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Abstract. We investigate the secular evolution of non-resonant exoplanetary systems consisting
of a central star and two co-planar planets using a semi-numerical averaging method of the first
order in planetary masses (in this case equivalent to “averaging by scissors” or simply drop-
ping the fast periodic terms). The resulting Hamiltonian level curves for different exoplanetary
systems were compared to those obtained by direct numerical integration. Studying the depen-
dence of the reliability of the averaging method (as well as chaoticity of numerically integrated
trajectories) upon the initial conditions, we found that the averaging methods fails even for Hill
stable systems. Based on the Hill stability criterion we introduced empirically a more restrictive
stability condition, that enabled us to give an estimate for the region of validity of the averaging
method in the plane of initial conditions.

Keywords. Celestial mechanics, exoplanets, stability

1. Introduction
There are several possibilities to study the secular behaviour of exoplanetary systems

consisting of a star and two co-planar planets, which are not in a mean motion resonance.
The simplest approach is the classical Laplace-Lagrange secular solution, which takes into
account only terms up to the second order in eccentricities. The resulting equations of
motion may be written as linear differential equations which can be solved easily. Very
interesting insight into topology and artificial singularities of this problem, when reduced
to one degree of freedom, was presented by Pauwels (1983), where the representation of
motion is depicted on a sphere. But being limited to almost circular orbits this method
will fail to describe correctly the secular evolution of most exoplanetary systems which
have in general larger eccentricities.

A better possibility is the expansion of the perturbing function in powers of eccentrici-
ties as was done by Libert & Henrard (2005) who showed that an expansion to 12th order

Table 1. Elements of exosystems used in our calculations

System M [M⊙ ] MP [MJ sin I ] P [d] a [AU ] e � [◦]

HD 12661 1.11 2.34 262.53 0.83 0.361 116.3
1.83 1679 2.86 0.017 218.0

HD 169830 1.43 2.9 225.62 0.82 0.31 328.0
4.1 2100 3.62 0.33 72.0

HD 108874 1.0 1.37 395.27 1.05 0.068 70.0
1.02 1599 2.68 0.253 200
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is able to describe correctly most of the exoplanetary systems. The third possibility, the
so called averaging method, was used for instance by Michtchenko & Malhotra (2004)
and for 3-D problem by Michtchenko et al. (2006). Here the Hamiltonian is numerically
averaged over the mean anomalies and is therefore not restricted to low degrees in eccen-
tricities. The dependence of variables may be obtained by means of level curves of the
Hamiltonian. On the other hand this method does not give the transformation between
osculating and mean elements. Finally numerical integration can be used to check, how
well the aforementioned methods solve the problem.

In this study we try to understand how well the averaging method describes the secular
evolution in dependence on the initial conditions to come to conclusions on the validity
of this method.

2. Canonical variables and the averaged Hamiltonian
Let us consider a system consisting of a star of mass M and two co-planar planets of

mass m1 and m2 . Introducing the relative position vectors rj , (j = 1, 2) of the planets to
the star and their conjugate momenta pj = mj ρ̇j , where ρj are the position vectors rela-
tive to the centre of gravity, we get the four degree of freedom Hamiltonian (Michtchenko
& Malhotra 2004) H = H0 + H1 , with

H0 =
2∑

j=1

(
pj

2

2µj
− G(M + mj )µj

rj

)
, (2.1)

and
H1 = −G

m1m2

∆
+

p1p2

M
. (2.2)

G is the gravitational constant, µj = Mmj/(M + mj ) is the reduced mass of the j-th
body and ∆ = |r2 − r1 |.

We may define the formal osculating Keplerian elements aj , ej ,�j , λj as the usual
elements of the Keplerian motion with H0 after the perturbation H1 is switched off and
rj and pj do not change at this moment. The final set of canonical variables is then:

Lj = µj

√
G(M + mj )aj , λj = mean longitude,

Sj = Lj (1 −
√

1 − e2
j ), sj = −�j = minus longitude of periastron.

