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Abstract. The high mass X-ray binaries (HMXBs) provide an exciting framework to investigate
the evolution of massive stars and the processes behind binary evolution. HMXBs have shown
to be good tracers of recent star formation in galaxies and might be important feedback sources
at early stages of the Universe. Furthermore, HMXBs are likely the progenitors of gravitational
wave sources (BH–BH or BH–NS binaries that may merge producing gravitational waves). In this
work, we investigate the nature and properties of HMXB population in star-forming galaxies. We
combine the results from the population synthesis model MOBSE (Giacobbo & Mapelli 2018a)
together with galaxy catalogs from EAGLE simulation (Schaye et al. 2015). Therefore, this
method describes the HMXBs within their host galaxies in a self-consistent way. We compute
the X-ray luminosity function (XLF) of HMXBs in star-forming galaxies, showing that this
methodology matches the main features of the observed XLF.
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1. Introduction

High Mass X-ray Binaries (HMXBs) are systems composed of a compact object (neu-
tron star NS, or black hole BH) and a massive companion star. Observational results
have shown that HMXBs are good tracers of the star formation rate (SFR) within their
host galaxies (Grimm et al. 2003, Mineo et al. 2012), and might be important heating
and ionizing sources in the early Universe (e.g., Justham & Schawinski 2012, Artale et al.
2015, Douna et al. 2018, Garratt-Simthson et al. 2018). From a theoretical point of view,
studying the population of HMXBs within galaxies is essential to understand their role
in the aforementioned processes and the binary evolution.
In particular, the X-ray luminosity function (XLF) is an excellent tracer describing

the global population of HMXBs in galaxies. It can also help to investigate the nature of
ultraluminous X-ray sources (Mapelli et al. 2010, Kaaret et al. 2017). Several observa-
tional results show that the XLF of HMXBs is described by a power law with a slope of
∼ 1.6, and normalization proportional to the SFR (Grimm et al. 2003, Mineo et al. 2012).

Population synthesis models have proved to be useful to describe the HMXB population
of individual galaxies (e.g., Belczynski et al. 2004), and to predict the XLF of star-forming
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galaxies (e.g., Zuo et al. 2014). However, they cannot describe the diversity of stellar ages
and metallicities within a galaxy in a self-consistent way.
In order to properly model star formation and metallicity evolution in galaxies, popu-

lation synthesis simulations must be coupled with galaxy catalogs from galaxy formation
models. Such galaxy catalogs can be obtained either from semianalytic models (Fragos
et al. 2013), or from hydrodynamical cosmological simulations (Mapelli et al. 2017, 2018a,
2018b, Artale et al. in preparation).

In this work, we study the XLF of star-forming galaxies combining the galaxy catalogs
of the hydrodynamical cosmological simulation eagle (Schaye et al. 2015) with the
results from the population synthesis model mobse (Giacobbo & Mapelli 2018a). In
Section 2 we present the methodology. We discuss our findings in Section 3.

2. Simulations and methodology

mobse (Giacobbo & Mapelli 2018a) is an upgraded version of bse code (Hurley
et al. 2002).The code includes new stellar winds prescription (Vink et al. 2001, 2005,
Chen et al. 2015), electron-capture SNe (Giacobbo & Mapelli 2018b), core-collapse SNe
(Fryer et al. 2012), pulsational pair-instability and pair-instability SNe (Spera & Mapelli
2017). mobse reproduces successfully the masses and merger rates of compact objects
(Giacobbo & Mapelli 2018b,c) inferred by the LIGO-Virgo collaboration. In this work
we adopt the simulation set referred to as α1 in Giacobbo & Mapelli (2018b). In this
model, the common envelope parameter is set to α= 1. This set is composed of 12 sub-
sets at different metallicities Z = 0.0002, 0.0004, 0.0008, 0.0012, 0.0016, 0.002, 0.004,
0.006, 0.008, 0.012, 0.016 and 0.02. Each sub-set contains 106 binaries, hence the total
number of binaries is 1.2× 107. From the population synthesis model, we identify the
HMXB sources undergoing stable mass transfer via Roche lobe overflow (RLO–HMXB),
and those accreting the wind from the companion star (SW–HMXB). The X-ray lumi-

