ (σ 2
S − µS)n + µ2

S

λ2
nn

2(n − 1)

kn∑
j=�εn�

(ρ
2j
n (e−2µS(j−1)/nn2 + oL1(n

2)))

+ µSn − µ2
S − σ 2

S

λ2
nn(n − 1)

kn∑
j=�εn�

(ρ
2j
n (e−µS(j−1)/nn + oL1(n)))

=: Cn + C′
n + Dn + Hn,

where

Cn = (σ 2
S − µS)n + µ2

S

n3(n − 1)vne2µSαn

�εn�−1∑
j=1

ρ
2j
n W 2

j−1,

https://doi.org/10.1239/aap/1293113148 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1293113148


Gaussian phases in generalized coupon collection 1007

C′
n = µSn − µ2

S − σ 2
S

n2(n − 1)vne2µSαn

�εn�−1∑
j=1

ρ
2j
n Wj−1,

Dn = (σ 2
S − µS)n + µ2

S

n3(n − 1)vne2µSαn

kn∑
j=�εn�

(ρ
2j
n (e−2µS(j−1)/nn2 + oL1(n

2))),

and

Hn = µSn − µ2
S − σ 2

S

n2(n − 1)vne2µSαn

kn∑
j=�εn�

(ρ
2j
n (e−µS(j−1)/nn + oL1(n))).

For large n, we have

|Cn| ≤ 2(σ 2
S − µS)n

n3(n − 1)vne2µSαn

�εn�−1∑
j=1

ρ
2j
n (n2)

≤ 16s2

nvne2µSαn

�εn�∑
j=1

2eµSM1

= O(ε) as ε → 0.

Likewise, we have
|C′

n| = O(ε) as ε → 0.

The formulae for Dn and Hn involve sums of geometric series. Thus, Dn reduces to

Dn = (σ 2
S − µS)n + µ2

S

n(n − 1)vne2µSαn

kn∑
j=�εn�

ρ
2j
n (e−2µSj/n + oL1(1))

= (σ 2
S − µS)n + µ2

S

n(n − 1)vne2µSαn

(( kn∑
j=0

ρ
2j
n e−2µSj/n

)
−

(�εn�−1∑
j=0

ρ
2j
n e−2µSj/n

)

+ oL1(1)

kn∑
j=�εn�

ρ
2j
n

)
.

This calculation involves two sums of the form

bn−1∑
j=0

ρ
2j
n e−2µSj/n = (n/(n − µS))2bne−2µSbn/n − 1

(n/(n − µS))2e−2µS/n − 1
,

with bn = βnn + rn, and the remainder function rn is o(n); in one sum βn is ε, and in the other
it is αn. Using the asymptotic relation

(
n

n − µS

)2βnn

= e2µSβn + µ2
Sβne2µSβn

n
+ O

(
1

n2

)
,

and the standard local expansion

ec/n = 1 + c

n
+ c2

2n2 + O

(
1

n3

)
,
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we obtain

bn−1∑
j=0

ρ
2j
n e−2µSj/n =

((
e2µSβn + µ2

Sβne2µSβn

n
+ O

(
1

n2

))

×
(

n

n − µS

)2rn

e−(2µSβnn+2µSrn)/n − 1

)(
µ2

S + O

(
1

n

))−1

(n − µS)2

= (1 + µ2
Sβn/n + O(1/n2))e2rn(µS/n+O(1/n2))e−2µSrn/n − 1

µ2
S + O(1/n)

(n − µS)2

= (1 + µ2
Sβn/n + O(1/n2))(1 + O(rn/n2)) − 1

µ2
S + O(1/n)

(n − µS)2

= βnn + o(n).

Hence, we have

Dn = 1

vne2µSαn
((σ 2

S − µS)αn − (σ 2
S − µS)ε) + o(1) + oL1(1).

Similarly, we have

bn−1∑
j=0

ρ
2j
n e−µSj/n = (n − µS)2[(n/(n − µS))2bne−µSbn/n − 1]

n2e−µS/n − (n − µS)2

= (n − µS)2(e2µSβn + O(1/n))eO(2rn/n)e−(µSβnn+o(n))/n − 1

µSn + O(1)

=
(

eµSβn − 1

µS

)
n + o(n).

So,

Hn = 1

vne2µSαn
((eµSαn − 1) − (eµSε − 1)) + o(1) + oL1(1).

Consequently, we have

Vn = O(ε) + 1

vne2µSαn
[(eµSαn + αn(σ

2
S − µS) − 1) − ε(eµSε + (σ 2

S − µS) − 1)] + oL1(1).

Taking the limit as ε → 0, we obtain

lim
ε→0

Vn = 1 + oL1(1).

