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Abstract We construct finitely generated groups of small period growth, i.e. groups where the maximum
order of an element of word length n grows very slowly in n. This answers a question of Bradford related to
the lawlessness growth of groups and is connected to an approximative version of the restricted Burnside
problem.
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1. Introduction

In this paper we provide an affirmative answer to the following question posed by H.
Bradford at the ‘New Trends around Profinite Groups’ conference in Levico Terme, 2021.
Q1 Is there a lawless finitely generated p-group of sublinear period growth?

A group is called lawless if it does not satisfy any non-trivial identity, i.e. if every
word-map has a non-trivial image. Let G be a group generated by a finite set S. For
any n ∈ N, write BS

G(n) for the set of elements in G of word length at most n (with
respect to S ). The period growth function πS

G : N → N∪{∞} of G with respect to S, first
considered by Grigorchuk [5], is defined by

πS
G(n) = max{ord(g) | g ∈ BS

G(n)}.

Grigorchuk proved that the growth type of πS
G is independent of the choice of S.

Consequently, Q1 is well-posed and we drop the superscript S in statements regarding
the growth type of the period growth function of a group.
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Bradford’s question was motivated by an application to lawlessness growth, cf.
[4, Example 2.7 and Question 10.2]. The lawlessness growth of a lawless group mea-
sures the minimal word length of witnesses to the non-triviality of the verbal subgroup
w(G) for group words w of increasing length. Since elements of order m do not satisfy any
power words of length smaller than m, there is a close connection between the period and
the lawlessness growth of p-groups G : any upper bound on the growth of πS

G(n) yields a
lower bound for the lawlessness growth. Concretely, an example of a lawless p-group, p
being some prime, with the properties required by Q1 has superlinear lawlessness growth,
see Proposition 5.1. For a detailed study on lawlessness growth, we refer to [4].
Clearly, a group with the properties demanded in Q1 is infinite since it is lawless,

and it is periodic since otherwise there exists some n0 ∈ N such that πS
G(n) = ∞ for all

n ≥ n0. Little is known regarding the period growth of finitely generated infinite periodic
groups. Grigorchuk proved that the (first) Grigorchuk group G fulfils πG - n9, where
given two non-decreasing functions f, g : N → R>0, we write f - g if

lim sup
n→∞

f(n)/g(n) < ∞.

This bound was improved by Bartholdi and Šuniḱ [2] to n3/2, also extending the
result to certain generalizations of G. In [4, Remark 5.7], Bradford constructs a
Golod–Shafarevich p-group of at most linear period growth. We remark that the standard
proof that the Gupta–Sidki 3-group Γ3 is periodic yields πΓ3

- n1/ log3(4/3).
To state our main result, we need to define some functions that grow very slowly. The

tetration function tetrk : N → N with base k is defined recursively by tetrk(0) = 1 and
tetrk(n + 1) = ktetrk(n) for n ∈ N. We define a left-inverse non-decreasing function by
slogk(n) = max{l ∈ N | tetrk(l) ≤ n}. Furthermore, given r ∈ R, we write expr for the
exponentiation function expr(k) = rk.
Now we may state our main result.

Theorem 1.1. There exists a 4-generated infinite residually finite periodic 2-group G
such that

πG - exp8 ◦ slog2 .

In particular, the function πG grows slower than any iterated logarithm. Furthermore,
this group is lawless, which is the content of Proposition 5.6. Thus, Theorem 1.1 gives
an affirmative answer to Q1.
The group we construct to prove Theorem 1.1 is realized as a group of automorphisms

of a spherically homogeneous locally finite rooted tree, whose valency is unbounded. In
the theory of automorphisms of rooted trees, it is often interesting to obtain examples
acting on regular trees, i.e. locally finite trees where all vertices (except the root vertex)
have the same valency. On our way to prove Theorem 1.1, we obtain a family of groups
of slow (albeit far faster than the growth described in Theorem 1.1) period growth that
act on regular rooted trees without additional work.

