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High-speed vehicles experience a highly challenging environment in which the freestream
Mach number and surface temperature greatly influence aerodynamic drag and heat
transfer. The interplay of these two parameters strongly affects the near-wall dynamics
of high-speed turbulent boundary layers (TBLs) in a non-trivial way, breaking similarity
arguments on velocity and temperature fields, typically derived for adiabatic cases. We
present direct numerical simulations of flat-plate zero-pressure-gradient TBLs spanning
three freestream Mach numbers [2, 4, 6] and four wall temperature conditions (from
adiabatic to very cold walls), emphasising the choice of the wall-cooling parameter
to recover a similar flow organisation at different Mach numbers. We link qualitative
observations on flow patterns to first- and second-order statistics to explain the decoupling
of temperature–velocity fluctuations that occurs at reduced wall temperatures and high
Mach numbers. For these cases, we discuss the formation of a secondary peak of thermal
production in the viscous sublayer, which is in contrast with the monotonic behaviour of
adiabatic profiles. We propose different physical mechanisms induced by wall-cooling and
compressibility that result in apparently similar flow features, such as a higher peak in the
streamwise velocity turbulence intensity, and distinct features, such as the separation of
turbulent scales.
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1. Introduction

The study of highly compressible turbulent boundary layers (TBLs) is of major importance
for high-speed turbulence research. Compressibility acts upon the flow by influencing the
mean and fluctuating fields of thermodynamic quantities, which are, in turn, coupled to
the momentum, promoting the energy exchange between kinetic and thermal fields. This
poses several difficulties in the prediction of drag and wall heat transfer, which makes
engineering design increasingly difficult as higher speeds are attained.

In recent decades, supersonic TBLs have been studied extensively and compared with
their incompressible counterparts, mainly focusing on the prediction of drag assuming
adiabatic walls; see, e.g., Bernardini & Pirozzoli (2011a), Duan, Beekman & Martín
(2011) and Wenzel et al. (2018). In fact, at supersonic speeds the wall temperature can
be considered for practical purposes very close to the recovery temperature of the flow,
implying a very low heat exchange at the wall. The recovery temperature indicates the
temperature that is attained by the flow when it is brought to rest in a non-isentropic
manner, defined as

Tr = T∞
(

1 + r
γ − 1

2
M2

∞

)
, (1.1)

where r = Pr1/3 is the recovery factor (Zhang, Duan & Choudhari 2018) and Pr is the
Prandtl number. However, in hypersonic boundary layers, the recovery temperatures are
so high that the wall temperature is usually lower (Fernholz & Finley 1980; Urzay &
Di Renzo 2021), generating large heat fluxes to the wall. This affects the flow dynamics
in concurrency with the Mach number, enriching the physical effects that have to be
accounted for when developing theoretical relations and reduced order models.

A renewed interest in hypersonic flight, along with the computational advancements that
render direct numerical simulations (DNS) more feasible, sparked the attention on these
problems, e.g. Zhang et al. (2018) and Wenzel, Gibis & Kloker (2022), but there is still a
lack of understanding of the individual effect of different flow parameters.

The framework of theoretical relations applied to compressible flow for mean velocity
and fluctuating fields aims at mapping compressible profiles onto incompressible reference
by taking into account variations of mean properties such as density and viscosity.
When applied to the mean velocity field, these relations are called compressibility
transformations, first introduced by Van Driest (1956) by accounting for mean density
variations in the wall-normal velocity profile. Among the plethora of relations proposed in
recent years, Volpiani et al. (2020) and Griffin, Fu & Moin (2021) stand out as capable of
efficiently collapsing velocity profiles even at high Mach numbers. Volpiani et al. (2020)
used a mixed physical and data-driven approach to determine the optimal parameters
that define the weight of density and viscosity, whereas Griffin et al. (2021) based their
arguments on the total-stress equation, allowing for separate assumptions for the viscous
sublayer and the log layer.

Theoretical relations have also been derived to describe the interaction between kinetic
and thermal fields, classically referred to as strong Reynolds analogy (SRA). First
proposed by Morkovin (1962), SRA establishes a framework based on the similarity
between the momentum and total enthalpy equations, from which a direct proportionality
between velocity and total enthalpy can be inferred. Under the more restrictive condition
of wall adiabaticity, a set of relations coupling velocity and temperature can be derived
for both mean and fluctuating fields, in which the temperature resembles a passive scalar
field.
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Heat transfer and Mach number effects on high-speed TBLs

These relations have been validated extensively for adiabatic TBLs at different Mach
numbers, e.g. Guarini et al. (2000), Bernardini & Pirozzoli (2011a) and Wenzel et al.
(2018), although at hypersonic speeds (M∞ > 5) discrepancies start to arise (Zhang et al.
2018). Subsequent extensions of the SRA accounting for diabatic walls have been proposed
recently (e.g. Zhang et al. 2014), which obtained promising results for different flow
conditions, even when thermochemical effects are present (Di Renzo & Urzay 2021;
Passiatore et al. 2021, 2022).

A cold wall imposes a change in the sign of the mean temperature gradient near
the wall, affecting the production of temperature fluctuations, which may result in a
severe loss of similarity between velocity and temperature fields, a building block of
SRA, clearly visible in instantaneous snapshots of turbulent structures (Cogo et al. 2022;
Zhang et al. 2022). However, these studies also noted that comparing cases with different
Mach numbers at a fixed wall-to-recovery temperature ratio Tw/Tr (< 1) resulted in
vastly different near-wall dynamics for temperature fluctuations, in a way that cold cases
at high M∞ seemed ‘more adiabatic’ than their low M∞ counterparts. Recently, other
definitions of the wall temperature condition have been proposed, such as the diabatic
parameter Θ = (Tw − T∞)/(Tr − T∞) (Zhang et al. 2014) or the Eckert number Ec =
(γ − 1)M2∞T∞/(Tr − Tw) (Wenzel et al. 2022), which are capable of accounting for the
indirect effect of Mach number on the wall temperature condition. Although progress
has been made to incorporate the effects of compressibility and heat transfer on these
relations, their individual influence is still not well understood. While compressibility
effects induced by the increase in Mach number can be similar to a change in wall
temperature condition (and vice versa) for certain mechanisms, such as redistribution of
turbulent kinetic energy (TKE) (Duan & Martin 2011), their relative role is still unclear in
other aspects, such as separations of turbulent scales (Huang, Duan & Choudhari 2022).
In this regard, wall-cooling has been shown to reduce the separation between the large and
small turbulence scales in hypersonic flows (Fan, Li & Pirozzoli 2022; Huang et al. 2022),
but the specific role of the Mach number is still debated. Furthermore, while wall-cooling
has been shown to be dominant in regulating energy exchanges in the near-wall region
(Fan et al. 2022), the effect of the Mach number is still not clear. These and other authors
called upon the need for additional computations to determine their individual effects.

The aim of this study is to unveil the physical mechanisms that yield
similarities and differences between the effect of compressibility and wall-cooling.
To pursue this objective, an extensive DNS database consisting of 12 simulations of
zero-pressure-gradient TBLs has been computed fixing the friction Reynolds number
(Reτ ≈ 450), while spanning three Mach numbers M∞ = [2, 4, 6] and four diabatic
parameters Θ = [0.25, 0.5, 0.75, 1.0], going from extremely cold walls, Θ = 0.25, to
adiabatic cases, Θ = 1. The database is discussed in the present paper and made available
to the scientific community to be used for the development of simplified models for
high-speed wall-bounded flows with strong heat flux.