nosity of each HMXB in the catalog is computed as LX = ηGṀaccMco

Rco
, where Ṁacc, Mco,

and Rco are the accretion rate, the mass, and the radius of the compact object, respec-
tively. The parameter η is the efficiency in converting gravitational binding energy to
radiation associated with accretion. We adopt that η= 0.1 for BH and NS for simplicity
since BH–HMXB sources are the dominant population (see ahead in the text). On the
left panel of Figure 1, we show the cumulative distribution of HMXBs normalized by the
total number of sources for each metallicity sub-set. We also split the contribution of SW
and RLO systems in each subsample.
The eagle simulation suite is a set of cosmological hydrodynamical simulations with

different resolution levels and box sizes, run using an updated version of gadget-3 code.
It adopts the ΛCDM cosmology with cosmological parameters Ωm = 0.2588, ΩΛ = 0.693,
Ωb = 0.0482, and H0 = 100 h km s−1Mpc−1 with h= 0.6777 (Planck Collaboration 2014).
The simulation includes subgrid models accounting for star formation, UV/X-ray ionizing
background, radiative cooling and heating, stellar evolution, chemical enrichment, AGB
stars and SNe feedback, and supermassive black hole feedback. In this work we use the
simulated box named as L0100N1504. This run represents a periodic box of 100 Mpc
side, which initially contains 15043 gas and dark matter particles with masses of mgas =
1.23× 106h−1M� andmdm = 6.57× 106h−1M�. Since this work is focused on the analysis
of star forming galaxies in the local universe, we use the galaxy catalog at z = 0. We select
a subsample of galaxies with specific star formation rate of sSFR> 10−10M�yr−1 and
stellar masses in the range of M∗ = 108 − 5× 1010 M�. The number of galaxies fulfilling
this condition is 2596.
For each simulated galaxy in the subsample, we identify the youngest stellar particles

with ages below to 100 Myr. Since the progenitors of HMXBs are systems composed
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Figure 1. Left panel: Cumulative number of HMXBs normalized by the total number of sources,
obtained with mobse for the 12 adopted metallicities (filled lines). We also show the contribution
from SW-HMXBs (dotted lines) and RLO-HMXBs systems (dashed lines). Right panel: Spatial
distribution of the stellar particles within one of the galaxies in the eagle catalog, showed
face on. The color code represents the ages of the stellar particles (the oldest and the youngest
populations are marked in red and in blue, respectively). Stellar particles that were formed in
the last 100 Myr are shown by black stars (these particles are populated with HMXBs, see the
details in Section 2).

of two massive stars, these sources are directly connected with the star-forming regions
within the galaxies. The assumption to select the youngest stellar particles (< 100 Myr)
accounts for this fact. In Figure 1 right panel, we show the spatial distribution of the
stellar particles in one of the galaxies of the sub-sample. We find that the stellar particles
with age < 100 Myr (indicated by black stars in Figure 1) are mainly in the outskirts of
this galaxy, and a few of them are located close to the central region.
Hence, for each galaxy in the subsample, we identify the stellar particles that fulfil

the age condition, and according to the metallicity of each particle Z∗, we compute the
number of HMXBs as Mapelli et al. (2010),