Theorem 1.2. Let ε > 0. There exists a finitely generated infinite residually finite
periodic 2-group Gε acting on a regular rooted tree (depending on ε) such that

πGε - nε.
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Groups of small period growth 627

We stress the fact that the groups we construct are residually finite. This is important
in the context of the following approximative variant of the restricted Burnside problem.
The restricted Burnside problem may be formulated as follows: Are residually finite
groups with bounded period growth function finite? Thus, considering groups with slow
but not bounded period growth as the next best thing to groups of finite exponent,
we ask:
Q2 Among all m-generated residually finite, infinite p-groups G, what are

the minimal growth types of πG? What growth types are possible in
general?

Since - is not a linear order, this question is likely very hard to answer in full gener-
ality. However, there is a universal lower bound: By Zel’manovs [11, 12] solution to the
restricted Burnside problem, the finite residual res B(m,n) of the free Burnside group of
rank m and exponent n is a finite group for all values of m and n. Define

zelm(n) = max{k ∈ N | |res B(m, k)| ≤ n}.

Since Q2 excludes finite groups, this function yields a lower bound for the period growth
function of any m-generated residually finite infinite p-group. The best known lower
bound for zelm(n) is due to Groves and Vaughan-Lee [6], who prove that

zelm(n(4n)) ≥ slogm(n).

Theorem 1.1 provides a group whose period growth comes close to the best known upper
bound for zelm,

zelm(22
..
.
2m

) ≤ 2k,

with k appearances of the number 2 in the tower on the left side, which is due to Newman,
whose argument is given in [10].

Organization

After some preliminary definitions, we first prove Theorem 1.2 and then use the groups
constructed for this purpose as a model for the more involved construction of the group
we use to prove Theorem 1.1. We then establish that all the groups constructed are
lawless and thus constitute examples of groups with fast lawlessness growth. We end
with some open questions related to the subject.

2. Groups of automorphisms of rooted trees

Let G be a group. For x, y ∈ G, we write xy = y−1xy and [x, y] = x−1xy. Let S be
a generating set for G. We write `S : G → N for the word length function of G with
respect to S and BS

G(n) for the set of elements of G of length n with respect to S. For
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two integers l, u ∈ Z, we denote by [l, u] and [l, u) the set of integer numbers within the
corresponding intervals.
Let (Xn)n∈N+ be a sequence of finite non-empty sets. The (spherically homogeneous)

rooted tree of type (Xn)n∈N+ is the tree T with finite strings x1 . . . xk, xi ∈ Xi for
i ∈ [1, k], as vertices and edges between strings that only differ by one letter. The empty
string is called the root of the tree. Every vertex of distance k for some fixed k ∈ N
from the root is a string of length k, which has valency |Xk+1| + 1. The set LT (k) of
vertices of distance k to the root is called the kth layer of the tree. We identify the first
layer with the set X 1. Every vertex u ∈ LT (k) is the root of a rooted subtree Tu of type
(Xn)n≥k. We may compose strings in the following way: if v ∈ LT (k) and u ∈ Tv, then
the concatenation vu is a vertex of T.
If the sequence (Xn)n∈N+ is constant, we call the corresponding tree regular. In this

case, all subtrees Tu for u ∈ T are isomorphic.
A (tree) automorphism of T is a (graph) automorphism of T fixing the root. Such a

map must also leave the layers of T invariant. Let v ∈ T and u ∈ Tv be two vertices, and
a ∈ Aut(T ) an automorphism of T. Then the equation

(vu).a = (v.a)(u.(a|v))

defines a unique automorphism a|v of Tv called the section of a at v.
Any automorphism a can be decomposed into its sections prescribing the action at the

subtrees of the first layer and a|ε, the action of a on the first layer LT (1) = X1. We adopt
the convention that an X 1-indexed family (x : ax)x∈X1

of automorphisms ax ∈ Aut(Tx)
is identified with the automorphism having section ax at x, which stabilizes the first layer.
Hence, for any a ∈ Aut(T ), we write

a = (x : a|x)x∈X1
a|ε.