The remainder of the paper is organised as follows. The numerical method and
details on the simulation set-up are outlined in § 2. In § 3, a general visualisation of
instantaneous velocity and temperature fields is given, describing the individual effect
of Mach and wall temperature conditions on the flow dynamics and turbulent structures.
Then, first-order statistics for mean velocity and temperature are presented in § 4, which
also compares different SRA formulations. Finally, second-order statistics are presented in
§ 5, focusing on the effect of wall-cooling on thermal production, and its implications on
velocity–temperature correlations.
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2. Simulation parameters and computational set-up

The three-dimensional compressible Navier–Stokes equations are numerically solved for
a viscous, heat-conducting gas

∂ρ

∂t
+ ∂(ρuj)

∂xj
= 0,

∂(ρui)

∂t
+ ∂(ρuiuj)

∂xj
+ ∂p

∂xi
− ∂σij

∂xj
= 0,

∂(ρE)

∂t
+ ∂(ρEuj + puj)

∂xj
− ∂(σijui − qj)

∂xj
= 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.1)

where ρ is the density, ui denotes the velocity component in the ith Cartesian direction
(i = 1, 2, 3), p is the thermodynamic pressure, E = cvT + uiui/2 is the total energy per
unit mass and

σij = μ

(
∂ui

∂xj
+ ∂uj

∂xi
− 2

3
∂uk

∂xk
δij

)
, qj = −k

∂T
∂xj

(2.2a,b)

represents the viscous stress tensor and the heat flux vector, respectively. The molecular
viscosity μ is assumed to follow Sutherland’s law

μ

μ∞
=
(

T
T∞

)1/2 1 + C/T∞
1 + C/T

, (2.3)

where C = 110.4 K and T∞ = 220.0 K, representing the typical conditions that are met in
the stratosphere. The thermal conductivity k is related to the viscosity by the expression
k = cpμ/Pr, where cp is the specific heat at constant pressure and the Prandtl number
is Pr = 0.72. The thermodynamic variables are correlated to each other by means of
the equation of state for a calorically perfect gas. This choice was also assumed for
cases at M∞ = 6, after having verified that by introducing a dependence of specific
heat with temperature cp = f (T) differences in all statistics were negligible. Moreover,
gas dissociation effects are also not expected in the present database, according to the
observations of Passiatore et al. (2022) who observed negligible effects with Tw = 1800 K
(our highest imposed value is Tw = 1640 K for M∞ = 6). The system of equations
is solved on a Cartesian grid using the in-house code STREAmS (Bernardini et al.
2021, 2023), which has been validated extensively in numerous canonical configurations
(Bernardini, Pirozzoli & Grasso 2011; Bernardini & Pirozzoli 2011b; Cogo et al. 2022).
Convective terms are discretised using high-order, energy-preserving schemes applied
in shock-free regions, while a fifth-order shock capturing scheme (WENO) is applied
when strong compressions are identified by the Ducros sensor (Ducros et al. 1999).
Diffusive terms are discretised using a locally conservative formulation (De Vanna et al.
2021), expanded to Laplacian form to ensure finite molecular dissipation at all resolved
wavelengths. The solver takes advantage of a multi-GPU architecture by means of the
CUDA Fortran paradigm. The domain is a rectangular box of length Lx = 100δin, Ly =
15δin, Lz = 9δin, where δin is the boundary layer thickness at the inflow station, based on
the 99 % of the freestream velocity u∞ (which is referred for other stations as δ99). For all
cases, the domain size in terms of the boundary-layer thickness measured in the proximity
of the outflow is larger than Lx/δ99 = 39, Ly/δ99 = 5.8, Lz/δ99 = 3.5, respectively. For
each spatial direction, the number of computational points employed for all cases is Nx =
5120, Ny = 320, and Nz = 512. We verified that selected the grid satisfies the resolution
requirement of 	xi/η < 5 throughout the entirety of the boundary layer thickness for all
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Heat transfer and Mach number effects on high-speed TBLs

Run M∞ Reτ Θ Tw/Tr Ec 	x+ 	y+
w,edge 	z+

M2T025 2.00 436–579 0.25 0.69 2.975 4.51 0.71–4.64 4.07
M2T050 2.00 427–564 0.5 0.79 4.463 4.52 0.71–4.64 4.07
M2T075 2.00 424–561 0.75 0.9 8.926 4.53 0.71–4.65 4.08
M2T100 2.00 415–548 1.0 1.0 ∞ 4.52 0.71–4.64 4.07

M4T025 4.00 404–535 0.25 0.44 2.975 4.36 0.68–4.52 3.93
M4T050 4.00 391–521 0.5 0.63 4.463 4.38 0.68–4.53 3.94
M4T075 4.00 379–507 0.75 0.81 8.926 4.37 0.68–4.53 3.94
M4T100 4.00 371–494 1.0 1.0 ∞ 4.38 0.68–4.53 3.95

M6T025 6.00 376–500 0.25 0.35 2.975 4.24 0.66–4.42 3.82
M6T050 6.00 351–470 0.5 0.57 4.463 4.21 0.66–4.40 3.80
M6T075 6.00 343–462 0.75 0.78 8.926 4.24 0.66–4.43 3.83
M6T100 6.00 337–451 1.0 1.0 ∞ 4.26 0.67–4.44 3.84

Table 1. Summary of parameters for DNS study. Grid spacings are given in wall-units according to the stations
selected in table 2. The values of 	y+

w and 	y+
edge refer to the wall-normal spacing at the wall and at the

boundary layer edge, respectively. The range of Reτ is representative of the statistical growth of the boundary
layer’s thickness along x. Ranges reported for Reτ refer to the second half of the domain, while all cases share
the same inflow friction Reynolds number of Reτ = 250.

cases, being η the Kolmogorov length scale. Periodic boundary conditions are enforced
in the spanwise direction, purely non-reflecting boundary conditions are employed for the
outflow and the top boundary, and unsteady characteristic boundary conditions are used
at the bottom wall (Poinsot & Lele 1992), where an isothermal wall temperature condition
is enforced. The recycling–rescaling procedure (Pirozzoli, Bernardini & Grasso 2010) is
applied at the inflow to reach a fully developed state, the recycling length being placed at
a distance of 80δin from the inlet, ensuring a complete decorrelation of the fluctuations
between the recycling station and the inflow plane (Morgan et al. 2011).

Table 1 summarises the flow conditions and grid resolutions for each run, where M∞
is the freestream Mach number and Reτ is the friction Reynolds number, defined as the
ratio between the boundary layer thickness δ99 and the viscous length scale δν = νw/uτ ,
where uτ = √

τw/ρw is the friction velocity, τw is the mean wall shear stress and νw is the
kinematic viscosity at the wall. Here 	x+ = 	x/δν and 	z+ = 	z/δν are the uniform
grid spacings in the streamwise and spanwise directions and 	y+ = 	y/δν represents
the non-uniform wall-normal grid spacing (the wall and edge values are reported). In the
wall-normal direction, the stretching function of Pirozzoli & Orlandi (2021) is employed,
which provides a more favourable scaling of the number of grid points with the Reynolds
number. Furthermore, this function has the natural property of yielding precisely constant
resolution in terms of the local Kolmogorov length scale η in the outer part of the wall
layer while maintaining a uniform near-wall spacing.