NHMXB =
NMOBSE

HMXB (Z∗)
mMOBSE(Z∗)

mEAGLE
∗ fcorrfbin, (2.1)

where mEAGLE
∗ is the mass of the stellar particle, NMOBSE

HMXB (Z∗) is the total number of
HMXBs in the mobse catalog with the metallicity closer to Z∗, and mMOBSE(Z∗) is the
total mass of the mobse catalog at the selected metallicity. The parameter fcorr = 0.285
accounts for the fact that we simulate only massive stars (� 5 M�), while fbin = 0.5 is
the assumed binary fraction. Hence, we randomly select a number NHMXB of HMXBs
from the sub-set of mobse with the metallicity closer to Z∗ and we assign them to that
star particle.
Our model also accounts for transient and persistent sources and includes prescriptions

for Be–HMXB systems. Following Zuo et al. (2014), we assume that Be–HMXBs are wind-
fed systems composed of an NS and a massive companion star, with orbital periods in
the range of 10-300 d. We assume that only 25% of these systems are Be–HMXBs. We
identify transient sources through the thermal disk instability model, where binaries with
accretion rates below a critical value Ṁcrit are considered transient sources (see Frank,
King & Raine 2002, eq. 5.105 and 5.106, p. 133). We note here that the assumptions made
for transient sources are based on models for low-mass X-ray binary sources. Transient
sources are in a quiescent state most of the time. Hence, we assume that its duty cycle
is 1%. We also adopt a bolometric correction following Fragos et al. (2013).
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Figure 2. Mean X-ray luminosity function (XLF) normalized by the galaxy star formation rate.
Black line: Mean XLF obtained by stacking together the XLFs of the star-forming galaxies in the
EAGLE simulation at z = 0. Shaded grey area: Poissonian uncertainty on the mean XLF from
the EAGLE galaxies. Solid blue (magenta) line: contribution to the simulated XLF by RLO–
HMXBs (SW–HMXBs). Dotted red (dashed green) line: BH–HMXBs (NS–HMXBs). Solid red
line: Be-HMXBs. Grey line: observed XLF by Mineo et al. (2012).

We compute the error bars assuming a Poisson distribution for the X-ray luminosities
within the galaxies. We split the mean XLF of the star-forming galaxies according to the
compact object (BH–HMXB and NS–HMXB) and the accretion process (RLO–HMXB,
SW–HMXB, Be–HMXB) of the sources.
Using this method, for each simulated galaxy we obtain a population of HMXBs that

accounts for the variability of the sources and the different emission mechanisms. In this
work, we focus on studying the XLF of star-forming galaxies and compare our findings
with the observational results of Mineo et al. (2012).

3. Results and future work

Figure 2 shows the mean XLF obtained by stacking together the XLFs of the star-
forming galaxies. Our results show that the mean XLF of the simulated galaxies is in fair
agreement with the observed XLF by Mineo et al. (2012, grey line).
In our model, BH–HMXBs are more numerous and generally brighter than

NS–HMXBs. BH systems are expected to be more luminous than NS–HMXBs (Kaaret
et al. 2017). However, observational results indicate that persistent NS–HMXBs are more
numerous than persistent BH–HMXBs in the Milky Way (e.g., Lutovinov et al. 2013).

Nonetheless, Vulic et al. (2018) show that galaxies with sSFR > 10−10 yr−1 have a
higher number of BH-HMXBs than NS-HMXBs due to recent star formation episodes.
Moreover, the fraction of BH-HMXBs and NS-HMXBs from the population synthesis
model output shows that BH–HMXBs are more numerous in the simulated set. This is
explained since strong interaction in binary systems tends to form more BH than NS due
to mass transfer.
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When we compare the HMXB according to the accretion process, we find that
the RLO–HMXBs contribute only with high X-ray luminosity sources, while while
SW-HMXBs dominate in all the X-ray luminosity range.
Several parameters in the population synthesis model (e.g. supernova kicks) might

play a fundamental role in shaping the population of HMXBs. In a forthcoming work,
we will investigate in detail the impact of some key population-synthesis parameters on
the demography of HMXBs.