We record some important equalities for sections. Let a ∈ Aut(T ), u ∈ T and v ∈ Tu.
Then

(a|u)|v = a|uv, (ab)|u = a|ub|u.a, a−1|u = (a|u.a−1)−1.

We call an automorphism rooted if all its first layer sections are trivial, i.e. if it permutes
the set of subtrees {Tx | x ∈ X1}. The subgroup of rooted automorphisms is isomorphic
to Sym(X1).
Let G ≤ Aut(T ) be a group of automorphisms. The (pointwise) stabilizer of the kth

layer of T in G is denoted StG(k) and called the kth layer stabilizer. All layer stabilizers
are normal subgroups of finite index in G. Their intersection is trivial; hence, the group
G is residually finite. The group G is called spherically transitive if it acts transitively
on every layer LT (k).
The kth rigid layer stabilizer RistG(k) of a spherically transitive group G for some

k ∈ N is the product of all (equivalently, the normal closure of a) rigid vertex stabilizer
ristG(u) = {g ∈ G | g|v = id for v ∈ T \ Tu}, where u ∈ LT (k). A spherically transitive
group G is weakly branch if RistG(k) is non-trivial for all k ∈ N. Every weakly branch
group is lawless (cf. [1]).
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If T is regular, a group G ≤ Aut(T ) is called self-similar if for all u ∈ T the image of
the section map G|u is contained in G. It is called fractal if stG(x)|x = G for all x ∈ LT (1).
The group G is called weakly regular branch if it contains a non-trivial subgroup H ≤ G
such that ristH(x)|x ≥ H for all x ∈ LT (1). Every weakly regular branch group is weakly
branch.
Since we aim to provide examples of periodic groups, we need the following criterion

for periodicity, which is adopted from the methods developed by Grigorchuk, Gupta and
Sidki (cf. [5, 7 ]). Since our criterion is adapted to a more general situation, we give a
short proof.

Proposition 2.1. Let G ≤ Aut(T ) be a group, let π be a set of primes and let n ∈ N
be a positive integer, such that G|u/StG|u(n) is a π-group for every u ∈ T . For every
vertex u ∈ T , let `u : G|u → N be a length function such that `u(g) ≤ 1 implies that g is
a π-element.
If for all vertices u, v ∈ T such that v = uw for some string w of length n, and all

g ∈ G|u, we have

`v(g|w) < `u(g)/ exp(G|u/StG|u(n)), (*)

then G is a π-group.

Proof. Let g ∈ G|u for some u ∈ LT (k) and k ∈ N. We prove that the order of g is
finite and divisible by primes in π only. The statement then is obtained by considering
u = ε. We use induction on ` = `u(g). If ` ≤ 1, the element is a π-element by assumption.
If ` > 1, write q = exp(G|u/ StG|u(n)). By assumption, q is only divisible by primes in
π. Now gq stabilizes the nth layer; hence, gq = (x : gq|x)x∈LTu (n) and ord(g) divides

q · lcm{ord(gq|x) | x ∈ LTu(n)}. Using Equation (*), we obtain

`ux(g
q|x) < `u(g

q)/q ≤ `u(g) = `

for all x ∈ LTu(n). Thus, by induction, ord(gq|x) is finite and divisible by primes in π
only, and consequently, the same holds for g. �

3. Layerwise length reduction and the proof of Theorem 1.2

We construct a family of groups Kr, indexed by all integers r ≥ 2, acting on regular
rooted trees T (r) whose type depends on r. Fix an integer r ≥ 2, and write Ar = Cr

2 for
the elementary abelian 2-group of rank r. Also fix a (minimal) generating set Er = {ei |
i ∈ [0, r)}. Let T (r) be the regular rooted tree of type (Ar)n∈N+ . We now construct Kr as

a group of automorphisms of T (r), using a construction much in spirit of the Gupta–Sidki
p-groups or the second Grigorchuk group. In fact, Kr is a (constant) spinal group in the
terminology of [3, 9 ].
View the group Ar as rooted automorphisms of T (r) by embedding Ar into Sym(Ar)

via its right multiplication action. Notice that we may see an element a ∈ Ar both as a
vertex of T (r) and as an automorphism acting on T (r). We fix a translation map of Ar,
given by a 7→ a :=

∏r−1
i=0 eia. Therefore, `Er (ei) = r − 1 for all i ∈ [0, r).
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Figure 1. The action of the generator b3 of K 3 on the first two layers of T (3).