Now, let n → ∞ to obtain
Vn

p−→ 1.

Hence, the 1-conditional variance condition is verified.
According to the martingale central limit theorem

kn∑
j=1

( ∇Ỹj√
nvne2µSαn

)
= Ykn − Y0√

nvne2µSαn

d−→ N (0, 1).
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Subsequently, we write

ρ
kn
n Wkn − ρ0

nn√
nvne2µSαn

= (n/(n − µS))knWkn − n√
nvne2µSαn

d−→ N (0, 1).

Using the asymptotic relation (n/(n−µS))kn = eµSαn +O(1/n) in the linear phase, it follows
that

(eµSαn + O(1/n))Wkn − n√
nvne2µSαn

d−→ N (0, 1).

However, we have Wkn ≤ n, and WknO(1/n)/
√

nvne2µSαn → 0; with an application of Slut-
sky’s additive theorem (see Karr (1993, p. 146)), we arrive at

eµSαnWkn − n√
nvne2µSαn

d−→ N (0, 1).

Now use the relation Rkn + Wkn = n to obtain the theorem as stated.

6.3. The superlinear phase

When the number kn of draws becomes superlinear, the mean number of uncollected coupons
becomes 0 at a very fast rate. Various asymptotic forms of the mean and variance appear
depending on the degree of superlinearity. For example, for fixed S = s, if kn ∼ n ln2 n,
both the mean and variance of the number of uncollected coupons (white balls) are ne−2 ln2 n,
whereas when kn ∼ n2, both the mean and variance diminish as fast as e−2n+n−1 ln n+2. To
obtain a sense for what happens in the superlinear phase, we will only discuss the case of fixed
S = s. As we show next, with a fixed number of purchases, in general, in the superlinear phase
the mean and variance are asymptotically negligible at an exponential rate.

Proposition 1. In the superlinear phase with a fixed number of purchases,

var[Wkn ] ≤ E[Wkn ] = ne−
(kn/n),

where 
(k(n)/n) is a positive function of the exact order kn/n.

Proof. According to the exact variance formula (6), we have

var[Wkn ] ≤
(

n − s

n

)kn
(

n − s − 1

n − 1

)kn

n2 +
(

n − s

n

)kn

n −
(

n − s

n

)2kn

n2

≤
(

n − s

n

)kn

n

= E[Wkn ]
= neknln((n−s)/n)

= ne−
(kn/n).

Proposition 2. In the superlinear phase with a fixed number of purchases,

Rkn/n
p−→ 1.
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Proof. By Proposition 1 and Chebyshev’s inequality,

P

(∣∣∣∣Wkn

n
− E[Wkn ]

n

∣∣∣∣ > ε

)
≤ var[Wkn ]

ε2n2

= O

(
1

ne
(kn/n)

)

→ 0 as n → ∞.

Hence,
Wkn

n
− E[Wkn ]

n

p−→ 0,

and in the superlinear phase E[Wkn ]/n → 0. An application of Slutsky’s additive theorem (Karr
(1993, p. 146)) yields the result.

7. Concluding remarks

We identified Gaussian phases in the long-term drawing of samples of small size S (inde-
pendent and identically distributed on {1, 2, . . . , n}) from an urn representing the generalized
coupon problem. We used kn to denote the number of draws, and Wkn and Rkn to respectively
denote the numbers of uncollected and collected coupons at the end of kn draws. In the
entire sublinear phase, we have Wj/n, the proportion of the remaining uncollected coupons,
convergent to 1 almost surely, for any 0 ≤ j ≤ kn. For a genuinely random S (with positive
variance), across the entire sublinear phase we have a Gaussian distribution for a suitably shifted
and scaled number of coupons collected under general assumptions on the variability of S. The
argument breaks down, however, when S is deterministic (whether it grows with n or not) at
kn ∼ √

n. Indeed, if S = s is fixed, Mikhaǐlov (1977) found a Poisson limit for Rkn − snkn,
when snkn ∼ b

√
n for b > 0. For deterministic cases, Gaussianity holds only in the upper

sublinear phase, where the number of draws kn → ∞ at a rate higher than
√

n (but slower
than n). By similar methods, if S = sn is a growing function of n, we can prove Gaussian limit
laws only under additional mild conditions, such as s2

nk2
n = o(n). Another extension that can be

handled by these methods is the case where the purchases are independent but not necessarily
identically distributed.