The averaged Hamiltonian of the problem is Hs = H0 + H̄1 , where

H0 = −
2∑

j=1

G2(M + mj )2µ3
j

2L2
j

, (2.3)

and

H̄1 = − 1
4π2 Gm1m2

∫ 2π

0

∫ 2π

0

1
∆

dλ1 dλ2 , (2.4)

as the indirect part p1p2/M does not contribute any secular term.
Being independent of the mean longitudes the conjugate momenta Lj (and thus the

semi-major axes) are now constant. Introducing a new canonical set:

K1 = S1 , k1 = s1 − s2 = �2 − �1 = ∆� and
K2 = S1 + S2 , k2 = s2

it becomes obvious that the resulting Hamiltonian Hs = Hs(K1 , k1) depends only on
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Figure 1. Level curves for the averaged Hamiltonian and numerical integration (dots) for HD
12661 - left, HD 169830 - centre and HD 108874 - right.

one coordinate, representing thus a problem with one degree of freedom. The second
constant of motion K2 , introduced as Angular Momentum Deficit (AMD) by Laskar,
(Laskar 2000) corresponds to total angular momentum conservation (for constant L1
and L2 ) and couples both eccentricities.

The Hamiltonian H̄1 may be obtained numerically for a fixed value of K2 from (2.4)
and its level curves drawn in the (xj , yj ) plane, where xj = ej cos kj and yj = ej sin kj .
Since due to the conservation of AMD the eccentricities are not independent the level
curves can be converted directly into each other.

Fig. 1 shows exemplarily the level curves of the Hamiltonian for 3 exoplanetary systems:
HD 12226, HD 169830 and HD 108874. The calculations were done for a fixed value of K2
defined by the initial conditions taken from the catalogue by Butler et al. (2006) and given
in Table 1. In this figure we included also the nominal trajectories of these exoplanetary
systems (shown as dots) obtained by numerical integration using the program Mercury
by Chambers (1999).

We can see that for the first two systems the agreement between the averaging method
and numerical integration is good in comparison to the poor agreement for HD 108874.
The reason here is the proximity of the system to the 4:1 mean motion resonance. If
one changes here the initial semi-major axis of the outer planet from 2.68 AU towards
the nominal value of the resonance at 2.66 AU one can observe a growing disagreement
between the averaging method and the real behaviour of the system. The reason for the
failure of the averaging method is clear: the double averaging over mean longitudes is of
course impossible in case of mean motion resonances.

Therefore in the following we are interested in systems such as HD 12226 and HD
169830, which are not in or close to such mean motion resonances. However it is clear
that, if the planets during the system evolution will be close enough for the mean semi-
major axes to be changed during such encounters the averaging method must fail as well.
In the remaining part we will define the area for which the averaging method is working
well to predict the secular evolution.

3. Stability map in the plane of initial conditions
Following Michtchenko & Malhotra (2004) we introduce the plane of initial conditions

as follows: from Fig. 1 it is clear that each trajectory, no matter whether librating or cir-
culating, goes through the line defined by y1 = 0. Therefore each set of initial conditions
can be represented by a point in the (x1 , e2) plane, where the initial value of ∆� is fixed
to either 0◦ or 180◦.

Fig. 2 shows the plane of initial conditions for HD 12661 and HD 169830 with energy
levels (solid lines) and AMD levels (dashed lines). Let us remark that for the linear
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Figure 2. The plane of initial conditions with energy levels (solid lines) and AMD levels
(dashed lines) for HD 12661 - left and HD 169830 - right.

approximation both of these level curves are ellipses, where the inclination of the axes
for energy level ellipse would be 45◦. The orbits which are initially crossing are above
the line defined by a1(1 − e1 cos ∆�) = a2(1 − e2).

Using this plane we calculated with the initial condition of the therewith defined plan-
etary systems the maximum Lyapunov Characteristic Exponent (LCE). The masses and
semi-major axis were taken from Table 1. As numerical integrator we used the ODEX
code - an extrapolation method proposed by Hairer & Wanner (1995). Fig. 3 shows the
logarithm of the LCE (dark areas refer to stable regions) in the plane of initial conditions.
The line of initially crossing orbits is given additionally in each of the figures.