Define br ∈ Aut(T (r)) by

br = (1Ar : br; ei : ei for i ∈ [0, r); ∗ : id),

where ∗ stands for every element of Ar not referred to elsewhere in the tuple. Figure 1
depicts the case r = 3 as an example. Notice that br ∈ St(1) is an involution. We define

Kr = 〈Ar ∪ {br}〉.

This is a group generated by r + 1 involutions. For r = 2, this group contains elements
of infinite order, but for r > 2, the groups Kr are periodic by [9, Theorem A]. We do not
need to rely on this result since the bounds establishing slow period growth also show
that Kr is periodic for r > 4. Since we are mostly interested in Kr for big r, this suffices
for our purposes.
We fix two generating sets for Kr,

Er = Er ∪ {br} and Sr = Ar ∪ bAr
r

and establish some basic properties of the groups Kr.

Lemma 3.1. Let r ∈ N+ be a positive integer. The group Kr is self-similar, fractal
and spherically transitive. In particular, it is infinite.

Proof. The rooted group Ar acts transitively on the first layer. Since rooted elements
have trivial sections, self-similarity follows from the fact that all sections of br are in
Er ⊂ Kr. In fact, all elements of Er appear as sections of br ∈ StKr (1). Conjugating by
rooted elements, we may achieve any section of br at any first layer vertex; thus, Kr is
fractal. By the transitivity of Ar, the group Kr acts transitively on the second layer, and
inductively, Kr is spherically transitive. �

Now we come to the core of our argument for establishing slow period growth. We
prove an inequality between the length of an element and its sections at vertices of the
second layer, using that the automorphism br has short sections with respect to Er, but
the only conjugates in bAr aside from br that have non-trivial section at the vertex 1Ar
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are big with respect to Er. In preparation for the proof of Theorem 1.1, we prove this
inequality for a more general class of groups than just those of the form Kr. Therefore,
we need the following technical definition. Let r ∈ N+, and let T̃ be a rooted tree of type
(Xn)n∈N+ such that X1 = X2 = Ar. An element b ∈ StAut(T̃ )(1) is said to be two-layer
resemble br if the following three conditions hold:

(1) b|x = br|x for x ∈ Ar \ {1Ar},
(2) b|1Ar

∈ St(1),

(3) b|1Arx
= br|1Arx

for x ∈ Ar \ {1Ar}.

A group G ≤ Aut(T̃ ) is said to be two-layer resemble Kr witnessed by b if it
is generated by a set E = Er ∪ 〈b〉, where b is an automorphism that two-layer
resembles br.
Clearly, br two-layer resembles itself. Notice that the coset br St(2) contains many

elements that do not two-layer resemble br since the first (and second) layer sec-
tions of an element in St(2) do not need to be rooted. In fact, if the trees T̃ and
T (r) coincide, the set of elements that two-layer resembles br is equal to the coset
br · ristAut(T )(1Ar1Ar ).

Lemma 3.2. Let G ≤ Aut(T̃ ) be a group that two-layer resembles Kr witnessed by
b ∈ Aut(T̃ ). Write S = Ar ∪ 〈b〉Ar and S ′′ = Ar ∪ 〈b|1Ar 1Ar

〉Ar . Then for all g ∈ G and

u ∈ LT̃ (2), we have

`S′′(g|u) ≤ d `S(g)/re .