References

Artale, M. C., Tissera, P. B., Pellizza, L. J., et al. 2015, MNRAS, 448, 3071
Belczynski, K., Kalogera, V., Zezas, A., Fabbiano, G., et al. 2004, APJL, 601, 147
Chen, Y., Bressan, A., Girardi, L., Marigo, P., Kong, X., Lanza, A., et al. 2015, MNRAS, 452,

1068
Douna, V. M., Pellizza, L. J., Laurent, P., Mirabel, I. F., et al. 2018 MNRAS, 474, 3488
Fragos, T., Lehmer, B., Tremmel, M., Tzanavaris, P., Basu-Zych, A., Belczynski, K.,

Hornschemeier, A., Jenkins, L., Kalogera, V., Ptak, A., Zezas, A., et al. 2013, ApJ,
764, 41

Frank, J., King, A. & Raine, D. J. 2002, Accretion Power in Astrophysics ISBN
0521620538. Cambridge, UK. Cambridge University Press

Fryer, C. L., Belczynski, K., Wiktorowicz, G., Dominik, M., Kalogera, V., Holz, D. E., et al.
2012, ApJ, 749, 91

Garratt-Smithson, L., Wynn, G. A., Power, C., Nixon, C. J., et al. 2018, MNRAS, 480, 2985
Giacobbo, N., Mapelli, M. & Spera, M. 2018a, MNRAS, 474, 2959
Giacobbo, N. & Mapelli M. 2018b, preprint (arXiv:1805.11100)
Giacobbo, N. & Mapelli, M. 2018c, MNRAS, 480, 2011
Grimm, H.-J., Gilfanov, M., Sunyaev, R., et al. 2003, MNRAS, 339, 793
Hurley J. R., Tout C. A., Pols O. R., et al. 2002, MNRAS 329, 897
Justham, S. & Schawinski, K. 2012, MNRAS, 423, 1641
Kaaret, P., Feng, H., Roberts, T. P., et al. 2017, ARAA, 55, 303
Lutovinov, A. A., Revnivtsev, M. G., Tsygankov, S. S., Krivonos, R. A., et al. 2013, MNRAS,

431, 327
Mapelli, M., Ripamonti, E., Zampieri, L., Colpi, M., Bressan, A., et al. 2010, MNRAS, 408, 234
Mapelli, M., Giacobbo, N., Ripamonti, E., Spera, M., et al. 2017, MNRAS, 472, 2422
Mapelli, M., & Giacobbo, N. 2018a, MNRAS, 479, 4391
Mapelli, M., Giacobbo, N., Toffano, M., et al. 2018b, arXiv:1809.03521
Mineo, S., Gilfanov, M., Sunyaev, R., et al. 2012, MNRAS, 419, 2095
Planck Collaboration 2014, A&A, 571, 16
Spera, M. & Mapelli, M. 2017, MNRAS, 470, 4739
Schaye, J., Crain, R. A., Bower, R. G., Furlong, M., Schaller, M., Theuns, T., Dalla Vecchia,

C., Frenk, C. S., McCarthy, I. G., Helly, J. C., Jenkins, A., Rosas-Guevara, Y. M., et al.
2015, MNRAS, 446, 521

Vink, J. S., de Koter, A., Lamers, H. J. G. L. M., et al. 2001, A&A, 369, 574
Vink, J. S., & de Koter, A. 2005, A&A, 442, 587
Vulic, N., Hornschemeier, A. E., Wik, D. R., Yukita, M., Zezas, A., Ptak, A. F., Lehmer, B. D.,

et al. 2018, ApJ, 864, 150
Zuo, Z.-Y., Li, X.-D., Gu, Q.-S., et al. 2014, MNRAS, 437, 1187

https://doi.org/10.1017/S1743921318007627 Published online by Cambridge University Press

https://arXiv.org/abs/1805.11100
https://arXiv.org/abs/1809.03521
https://doi.org/10.1017/S1743921318007627

	The High Mass X-ray binaries in star-forming galaxies
	Introduction
	Simulations and methodology
	Results and future work