The present database is composed of a total of 12 simulations, spanning three Mach
numbers M∞ = [2, 4, 6] and four diabatic parameters Θ = [0.25, 0.5, 0.75, 1.0] (see
table 1). We stress that the choice of using the diabatic parameter throughout this study
is made in order to recover a similar degree of wall-cooling across different Mach
numbers. In fact, the goal of a suitable parameter is not to be independent of M∞, but
to incorporate it in order to have ‘the same integral behaviour between different cases,
regardless of whether its variation is caused by the change of the Mach number or of
the wall temperature’ (Wenzel et al. 2022). This is the rationale with which Wenzel
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Station Reτ Reθ Reδ2 Re∗
τ δ∗/δ θ/δ H −Bq(×10−2) Cf (×10−3)

M2T025 443 1226 1071 551 0.210 0.092 2.291 2.29 3.40
M2T050 443 1470 1150 661 0.224 0.088 2.528 1.34 3.16
M2T075 443 1698 1209 772 0.234 0.085 2.756 0.57 2.99
M2T100 443 1961 1288 886 0.246 0.083 2.979 −0.08 2.79

M4T025 443 1795 1178 886 0.314 0.067 4.669 6.10 2.19
M4T050 443 2680 1379 1346 0.331 0.061 5.460 3.07 1.85
M4T075 443 3601 1565 1815 0.355 0.056 6.297 1.17 1.61
M4T100 443 4453 1703 2285 0.367 0.052 7.030 −0.17 1.43

M6T025 443 2675 1313 1466 0.399 0.048 8.279 8.89 1.39
M6T050 443 4702 1704 2529 0.426 0.043 9.813 4.05 1.09
M6T075 443 6460 1932 3603 0.443 0.039 11.485 1.49 0.93
M6T100 443 8254 2146 4675 0.454 0.036 12.800 −0.16 0.81

Table 2. Boundary layer properties averaged at the selected station. Here Reτ = ρwuτ δ/μw; Reθ =
ρ∞u∞θ/μ∞; Reδ2 = ρ∞u∞θ/μw; Re∗

τ = √
ρ∞τwδ/μ∞; H = δ∗/θ (δ∗ and θ are the boundary layer

displacement and momentum thickness, respectively); Bq = qw/(ρwCpuτ Tw) and Cf = τw/(1/2ρ∞u2∞) are
the non-dimensional wall heat transfer qw = −k̄ ∂T̃/∂y and skin friction coefficient τw = μ̄∂ ũ/∂y, respectively.

et al. (2022) argued that the Eckert number Ec = (γ − 1)M2∞T∞/(Tr − Tw) represents a
more suitable option than the conventional Tw/Tr ratio. The Eckert number happens to be
directly related to the diabatic parameter Θ = (Tw − T∞)/(Tr − T∞) proposed by Zhang
et al. (2014), since it can be shown that Ec = 2/[r(1 − Θ)]. This parameter shows more
clearly the improvement over the conventional ratio Tw/Tr, showing that T∞ needs to be
subtracted from both Tw and Tr to compare only the 	T that is recovered when the flow is
brought at rest, being the only one responsible for kinetic–internal energy exchange. In this
study, we choose to use the diabatic parameter Θ over Ec given its simplicity, but we also
report the latter in table 1. Table 2 summarises the boundary layer parameters at selected
locations where turbulence statistics are gathered. All the simulations were initially run for
about 600 δin/u∞, a time sufficient to achieve a fully developed turbulent condition before
starting to collect statistics. The time averaging period for all cases exceeds 1000δin/u∞
(28δ99/uτ ) and approximately 1000 flow samples, equally spaced in time, were considered.

Throughout this study, we use the symbols u, v and w to denote the streamwise,
wall-normal and spanwise velocity components and the decomposition of any variable
is conducted using either the standard Reynolds decomposition (f = f̄ + f ′) or the
density-weighted (Favre) representation (f = f̃ + f ′′), being f̃ = ρ̄f /ρ̄. Here, the averaging
is conducted using multiple samples and along the periodic direction z.

3. Instantaneous visualisation

To highlight the emerging features of the flow in a qualitative way, we selected the two
extreme cases with regard to the wall-cooling condition, Θ = 0.25 and Θ = 1.0, for
each Mach number in our database. Figure 1 shows a portion of wall-normal x–y planes
coloured with the instantaneous density, whose variability is a clear sign of the degree
of compressibility. The effect of Mach number is clearly apparent for all cases moving
from top to bottom with a decrease of the minimum value of density and an increase of
the general level of acoustic disturbances, generated in the boundary layer and emanated
towards the far field. However, a stronger wall-cooling (lower Θ , figure 1a,c,e) attenuates

974 A10-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

79
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.791


Heat transfer and Mach number effects on high-speed TBLs

2

0

y/δ

2

0

y/δ

2

0

2

0

2

0

2

0

y/δ

x/δ x/δ

20 22 24 26 28 30 20 22 24 26 28 30

20 22 24 26 28 30

20 22 24 26 28 30

20 22 24 26 28 30

20 22 24 26 28 30

1.10

0.10

1.10

0.10

1.10

0.10

1.10

0.10

1.10

0.10

1.10

0.10

(b)(a)

(d )(c)

( f )(e)

Figure 1. Instantaneous density in wall-normal slices (x–y plane), with a window size of 	x = 20δ–30δ and
	y = 0δ–2δ. Here, all Mach numbers are shown while the two extremes are chosen with regard to wall-cooling
(Θ = 0.25 and Θ = 1.0): (a) M∞ = 2, Θ = 0.25; (b) M∞ = 2, Θ = 1.0; (c) M∞ = 4, Θ = 0.25; (d)
M∞ = 4, Θ = 1.0; (e) M∞ = 6, Θ = 0.25; ( f ) M∞ = 6, Θ = 1.0.

this effect, since lower wall temperatures generate higher density fields in the near-wall
region.

The intensity of wall-cooling strongly affects the coupling between velocity and
temperature fluctuations, especially in the near-wall region. This is apparent in figure 2,
which compares these quantities in wall-parallel slices located at approximately y∗ ≈ 10,
representing the onset turbulence activity after the viscous sublayer. Here, y∗ = y/δν,SL
is the semilocal scaled wall-normal coordinate, with δν,SL = ν̄/

√
τw/ρ̄. The chosen x–z

planes are centred at the selected stations of table 1 spanning a window of 	x∗ = 4000
and 	z∗ = 600. Velocity fluctuations

√
ρ̄u′/√τw are scaled according to the Morkovin’s

transformation (Morkovin 1962) (also used in § 5.1), which enables comparison across
different Mach numbers and wall temperature values by accounting for the variation of
the mean properties of the flow. In other words, velocity fluctuations are scaled by the
semilocal friction velocity uτ,SL = √

τw/ρ̄, which differs from the conventional one by
employing the mean density ρ̄ instead of the wall density ρw. Temperature fluctuations
ρ̄T ′/(Rτw) are scaled in a similar fashion, assuming τw as proper parameter to scale
pressure fluctuations, then τw/(Rρ̄) can be used to scale temperature (for further details
refer to § 5.2). A general look at the velocity fluctuations shows the presence of near-wall
streaks for all cases, representative of the near-wall self-sustaining cycle of turbulence.
Similar values of intensities appear across all cases. This result is not observed for
temperature fluctuations, where cold cases (Θ < 1) show reduced intensity and a clear
breakdown of elongated streaks, appearing more isotropic when compared with their
adiabatic counterpart. Adiabatic cases maintain a streaky pattern, which shows a clear
coupling with the velocity field. It is worth noting that the similarity between cold
cases across different Mach numbers (figure 2a,c,e,g) is attained using the same value
of Θ , while effectively the wall-to-recovery temperature ratio Tw/Tr varies. Clearly
different patterns emerge matching the latter, as visible in Cogo et al. (2022). Although
this behaviour is further discussed in the following sections by analysing temperature
fluctuations and thermal production profiles, these qualitative results are consistent with
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Figure 2. Temperature fluctuations ρ̄T ′/τw (top) and streamwise velocity fluctuations
√

ρ̄u′/√τw (bottom)
in wall-parallel slices (x–z plane) selected at y∗ ≈ 10. Here, all Mach numbers are shown while the
two extremes are chosen with regard to wall-cooling (Θ = 0.25 and Θ = 1.0): (c) M∞ = 2, Θ = 0.25;
(d) M∞ = 2, Θ = 1.0; (e) M∞ = 4, Θ = 0.25; ( f ) M∞ = 4, Θ = 1.0; (g) M∞ = 6, Θ = 0.25; (h)
M∞ = 6, Θ = 1.0. Here, xref is the streamwise location of the selected station.

the discussion of Wenzel et al. (2022), which states that the same general behaviour due to
the effect of wall-cooling is expected when comparing flows with the same Eckert number
(or diabatic parameter Θ).