Proof. The reader less interested in the technicalities may consider this proof in its
application to the example b = br, reading G = Kr, E = E ′ = E ′′ = Er and S = S ′′ = Sr,
avoiding some of the cumbersome notation necessary to deal with the more delicate
construction that is necessary for proving Theorem 1.1.
The main idea is the following. An S-word representing an element g gives rise to an

E ′-word of the same length representing a first layer section g|x. Taking sections again,
one finds that the cost of every letter of the form ei in g|xy is a letter of the form bei in
g|x. But rewriting the E ′-word to an S ′-word that contains elements of this form must
give a far shorter expression. Consequently, the second layer sections are of shorter word
length.
It is sufficient to prove `S′′(g|u) ≤ 1 for all g ∈ BS

G (r). From this one derives the desired
inequality by cutting a minimal S-word representing g into pieces of length at most r.
Thus, let g ∈ BS

G (r).
For convenience, we write b = b|1Ar

and b = b|1Ar 1Ar
. Furthermore, let E = Er ∪ 〈b〉,

E ′ = Er ∪ 〈b〉 and E ′′ = Er ∪ 〈b〉.
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Notice that for all x ∈ Ar, we have S|x = E ′, since a|x = id for all a ∈ Ar and, using
the first property of automorphisms two-layer resembling b,

(bn)a|x = bn|xa−1 = bn|xa = (b|xa)n

=


bn if x = a,

enj if xa = ej for some j ∈ [0, r),

id else.

Thus, g|x ∈ BE′
G (r).

Now minimally represent g|x as a word in S ′ and collect the Ar-type generators to the
right, i.e. write

g|x = (bn1)a1 · · · (bnk−1)ak−1ak (*)

for k ∈ N, ai ∈ Ar and ni ∈ Z for all i ∈ [1, k]. Arguing as above, but now using the
second and third properties of automorphisms two-layer resembling b, one finds that the
first layer sections of (bn)a (for n ∈ Z, a ∈ Ar) are letters in E ′′. Thus, given y ∈ Ar, the
S ′-word representing g|x yields a E ′′-word representing g|xy. Without loss of generality,
we may assume that all but the last letter of (*) contribute a non-trivial E ′′-letter to
g|xy. This amounts to

ai ∈ {y} ∪ {yej | j ∈ [0, r)}

for all i ∈ [1, k). In case that all ai 6= y for all i ∈ [1, k), all E ′′-letters representing g|xy
are in Er; hence, g|xy is of S ′′-length 1. Otherwise, there is some ai = y. Without loss of
generality, we may assume a1 = y. If k = 2, we again find `S′′(g|xy) = 1. If k > 2, the
word (*) has a prefix

(bn1 )
y(bn2 )

yej

for some j ∈ [0, r). Rewriting (*) as a E ′-word, it must have a prefix

ybn1ejb
n2 .

(The last part of the S ′-prefix may cancel.) But this prefix is of E ′-length

`Ar (y) + 1 + `Ar (ej) + 1 ≥ r + 1.

This is impossible since we have established g|x ∈ BE′
G (r). Consequently, if ai = y, we

must have k = 2, and `S′′(g|xy) ≤ 1. �

Applying the lemma to b = br and G = Kr (and using the self-similarity of Kr), we
obtain the following inequality.
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Lemma 3.3. Let g ∈ Kr be an element and let u ∈ L
T (r)(2). Then

`Sr (g|u) ≤ d `Sr (g)/re .

Proof of Theorem 1.2. Notice that Proposition 2.1, Lemma 3.1, Lemma 3.3 and the
fact that Kr/ StKr (2) is a subgroup of the permutational wreath product of elementary
abelian 2-groups, hence itself a 2-group, show that Kr is an infinite 2-group in case r > 4.
We prove πSr

Kr
(n) ≤ n1/(log4(r)−1) for every n ∈ N and r > 4. Clearly, choosing some

big integer r, this proves the theorem.
Let g ∈ Kr be an element. Write n = `Sr (g). Since Ar is a group of exponent two,

g2 ∈ StKr (1) and g4 ∈ StKr (2). Consequently, the order of g4 is the least common
multiple of the orders of g4|u for u ∈ L

T (r)(2), which equals, since Kr is a 2-group, the
maximum of their orders, i.e.

ord(g) ≤ 4 ·max{ord(g4|u) | u ∈ L
T (r)(2)}.