To see how well the averaging method is working in dependence on the stability, three
different points were chosen from Fig. 3: for the same e1 one with e2 = 0.1, 0.3 and
0.4 (shown as light dots in the left part of the figure). The predicted behaviour by the
averaging method in comparison to the direct numerical integration for all three points
can be found in Fig. 4. While for e2 = 0.3 there is merely a shift to the contour lines,
there is complete disagreement for e2 = 0.4. The reason for the latter becomes clear if
one looks at the semi-major axis as a function of time, as is shown in Fig. 5. For an
initial value of e2 = 0.4 the semi-major axis of the inner planet has small jumps of about
1% as the result of closer approaches between the planets. Numerical experiments show
that the averaged Hamiltonian (2.4) gives the correct picture only for log LCE � -5.5
(or Lyapunov time larger 100 000 years).

For most exoplanetary systems discovered by radial velocity measurement only lower
limits for the planetary masses are known. To account and test also for this indetermi-
nation we multiplied both planetary masses by κ, keeping the mass ratio of the planets
constant and we calculated stability maps as a function of κ. It can be recognized that
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Figure 3. The stability map for HD 12661 and HD 169830.
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Figure 4. Comparison between the averaging method and numerical integration for different
values of e2 . See text for explanation.

the region of applicability of the averaging method slowly shrinks as expected with in-
creasing κ. But the general features remain the same: a stable area for nearly circular
orbits enclosed by strongly chaotic orbits and in between some sort of fuzzy layer where
the semi-major axis has short periodic variations with growing amplitude but its mean
value still does not show any apparent jumps. Here the level curves given by the averaging
method are slightly shifted compared to the numerical integration as already mentioned.
Our boundary curve will be fitted to the region where the mean semi-major axes starts
to jump.

4. Hill stability
The Hill stability condition for the elliptic case of one host star with mass M and two

planets with masses mi is given by Gladman (1993) and based on results of Marchal &
Bozis (1982). It reads to lowest order as

Cα−3
(
µ1 +

µ2

δ2

)
(µ1γ1 + µ2γ2δ)2 > 1 + µ1µ2

(
3
α

)4/3

, (4.1)

where C = 1, µi = mi/M , γi =
√

1 − e2
i for i = 1, 2. α = µ1 + µ2 , δ =

√
1 + ∆ and

∆ = (a2 − a1)/a1 .
Gladman showed that when this inequality is fulfilled, the planets are forbidden to

undergo close approaches for all the time. As a close approach he defines the separa-
tion, when one planet is inside the sphere of influence, 2µ2/5 , of the more massive one.
But even for Hill stable systems, one has still a chaotic region close to the boundary
defined by (4.1) with short Lyapunov times. Here one finds no crossing of the planetary
orbits during several 105 conjunctions, which gives the impression of bounded semi-major
axes preventing close approaches. But still jumps in the mean value of the semi-major
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Figure 5. The evolution of the semi-major axis of the inner planet for the same trajectories as
in Fig. 4.
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Figure 6. The stability map for HD 12661 for κ = 1 - left and for HD 169830 κ = 3 - right.
The region of applicability of averaging method is roughly defined by boundary curve given by
modified Gladman formula.

axes as shown in the right plot of Figure 5 can occur. The reason for these are called
small encounters by Gladman. Further away from the boundary curve the amplitudes
of short-periodic variations in the semi-major axis decrease and one finds quasi-periodic
behaviour.

5. Conclusions
As already shown the Hill stability condition is not sufficient for the averaging method

to work due to small encounters. Therefore such condition has to be stronger and so we
introduced the constant C into (4.1) to scale the left hand side. We started with finding
numerically the value of e2 , for which there is a jump in the semi-major axis for both
exoplanetary systems and with different κ. Hereafter we fitted the value of C with least
square method. The resulting value C = 0.89 leads to the required sharpening of (4.1).
Fig. 6 shows the resulting boundary curves for both systems κ. These curves approximate
the boundary of applicability of the averaging method.

This condition is useful to get very fast a first impression on the stability of some
orbital configurations avoiding expensive (from the point of CPU time) calculations of
dynamical maps. But of course for more detailed analysis more sophisticated tools have
to be employed, since this method is working only in regions where strong mean-motion
resonances are not important.
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