4. Mean flow statistics

In this section, we present the wall-normal profiles of averaged quantities such as velocity
and temperature, selected at stations listed in table 2. In the framework of compressibility
transformations, we consider the classical relation of Van Driest (1951) (which has been
the standard for several decades and widely employed in wall modelling) and the recent
transformations of Volpiani et al. (2020) and Griffin et al. (2021). In general, we find
that the latter developments have a wide range of applicability over our database, while
Van Driest (1951) transformation shows poor accuracy as Mach number and wall-cooling
increase. The results confirm the overall behaviour noted by Cogo et al. (2022), and the
interested reader can find them in Appendix A.

Figures 3(a)–3(e) show the mean temperature profiles throughout the height of the
boundary layer and in the near-wall region, respectively. In particular, all profiles are
scaled considering their incremental variation and their relative intensity with respect
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Figure 3. (a) Mean temperature profiles for all cases of table 1 as a function of the wall-normal coordinate
y/δ99. (b–e) Mean temperature profiles and relative peaks as a function of the wall-normal coordinate y∗ scaled
with Tw: (b) Θ = 0.25; (c) Θ = 0.5; (d) Θ = 0.75; (e) Θ = 1. ( f ) Wall-normal position of mean temperature
peaks as a function of the wall-cooling Θ parameter.

to Tw. This is done in order to highlight the effects of wall-cooling on the peak intensity
and location. As expected, the adiabatic wall temperature greatly increases with the Mach
number, while enhanced wall-cooling (lower Θ) forces the mean temperature profiles to
slant towards lower wall temperatures (Tw < Tr). The combination of these two conditions
imposes a change in the sign of temperature gradient near the wall, which is necessary
to adjust to a wall temperature lower than the recovery value. Thus, a local peak arises,
whose prominence and location are directly connected to the phenomenon of aerodynamic
heating, generating a net heat flux from the flow to the solid boundary. Local temperature
peaks are marked in figures 3(b)–3(e) with dots. An increase in the Mach number generates
more intense gradients and higher peak temperatures for non-adiabatic cases, enhancing
aerodynamic heating. However, the wall-normal position of the peaks seems to be mainly
affected by the change Θ , and weakly dependent on the Mach number. This is apparent in
figure 3( f ), which shows a progressive departure from the wall of the peak location as the
wall-cooling increases, with a mild downward shift at high Mach numbers. As anticipated
in § 3, the position of the local maximum of the temperature profile has major implications
in the generation of temperature fluctuations, which affect both their overall intensity and
their spatial organisation (breakdown of near-wall streaks). Actually, the departure from a
monotonic adiabatic profile to increasingly prominent local peaks of mean temperature
profiles prevents the formation of organised temperature streaks that are generated by
thermal production (see § 5.2).
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4.1. Reynolds analogy
In the framework of the Reynolds analogy, we discuss the coupling between velocity
and temperature with a particular focus on the validity of theoretical relations across
the present database. The relation between mean temperature and velocity can be
approximated by a quadratic law, as apparent by the classical relation of Walz (1969)

T̄
T∞

= Tw

T∞
+ Tr − Tw

T∞
ū

U∞
+ T∞ − Tr

T∞

(
ū

U∞

)2

. (4.1)

More recently, Zhang et al. (2014) improved this relation in order to account for high Mach
number and large heat fluxes:

T̄
T∞

= Tw

T∞
+ Trg − Tw

T∞
ū

U∞
+ T∞ − Trg

T∞

(
ū

U∞

)2

, (4.2)

where Trg = T∞ + rgU2∞/(2cp) and rg = 2cp(Tw − T∞)/U2∞ − 2 Pr qw/(U∞τw). As
reported in Appendix B, our database confirms the aptness of the latter expression,
with minor deviations for the most challenging case (M6T025). For engineering design
purposes, the value of rg can be difficult to evaluate given its dependence on the wall
temperature Tw and the ratio of the wall heat flux qw and the wall shear stress τw. Following
the discussion of Zhang et al. (2014), the Reynolds analogy factor s comes into play to
greatly simplify the calculation, since rg can be rewritten in terms of s

rg = r[sPr + (1 − sPr)Θ] (4.3)

with s being defined as

s = 2Ch

Cf
= qwu∞

τwcp(Tw − Tr)
, (4.4)

where Cf = τw/(1/2ρ∞u2∞) is the skin friction coefficient and Ch = qw/(ρ∞u∞cp(Tw −
Tr)) the Stanton number. The simplification consists of the fact that several authors (Duan,
Beekman & Martín 2010; Zhang et al. 2014; Wenzel et al. 2021) identified the term sPr to
be an empirical constant around the value of 0.8 ± 0.03 (data fitting of Zhang et al. 2014)
over several different flow cases, meaning that only Tw would be needed to be evaluated to
compute rg.

Figure 4 reports the computed values of sPr in our database showing a good agreement
with the fit of Zhang et al. (2014). A slight decreasing trend with Θ can be observed, and
it is interesting to note that at a given Θ the values appear to be independent of M∞.

The data reported in figure 4 have a mean value and standard deviation of 0.78 ± 0.03,
which is close to the value reported by (Zhang et al. 2014). By approximating rg in (4.3)
with the mean value of sPr and comparing it with DNS data, we obtain a maximum error of
5 % (for the case M6T025), which can be considered acceptable for engineering purposes.

Another important set of theoretical relations that couple the thermodynamic and kinetic
fluctuating fields is given by the SRA (Morkovin 1962). This set of relations consists have
been modified over the years to account for finite heat flux at the wall and remove wall
temperature dependence (Gaviglio 1987; Huang, Coleman & Bradshaw 1995; Zhang et al.
2014) (HSRA). Our database shows that the most recent developments clearly improve
its accuracy and the insensitivity to the freestream Mach number and wall temperature
condition, with only slight deviations at the edge of the boundary layer (see Appendix B).
Moreover, results also highlight the ability of the diabatic parameter Θ in recovering the
same behaviour in terms of wall-cooling across different Mach numbers.

974 A10-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

79
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.791


Heat transfer and Mach number effects on high-speed TBLs

M∞ = 2
M∞ = 4
M∞ = 6

0.90

0.85

0.80

0.75

2
C

h/
C

fP
r

0.70
0.25 0.50 0.75

Θ

Figure 4. Reynolds analogy factor s = 2Ch/Cf Pr as a function of the diabatic parameter Θ for different
Mach numbers. The grey band refers to the data fitting of 0.8 ± 0.03 of Zhang et al. (2014).

5. Fluctuation statistics

5.1. Velocity fluctuations and length scales
The distribution of velocity fluctuation intensities and Reynolds shear stress is reported in
figures 5(a,c,e) and 6(a,c,e,g), using the classical transformation of Morkovin (1962):

(
u∗

i
)2 = ũ′′2

i

u2
τ

ρ̄

ρ̄w
, (uv)∗ = ũ′′v′′

u2
τ

ρ̄

ρ̄w
. (5.1a,b)

The profiles are shown as a function of the wall-normal distance in semilocal scaling y∗
(Huang et al. 1995), considering its ability to collapse compressible profiles of different
Mach numbers and wall temperature conditions, in particular with respect to the peak
positions (Zhang et al. 2018, 2022). This choice facilitates the comparison across different
cases of our database in terms of wall-normal location, even though differences in their
intensity are preserved. Figures 5(b,d, f ) and 6(b,d, f,h) show the corresponding TKE
budget terms (with k = ũ′′

i u′′
i /2 being the TKE) according to the derivation of Zhang et al.

(2018), where P is the production term, TT represents the turbulent transport, Π includes
the pressure diffusion and dilatation, −φ is the viscous dissipation and D is the viscous
diffusion. For these results, semilocal scaling is also employed in the normalisation of
budget terms (refer to Zhang et al. 2018) and for the wall-normal distance y∗, enabling a
good collapse between different profiles (Zhang et al. 2018; Cogo et al. 2022).