When the number of draws kn grows linearly, Theorem 3 applies. We mentioned in
Subsection 6.2 that the result in the sublinear phase is similar to that in the linear phase.
In fact, the result is the same for fixed S = s and pure linearity (no oscillation in the leading
term of kn) under the interpretation that (esα − sα − 1)/(α2e2sα) → 1

2 s2 as α → 0. Though
the details of their proofs are somewhat different, Theorems 1 and 3 can both be viewed as
specialized cases of one combined master theorem of the form

Rkn − (1 − s/n)knn

kn/
√

n

d−→ N

(
0, lim

a→α

esa − sa − 1

a2e2sa

)

for α ≥ 0, which explains what happens at the seam line between the very high end of the
sublinear phase with fixed purchases (say when kn = 
3000n/ ln n�), and the very low end of
the linear phase (say when kn = �0.000 001 94n − 20

√
n�), where in both phases the number

of white balls in the urn is asymptotically normal with mean of about n and variance of about
1
2 s2n.
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Note that in Theorem 3 if kn ∼ αnn, and the coefficient αn is not convergent to a limit α,
the random variable (Rkn − (1 − e−sαn)n)/

√
n does not converge at all. For example, if

kn = �(5 + 2 cos(πn))n + 3n0.1�,
the coefficient of linearity contains a sinusoid that is −1 infinitely often, and +1 infinitely often.
Therefore, there will be subsequences of (Rkn − (1 − e−sαn)n)/

√
n converging to N (0, (e3s −

3s−1)e−6s), and others converging to N (0, (e7s−7s−1)e−14s), and (Rkn − (1 − e−sαn)n)/
√

n

does not converge in distribution to any limit. It is only when (esαn − sαn − 1)e−2sαn is
subsumed in the scale that we have the convergence

Rkn − (1 − e−sα)n√
n(esαn − sαn − 1)e−2sαn

d−→ N (0, 1).

The result of Proposition 2 asserts that, with high probability, almost all the coupons are
collected in the superlinear phase, as does Theorem 2 for the linear phase for very large αn

(tending to +∞). This again explains what happens at the seam line between the very high end
of the linear phase (say when kn = 10 000 000n) and the very low end of the superlinear phase
(say when kn = 
n ln n − 3n�).

The result of Proposition 2 applies as soon as kn becomes superlinear, even when it barely
enters that phase, such as in the case when kn = �n ln ln ln n�. However, when kn gets deeper in
the superlinear phase, such as in the case kn = � 1

2n ln n�, kn = 
n√
n − 2�, or kn = n2+3n+6,

the rate of convergence in the sequence of probabilities

P

(∣∣∣∣Wkn

n
− E[Wkn ]

n

∣∣∣∣ > ε

)
= O

(
1

ne
(kn/n)

)

is fast enough to admit the relation

∞∑
n=1

P

(∣∣∣∣Wkn

n
− E[Wkn ]

n

∣∣∣∣ > ε

)
< ∞,

which enables the Borel–Cantelli lemma to hold and give the stronger statement (Wkn −
E[Wkn ])/n

a.s.→ 0, or, equivalently, Rkn/n
a.s.→ 1 (as E[Wkn ]/n → 0 in this phase). Smythe (2009)

took up the investigation of the asymptotic distributional forms in the superlinear phase.
Other interpretations of coupon collection can be found in the literature of graph theory and

occupancy problems. For example, starting with n isolated vertices, a random hypergraph can
be generated by adding k = kn (hyper) edges (which are subsets of vertices, of size s each)
and the edges are chosen independently and uniformly at random. This coincides with the case
of generalized coupon collection with fixed purchases, S = s, at each stage. The uncollected
coupons are the vertices that remain isolated in this hypergraph model. Bender et al. (1997)
provided an enumerative study of these hypergraphs.

In the area of occupancy problems, balls are dropped in urns and one asks questions about
empty urns. Starting with n urns, and choosing S urns at a time, we drop S balls (one ball in
each chosen urn), we obtain an occupancy problem similar to the coupon collection problem
we considered. Urns in this occupancy problem are coupons in our model. Mikhaǐlov (1977),
(1980) and Vatutin and Mikhaǐlov (1982) carried out extensive studies for deterministic S. The
book of Kolchin et al. (1978) thoroughly addresses many variations of occupancy problems
with S ≡ 1.
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Vatutin, V. A. and Mikhaǐlov, V. G. (1982). Limit theorems for the number of empty cells in an equiprobable

scheme for group allocation of particles. Theory Prob. Appl. 27, 734–743.

https://doi.org/10.1239/aap/1293113148 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1293113148

	1 Classical coupon collection
	2 Generalized coupon collection and questions about urn composition at different stages
	3 Notation
	4 Exact moments
	5 A martingale underlying the urn scheme
	6 Phases during long-term drawing
	6.1 The sublinear phase
	6.2 The linear phase
	6.3 The superlinear phase

	7 Concluding remarks
	References