The effect of wall-cooling on velocity fluctuations, shown in figure 5(a,c,e), is apparent
as an increase in the peak of the streamwise component located at y∗ ≈ 15 that is
more prominent at high Mach numbers. In contrast, the spanwise component of highly
cooled cases shows the opposite behaviour, being reduced in intensity compared with the
adiabatic reference. This implies an increase in the anisotropy of normal components
of Reynolds stresses in the near-wall region, which is discussed in more detail at the
end of this section. The semilocal scaling provides an excellent collapse of the peak
positions for all cases, preventing the outward shift that is present for cold cases when
plotted in wall units (not shown). This is also true for the position of the turbulent
production peak (figure 5b,d, f ), which would move farther from the wall if displayed
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Figure 5. Semilocal-scaled turbulent velocity fluctuations (a,c,e) and turbulent kinetic budget (b,d, f ) as
functions of the wall-normal distance y∗. Here, different diabatic parameters Θ are compared at a given Mach
number M∞: (a,b) M∞ = 2; (c,d) M∞ = 4; (e, f ) M∞ = 6.

in wall units. In general, the effect of wall-cooling on the TKE budget is marked in the
very near-wall region, especially at high Mach numbers, while all profiles progressively
collapse in the outer layer. The effect of the Mach number on velocity fluctuations is
reported in figure 6(a,c,e,g), where an increase of the streamwise component peak with
the Mach number is apparent, while the other normal components intensities are observed
to weakly decrease until y∗ < 40. Unlike the wall-cooling effect, all normal components
increase in the log layer as M∞ increases. We note that this effect could be reduced at
the boundary layer edge by matching the semilocal friction Reynolds number Re∗

τ in place
of the conventional definition (see table 1), which would allow all profiles to collapse
when y∗ ≈ Re∗

τ . In fact, Re∗
τ has been shown by several authors to better incorporate

compressibility and wall-cooling effects on the separation of scales in highly compressible
flows (e.g. Griffin et al. 2021; Hirai, Pecnik & Kawai 2021). However, in the present study
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Figure 6. Semilocal-scaled turbulent velocity fluctuations (a,c,e,g) and turbulent kinetic budget (b,d, f,h) as
function of the wall-normal distance y∗. Here, different Mach number M∞ are compared at a given diabatic
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Figure 7. Ratio of streamwise components of pressure–strain and turbulent production terms for cases at (a)
Θ = 1.0 and (b) M∞ = 6, as functions of the wall-normal distance in semilocal units.

we preferred to match wall-related quantities (i.e. Reτ ) and discuss the influence of M∞
and Θ on the separation of turbulent scales through the boundary layer thickness.

This suggests that compressibility acts in the direction of increasing the scale separation
in the outer layer, while wall-cooling has the opposite effect (Fan et al. 2022). For all
values of Θ , the TKE budget (figure 6b,d, f,h), shows an increase of the production term P
in the buffer and log layers as the Mach number increases and a corresponding decrease of
diffusion D and turbulent transport TT in the same regions, consistently with Cogo et al.
(2022), who noted the presence of this effect also in the outer region at higher Reτ . While
the effect of wall-cooling on the TKE budget seems confined in the near-wall region, the
influence of Mach number is more prominent after the peak of production and throughout
the log layer. Further insights on the mechanism of redistribution of TKE in the near-wall
region can be gained by looking at the ratio between the streamwise component of the
pressure–strain term and the streamwise component of turbulent production (Duan et al.
2010):

R =
(

p′ ∂u′′

∂x

)/(
ρu′′v′′ ∂ ũ

∂y

)
, (5.2)

which is a measure of the energy transfer from the streamwise velocity fluctuations to the
others.

The role of the pressure–strain term in increasing turbulence anisotropy was also noted
for other flows (e.g. Foysi, Sarkar & Friedrich 2004). To gauge the respective effects of
the Mach number and the wall temperature condition, figure 7 compares −R for cases at
Θ = 1.0 (figure 7a) and at M∞ = 6 (figure 7b). In figure 7(a), profiles of −R are reduced
in magnitude as compressibility increases, with greater intensity farther from the wall.

This is consistent with the less efficient redistribution of TKE discussed previously,
and is attributed to the absence of a solenoidal condition for the velocity field for highly
compressible cases preventing an efficient energy transfer between velocity components.
Looking at panel 7(b), we observe that wall-cooling acts similarly to an increase of
compressibility, strongly decreasing the profiles of −R, but its effect is localised in the
near-wall region and strongly reduced after the buffer layer.

We attribute this effect to a localised stratification of flow properties in the near-wall
region. As wall-cooling is increased and the location of the mean temperature peak
approaches the buffer layer, the flow above and below the peak location is relatively colder
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Figure 8. Instantaneous temperature contours in wall-normal slices (x–y plane) at M∞ = 6: (a) case M6T025
(cold wall), Θ = 0.25; (b) case M6T100 (adiabatic), Θ = 1.0.

and denser. This is true for all Mach numbers in our database (although with different
intensities), since the temperature peak location remains unaffected (see figure 3f ).
However, the effect is marked when the peak intensity is higher (i.e. M∞ = 6). This is
visible in figure 8, where case M6T025 of panel (a) exhibits a high-temperature substrate
in the near-wall region surrounded by a colder flow above and below, which is in direct
contrast with the adiabatic case shown in panel (b).

This localised stratification forces turbulent fluctuations to be active almost only in the
streamwise direction, while the other components tend to be suppressed. This effect is
quantified in figure 9 by showing the barycentric map of Banerjee et al. (2007), which
shows principal components of turbulence anisotropy. The invariant map is composed
of three limiting states, one-component (x1c), axisymmetric two-component (x2c) and
isotropic (x3c), which are representative of the relative strengths of the fluctuating velocity
components. Looking at figure 9(a), we note that the cusp point, which coincides
approximately with the peak of velocity fluctuations in the buffer layer, shifts towards
a one-component behaviour (x1c) as M∞ increases. This effect is strongly enhanced by
wall-cooling, figure 9(b), which further promotes the one-dimensional state of the flow.

We note that although this effect resembles a promotion of compressibility, as noted by
several authors (Duan & Martin 2011; Chu, Zhuang & Lu 2013), the underlying mechanism
is strongly different and relevant only when M∞ is high. In fact, different wall-cooling and
compressibility signatures are clearly noted for other effects, such as their effect on scale
separation and their region of influence through the boundary layer.

To provide further insights on these differences, we analyse the characteristic turbulent
lengths. We consider the length scale characterising large eddies as L = ρ̄k3/2/φ (Pope
2000), and the Kolmogorov length scale η = [(μ̄/ρ̄)3/(φ/ρ̄)]0.25 for the smallest ones,
with φ being the local dissipation rate of TKE. The ratio of these two scales, reported in
figure 10, measures the separation between large and small scales, which in our discussion
can be ascribed to the effect of M∞ and Θ numbers (since Reτ is fixed). In agreement
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Figure 9. Barycentric map of Banerjee et al. (2007) for cases at (a) Θ = 1.0 and (b) M∞ = 6. Each point in
the trajectories represents a different wall-normal location within the boundary layer up to the edge.
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Figure 10. Ratio of integral length scale L and Kolmorov scale η for cases at (a) Θ = 1.0 and (b) M∞ = 6, as
function of the wall-normal distance y+. The inset shows separately L+ and η+, normalised with the viscous
length δν .

with previous observations, figure 10(a) shows that the separation of scales in the outer
layer increases with the Mach number, while the opposite behaviour is found reducing the
diabatic parameter Θ , see figure 10(b). The insets in figure 10(a,b) show the individual
change of L+ = L/δν and η+ = η/δν , revealing that M∞ and Θ strongly affect the
Kolmogorov length η+, with a minor impact on large scales L+, influencing the separation
of large to small scales L/η in the outer layer.

On this aspect, we remark that while an increase in compressibility, i.e. M∞, reduces
the Kolmogorov length, the opposite holds decreasing the wall temperature, i.e. Θ .

The variation of L/η in the outer layer is effectively captured by the change of
Re∗

τ = μw/μ∞
√

ρ∞/ρwReτ (see table 2), which better account for density and viscosity
variations in the outer layer. It should be noted, however, that the definition of a
single similarity parameter among different flow cases concerning the scale separation is
prevented by the strong change of flow properties across the boundary layer. In particular,
while Reτ essentially regulates the outer–inner scale separation, i.e. L+, Re∗

τ controls
the large-small scale separation in the outer layer, i.e. L/η. These two variables are
strongly related in incompressible flows and both growing functions of y+ in the log-layer
(Pope 2000), while they appear to be decoupled for highly compressible flows due to the
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Figure 11. Profiles of root-mean-square temperature (a,c,e) and pressure (b,d, f ) in semilocal scaling. Here,
different diabatic parameters Θ are compared at a given Mach number M∞: (a,b) M∞ = 2; (c,d) M∞ = 4;
(e, f ) M∞ = 6.

influence of M∞ and Θ numbers. For this reason, specific flow features associated with
the outer–inner scale separation, such as the enhancement of outer layer motions at high
Reτ (Cogo et al. 2022), are not visible here, even though L/η actually increases in the
outer layer.

5.2. Thermodynamic quantities
Important insights into the respective roles of Mach number and wall-cooling can also be
attained by looking at root-mean-square profiles of temperature and pressure fluctuations
shown in figures 11 and 12. The semilocal scaling is used to better account for fluid
property variations across the boundary layer and root-mean-square quantities are scaled
accordingly. In particular, root-mean-square profiles of pressure are scaled with the wall
shear stress τw, while the resulting scaling for temperature is obtained using the ideal gas
law P = RρT:

τw

Rρ̄
= ρ̄u2

τ,SL

Rρ̄
= u2

τ,SL

R
= γ T̄

u2
τ,SL

Rγ T̄
= γ T̄M2

τ,SL (5.3)
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Figure 12. Profiles of root-mean-square temperature (a,c,e,g) and pressure (b,d, f,h) in semilocal scaling. Here,
different Mach number M∞ are compared at a given diabatic parameter Θ: (a,b) Θ = 0.25; (c,d) Θ = 0.5;
(e, f ) Θ = 0.75; (g,h) Θ = 1.0.

where uτ,SL = √
τw/ρ̄ is the semilocal friction velocity and Mτ,SL = uτ,SL/

√
γ RT̄ is

the semilocal friction Mach number. First, the effect of Θ at a given Mach number is
presented in figure 11. Considering the region starting from y∗ > 10, both temperature
and pressure fluctuations show a reduction in intensity as Θ decreases, although more
intense for the temperature. In particular, the suppression of temperature fluctuations by
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wall-cooling forms a plateau for the coldest case that is due to the great attenuation of the
turbulent heat flux in the log-layer, consistently with Fan et al. (2022). Around y∗ ≈ 10,
the aforementioned attenuation of temperature fluctuations reaches its maximum for highly
cooled cases (Θ = 0.25), which is the point where mean temperature gradients are close to
zero. In the near-wall region (y∗ < 10), strongly cooled cases exhibit a peculiar behaviour,
which goes in direct contrast to the monotonic attenuation of adiabatic profiles. In fact,
in this region, there is an increase in the intensity of the temperature fluctuations that
forms a local peak. We attribute this phenomenon to the large increase of conductive heat
flux close to the wall, which is able to overcome the expected attenuation of turbulent
heat flux that concurs with the generation of thermal production (see figure 13d). This is
due to the large increase of near-wall temperature gradients that generate steeper mean
profiles and for a wider region of y∗ values (before reaching the temperature peak), as
visible in figure 3(a). The increase in pressure fluctuations in this region is shared only by
the high-Mach-number case, showing that additional physical interpretations are needed
on the distinct role of vorticity and acoustic modes, for which we remind to the recent
study of Zhang et al. (2022). Figure 12 shows the effect of Mach number at a given Θ .
Here, temperature fluctuation profiles are very similar up to roughly y∗ < 15, while the
main differences are present in the outer layer, where at higher Mach numbers a peak
is formed. This result indicates that Θ is an adequate parameter to recover the same
general behaviour with respect to wall-cooling at different Mach numbers, as noted by
Wenzel et al. (2022) (we remark the similarity between Θ and Eckert number). Building
on the choice of the diabatic parameter Θ , we can clearly see how the Mach number
exerts its influence mainly beyond the buffer layer, while wall-cooling dominates the
near-wall region. This is in agreement with the trends of TKE budget previously reported
in § 5.1. Moreover, as discussed for velocity fluctuations § 5.1, we note the tendency of
compressibility to increase the separation of scales (figure 11), while the opposite is true
for enhanced wall-cooling (figure 12). This effect would be greatly reduced if profiles
were compared at the same Re∗

τ , which incorporates these effects (not shown). Pressure
fluctuations exhibit a good collapse at the peak location around y∗ ≈ 30, in accordance
with Zhang et al. (2022), but do not share the collapse between profiles in the near-wall
region noted for temperatures.

Further insights on the sources of production of temperature fluctuations, which are
highly influenced by wall-cooling, can be gained by considering the temperature variance
budget KT = T̃ ′′2, which can be written as (Gatski & Bonnet 2013)

ρ̄
DKT

Dt
= −ρ̄˜u′′

k T ′′ ∂T̃
∂xk

− ∂

∂xk

⎛⎝ ρ̄˜u′′
k T ′′2

2

⎞⎠+ γ T ′′ ∂

∂xk

(
k̄T

cp

∂T̄
∂xk

)
+ρ̄DT − ρ̄εT + ρ̄CT , (5.4)

where the terms on the right-hand side are in order of appearance: thermal production,
turbulent velocity transport, mean thermal conduction, thermal diffusion, thermal
dissipation rate and contributions due to pressure–dilatation and viscous dissipation,
respectively. Details on the composition of each term can be found in Gatski & Bonnet
(2013). Here, we analyse the thermal production term, which acts in a similar way to
turbulent production, transferring internal energy from the mean field to the fluctuating one
Fan et al. (2022). For TBLs, its wall-normal component is the main contributor, especially

974 A10-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

79
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.791


M. Cogo, U. Baù, M. Chinappi, M. Bernardini and F. Picano

100 101 102

100 101 102

100 101 102

0

0.25

0.50

0.75

1.00

P T
(×10–4)

M∞ = 2, Θ = 0.25
M∞ = 2, Θ = 0.5
M∞ = 2, Θ = 0.75
M∞ = 2, Θ = 1

M∞ = 4, Θ = 0.25

M∞ = 4, Θ = 0.5

M∞ = 4, Θ = 0.75

M∞ = 4, Θ = 1

0

2

4

P T

(×10–4)

(×10–1)

100 101 102

(×10–4)

y∗

0

2

4

6

8

P T

y∗

0

0.5

1.0

ρ– v
′′ T

′′ , 
∂
T⁓

/∂
y

˜

∂T⁓/∂y

ρ–v′′T ′′
˜

M∞ = 6, Θ = 0.25

M∞ = 6, Θ = 0.5

M∞ = 6, Θ = 0.75

M∞ = 6, Θ = 1

M∞ = 6, Θ = 0.25

M∞ = 6, Θ = 0.5

M∞ = 6, Θ = 0.75

M∞ = 6, Θ = 1 

(a) (b)

(c) (d )

Figure 13. (a–c) Production of temperature variance PT as function of y∗ and scaled by ρ̄uτ,SLT̃2/δν,SL. Here,
different wall-cooling conditions are compared for each Mach number: (a) M∞ = 2; (b) M∞ = 4; (c) M∞ = 6.
(d) Turbulent ρ̄ṽ′′T ′′ and conductive ∂T̃/∂y heat transfer terms in the thermal production. Here, different
wall-cooling conditions are compared for case M∞ = 6.

as we approach the wall, which we refer to as PT :

PT = −ρ̄˜v′′T ′′ ∂T̃
∂y

. (5.5)

Here, two terms concur to the heat exchange between different flow regions by two distinct
processes: the first part ρ̄ṽ′′T ′′ is dominated by turbulence with the velocity–temperature
fluctuations correlation, while ∂T̃/∂y represent the conductive part and is related to the
mean temperature gradient. Profiles of PT are reported in figure 13, showing the effect
of wall-cooling at different Mach numbers. Similarly to temperature fluctuations, cold
profiles behave differently before and after y∗ ≈ 10, where mean temperature gradients
change after the peaks. While adiabatic profiles monotonically rise from zero to a clear
peak at around y∗ ≈ 15, proving their coupling with velocity fluctuations, cold cases
progressively exhibit a reduction and outward shift of the main peak, with the creation of
another peak in the viscous sublayer. An insight to understand this process, which is more
apparent at M∞ = 6, can be gained by analysing the individual behaviour of turbulent and
convective heat exchange terms in thermal production (Fan et al. 2022), which are shown
in figure 13(d). Here, it can be seen that while the turbulent term is significantly far from
the wall with reduced intensity for cold cases, convective heat exchange dominates the
near-wall region as wall-cooling increases. In this region, even though ρ̄ṽ′′T ′′ is close to
zero for all cases, the temperature gradient raises considerably for Θ = 0.25 which result
in a non-zero product that is visible in plots of thermal production. Thus, the formation of a
peak of thermal fluctuation production in the viscous sublayer is promoted. The vanishing
mean temperature gradient in the buffer layer reduces the production of temperature
fluctuations and promotes a decorrelation with velocity fluctuations, as discussed in the
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Figure 14. Scatter plot of ρ̄T ′′/τw vs
√

ρ̄u′′/√τw: (a) M∞ = 6, Θ = 0.25; (b) M∞ = 6, Θ = 1.0. Here, only
the cases M6T025 and M6T100 are shown. Data were collected in the same plane shown in figure 2 (y∗ ≈ 10).

previous sections. This mechanism is clearly visible for all Mach numbers in our database,
although with progressively lower intensities. This fact corroborates the importance of the
role of Θ in isolating the effect of wall-cooling form compressibility, which greatly helps
in the identification of individual trends.

At this point, it is possible to reconsider the qualitative results presented in figure 2
in a more quantitative way. Wall parallel slices of velocity and temperature fluctuations
were taken approximately at y∗ = 10, where ∂T̃/∂y ≈ 0 for extremely cold cases. It is
now apparent that the decorrelation between ρ̄T ′′/τw and

√
ρ̄u′′/√τw can be explained

with the interplay of the mean temperature gradient and ρ̄ṽ′′T ′′, which entirely damps
the production of temperature fluctuations. This is also visible in figure 14, which shows
the joint probability density function between velocity and temperature fluctuations only
for extreme cases at M∞ = 6 (other cases are similar). Here, a direct contrast is present
between figures 14(a) and 14(b). While the latter (M6T100) shows a good correlation
between the two fields, supporting their similarity, the former (M6T025) shows a strong
decorrelation, especially when velocity fluctuations are negative, which is due to the
influence of wall-cooling.

6. Conclusions

In this paper, we have presented a systematic study on the effect of the Mach number
and wall-cooling on zero-pressure-gradient TBLs using DNS. A total of 12 computations
have been carried out spanning 3 Mach numbers and 4 values of the diabatic parameter
Θ , while the friction Reynolds number has been kept constant. In this parameter space,
we put emphasis on the choice of the wall-cooling parameter Θ , first proposed by Zhang
et al. (2014), which can better incorporate the indirect effects of the Mach number on
wall-cooling, yielding the same integral behaviour between different cases. It is worth
noting that Θ can be directly related to the Eckert number Ec, whose relevance has
recently been discussed by Wenzel et al. (2022). These parameters show an improved
ability to account for the wall-cooling effect at different Mach numbers with respect to the
more classically used wall-to-recovery temperature ratio Tw/Tr, which has been shown to
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produce vastly different effects of wall temperature on the flow dynamics in the near-wall
region across different Mach numbers (e.g. Cogo et al. 2022; Zhang et al. 2022).

A summary of the most important remarks is as follows.

(i) The instantaneous flow organisation of temperature fluctuations near the wall, which
for adiabatic cases is clearly discernible with the presence of near-wall elongated
streaks highly correlated to streamwise velocity, breaks down as the wall temperature
is progressively lowered, showing an isotropic behaviour for extremely cold cases
without organised patterns. Nevertheless, a similar flow organisation is attained at
different Mach numbers when Θ is fixed, a first sign of the aptness of this parameter
to yield the same wall-cooling effects across different M∞.

(ii) The recent compressibility transformations of Volpiani et al. (2020) and Griffin
et al. (2021) correctly collapse all mean velocity profiles of our database
to the incompressible laws of the wall. Similarly, Zhang et al. (2014) mean
velocity–temperature relations are able to capture non-adiabatic and compressibility
effects in an excellent manner. When this relation is approximated with the computed
mean value of the Reynolds analogy factor s = 0.78 ± 0.03 (which is close to the
fit of Zhang et al. 2014), an excellent estimate is recovered, with maximum errors of
5 % from the DNS data.

(iii) As the Mach number increases, we observe an increased separation between large
and small scales in the outer layer measured by the ratio L/η, which is mainly
regulated by the strong reduction of the Kolmogorov length η, and only weakly
by a growth of the largest scale L. This effect can be effectively described by the
growth of the semilocal friction Reynolds number Re∗

τ , even though the resulting
flow dynamics is different from a pure increase of the friction Reynolds number Reτ ,
the latter also leading to an increase of the inner–outer scale separation L+, feeding
outer layer motions. In the near-wall region, compressibility enables a less efficient
redistribution of TKE, which results in a promotion of the peak of the streamwise
velocity component and a decrease of the others.

(iv) The enhancement of wall-cooling appears as a reduction of the large–small scale
separation in the outer layer (as opposed to the effect of Mach number), which is
mainly due to an increase of the Kolmogorov length scale η that occurs throughout
the whole boundary layer thickness. Lower wall temperatures force the rise of the
mean temperature peak, inducing a stratification of flow properties localised around
the buffer layer. This effect is visible as an apparent promotion of compressibility,
since velocity fluctuations are enhanced in the streamwise direction, while the other
components are damped.

(v) In the near-wall region, a dominant effect of wall-cooling is present in the
root-mean-square temperature profiles and TKE budget, while the Mach number
exerts its influence mainly through the buffer and log layers. When the diabatic
parameter Θ is kept constant, the root-mean-square temperature profiles at different
M∞ collapse into each other near the wall, displaying a similar wall-cooling effect.

(vi) For extremely cold cases (in our database Θ = 0.25), the effect of wall-cooling is
so marked that temperature fluctuations are massively damped at the point where
the mean temperature gradient is zero (thus, thermal production is also zero), and
a second (minor) peak arises in the viscous sublayer. This phenomenon completely
decorrelates velocity and temperature fields in the near-wall region, and is more
pronounced at high Mach numbers. The different behaviour of thermal production
for cold cases can be explained by looking at the mean temperature gradient,
which persists with a positive value for a wider wall-normal region (before reaching
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the mean temperature peak at y∗
peak), and with a much stronger intensity than for

adiabatic cases.
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Appendix A

In this appendix, we consider mean velocity profiles in the framework of compressibility
transformations, which aim at incorporating compressibility effects in wall-bounded flow
statistics in order to recover the incompressible behaviour. Since the pioneering work of
Van Driest (1951), several relations have been proposed to account for the variations of
mean fluid properties, such as density and viscosity. These relations can be cast in terms
of mapping functions fI and gI for wall distance yI and mean velocity uI , which denote the
equivalent incompressible distributions obtained from the transformation I:

yI =
∫ y

0
fI dy, uI =

∫ ũ

0
gI dũ. (A1a,b)

Table 3 lists the relative values of fI and gI for Van Driest (1951) and the recent
transformation of Volpiani et al. (2020), which employs a partially data-driven approach
to derive the mapping exponents.

Griffin et al. (2021) transformation, instead, is based on the total stress equation, which
reads

τ+ = S+
t

(
τ+
v

S+
TL

+ τ+
R

S+
eq

)
, (A2)

where τ+
v and τ+

R are the scaled viscous and Reynolds shear stresses (whose sum is equal
to τ+), while S+

TL = ∂U+
TL/∂y∗ and S+

eq = ∂U+
eq/∂y∗ are the generalised non-dimensional

mean shear stresses derived for the viscous region (the subscript TL indicated the
accordance with the Trettel & Larsson (2016) velocity transformation) and for the
log-layer (the subscript eq indicates the assumption of turbulence quasi-equilibrium).
The generalised non-dimensional mean shear S+

t = ∂U+
t /∂y∗ is the unknown and once

computed it can be integrated with respect to the semilocal wall-normal coordinate y∗,
leading to the transformed velocity u+

GR = ∫
S+

t dy∗.
We report in figure 15 the scaled profiles according to the classical law of Van Driest

(1951) and the latest transformations of Volpiani et al. (2020) and Griffin et al. (2021).
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Transformation Wall distance (fI) Mean velocity (gI)

Van Driest (1951) fVD = 1 gVD = R1/2

Volpiani et al. (2020) fVI = R1/2

M3/2 gVI = R1/2

M1/2

Table 3. Compressibility transformations for the wall distance and the mean velocity according to (A1a,b),
where R = ρ̄/ρ̄w and M = μ̄/μ̄w.

100 101 102 103 104 105

100 101 102 103 104 106105

100 101 102 103 104 106105

0

10

20

30

u+ VD
u+ VI

M∞ = 2 M∞ = 4 M∞ = 6

Linear u+ = y+

Log law u+ = 1/0.41 ln(y∗) + 5.2
Θ = 0.25
Θ = 0.5
Θ = 0.75
Θ = 1

0

10

20

30

y∗(×10M∞/2–1)

y∗(×10M∞/2–1)

y+(×10M∞/2–1)

0

10

20

30

u+ G
R

(a)

(b)

(c)

Figure 15. Mean velocity profiles at stations listed in table 2 scaled according to (a) Van Driest (1951), (b)
Volpiani et al. (2020) and (c) Griffin et al. (2021) compressibility transformations. Profiles have been translated
along the x axis according to the law 10M∞/2−1 to enable better comparison.

Figure 15(a) reveals the main weaknesses of the Van Driest (1951) scaling, whose accuracy
is affected both by the increase of the Mach number and wall-cooling. In particular,
non-adiabatic cases at M∞ = 4, 6 show a clear departure from the linear law of the
wall, while even adiabatic cases show a positive shift from the log-law as compressibility
increases. Figures 15(b) and 15(c) show a great improvement in collapsing all profiles to
the laws of the wall, the only minor discrepancy being present in the log-layer for extremely
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/T

∞
M∞ = 2, Θ = 0.25

M∞ = 2, Θ = 0.5
M∞ = 2, Θ = 0.75

M∞ = 2, Θ = 1

Walz law

Zhang law
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M∞ = 4, Θ = 0.5
M∞ = 4, Θ = 0.75

M∞ = 4, Θ = 1
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Zhang law

0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
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Zhang law
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Figure 16. Mean temperature profiles against mean velocity compared with the classical law of Walz (1969)
(4.1) and the modified relation of Zhang et al. (2014) (4.2): (a) M∞ = 2; (b) M∞ = 4; (c) M∞ = 6.

cold cases at high Mach numbers. Overall, our database supports Volpiani et al. (2020) and
Griffin et al. (2021) transformations, proving their wide range of applicability.

Appendix B

In this appendix, we report DNS results regarding theoretical relations developed to predict
the coupling between velocity and temperature for both mean and fluctuating fields. First,
we consider the classical relations of Walz (1969) and the modified relation of Zhang et al.
(2014), as described in § 4.1. Figure 16 compares the relations (4.1) and (4.2) with the
present database. As expected, Walz (1969) relation greatly degrades its accuracy when the
wall-cooling is increased, while Zhang et al. (2014) is able to better perform under these
conditions, the only minor deviations being present for the case M6T025. However, we
note that Walz (1969) law still excellently holds for adiabatic cases at high Mach numbers,
while being incapable of correctly capturing wall-cooling effects.

We then consider the SRA (Morkovin 1962), which consists of a set of theoretical
relations that couple the thermodynamic and kinetic fluctuating fields. Originally derived
for an adiabatic case, the three main relations can be expressed as

(T̃ ′′2)1/2/T̃

(γ − 1)M̃2(ũ′′2)1/2/ũ
≈ 1,

Ru′′T ′′ =
˜u′′T ′′√

ũ′′2
√

T̃ ′′2
≈ 1,

Prt = ρu′v′(∂T̃/∂y)

ρT ′v′(∂ ũ/∂y)
≈ 1,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(B1)

where we recall the Favre average definition f̃ = ρ̄f /ρ̄ and that f ′′ = f − f̃ .
Figure 17 shows the profiles of Ru′′T ′′ that clearly deviate from unity, which is expected

since it was derived assuming zero total temperature fluctuation (Morkovin 1962). All
profiles collapse around the value −Ru′′T ′′ = 0.6, except in the near-wall region, which is
marked with an inset (Duan et al. 2010). The inset of figure 17 shows that the crossover
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Figure 17. Velocity and temperature correlation Ru′′T ′′ as function of y/δ99. Full lines indicate M∞ = 2,
dashed lines indicate M∞ = 4 and dotted lines indicate M∞ = 6.

location, where Ru′′T ′′ = 0, corresponds approximately to the location of the maximum
mean temperature. Here, we observe that as the wall progressively cools, the crossover
location moves at higher y∗ values, indicating a temperature–velocity decorrelation that
is progressively moved farther from the wall. Our database also shows that this location
is almost independent of the Mach number when Θ is fixed, whereas distinct Mach and
wall-cooling effects are visible on the near-wall peak intensity and position of Ru′′T ′′ .

The remaining two relations of (B1) have been modified over the years to account
for finite heat flux at the wall and remove wall temperature dependence (Huang et al.
1995) (HSRA). The most recent improvement has been made by Zhang et al. (2014), who
proposed another definition of the turbulent Prandtl number Prt which should perform
better at high Mach numbers, yielding the following expression of the modified SRA
(modified HRSA):

(T̃ ′′2)1/2/T̃

(γ − 1)M̃2(ũ′′2)1/2/ũ
Prt(1 − (∂T̃t/∂T̃)) ≈ 1, (B2)

where the proposed definition of Prt is

Prt = (ρv)′u′∂T̃/∂y

(ρv′)T ′∂ ũ/∂y
= Prt

1 + v̄ρ′u′/ρv′u′

1 + v̄ρ′T ′/ρv′T ′ (B3)

in which the difference from the classical definition is notable when both v̄ and ρ′ are
non-zero.

Figure 18 compares the wall-normal profiles obtained with the original SRA and the
modified version of (B2), as well as the profiles of Prt and the modified Prt of (B3).
Figure 18(c) shows that the modified version of Zhang et al. (2014) clearly improves the
insensitivity to the freestream Mach number and wall temperature condition, with only
slight deviations at the edge of the boundary layer. It is also interesting to note the excellent
collapse that the original SRA of panel 18(a) exhibits for profiles at fixed Θ , independently
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Figure 18. Comparison of the SRAs in the (a,b) original form (B1), (c,d) modified HSRA (Zhang et al. 2014)
((B2), (B3)). Full lines indicate M∞ = 2, dashed lines indicate M∞ = 4 and dotted lines indicate M∞ = 6.

of the Mach number, highlighting the relevance of the diabatic parameter Θ in accounting
for the effects of different wall temperatures independently of the Mach number.
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