In view of Lemma 3.3, we see `Sr (g
4|u) ≤ d 4n

r e, so for n ≥ r

πSr
Kr

(n) ≤ 4 · πSr
Kr

(d4n/re) ;

hence, using that Kr is generated by involutions,

πSr
Kr

((
r
4

)k) ≤ 4kπSr
Kr

(1) = 2 · 4k.

This implies

πSr
Kr

- exp4 ◦ log r
4
∼ n1/(log4(r)−1). �

4. Growing valency and the proof of Theorem 1.1

We now construct a group G with the properties described in Theorem 1.1. To achieve
this, we take the generators br of the groups Kr constructed in the previous section
and build a single automorphism d acting on a rooted tree with unbounded valency
that resembles some br0 for two layers (where the valency is 2r0 + 1), then use one
layer to increase the valency to 2r1 + 1 for some r1 > r0 that resembles br1 for two
layers &c. This will allow us to use the reduction formulas for the br but with (rapidly)
increasing r.
The slowest period growth (using this construction) will be achieved if one arranges

the sequence (rn)n∈N to grow as fast as possible. For this, there is a natural upper bound.
We want the sections of d at a given layer of valency rn+1 +1 to generate an elementary
abelian 2-group acting on the layer below but can use no more than 2rn − 1 sections as
generators. Hence, the maximum possible increase of valency is given by the following
function f : N → N. Let f(0) = 3 and f(k + 1) = 2f(k) − 1 for k ∈ N. Since we aim to
increase the valency of our tree on every third layer, we also introduce f3(k) = f(bk/3c),
a function that takes every value of f thrice. These functions grow very quickly.
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Lemma 4.1. For all k ∈ N, we have f(k) ≥ tetr2(k).

Proof. We use induction on k for the statement f(k)−1 ≥ tetr2(k). Clearly, f(0)−1 =
2 ≥ 1 = tetr2(0). Now for all k > 0

f(k + 1)− 1 = 2f(k) − 2 ≥ 2f(k)−1 ≥ 2tetr2(k) ≥ tetr2(k + 1). �

Recall from the previous section that Ar denotes a copy of the elementary abelian
2-group with an (ordered) basis Er = {e0, . . . , er−1}. We now fix some enumeration
(which may depend on r) {ai | i ∈ [0, 2r)} = Ar for these groups, such that a0 is the

trivial element. Also recall the translation map a 7→ a(r) = a
∏r−1

i=0 ei defined in the
previous section. We introduce the superscript to make precise within which group we
are translating.
Now we define T as the rooted tree of type (Af3(k)

)k∈N. For any k ≡3 0 excluding

k = 0, the kth, (k+ 1)st and (k+ 2)nd layers of T have valency 2f3(k) + 1. Write Tk for
the (isomorphism class) of any subtree of Tu for some u ∈ LT (k), i.e. T0 = T and Tk of
type (Af3(l)

)l≥k.
Again we view the group Af3(k)

as rooted automorphisms by their right multiplication
action. Define a sequence of automorphisms dn ∈ Aut(Tk) for k ∈ N by

dk = (1Af3(k)
: dk+1; ei

(f3(k)) : ei; ∗ : id) for k ≡3 0, 1 and

dk = (1Af3(k)
: dk+1; ai : ei∈ Af3(k+1) for i ∈ [1, 2f3(k))) for k ≡3 2.

Finally, we define Gk = 〈Af3(k)
∪ {dk}〉 ≤ Aut(Tk) and write G for G0.

Note that among the sections of dk are all the elements of Ek+1. Using this, we see
that, for every v ∈ T of length k, we have G|v = Gk and G acts spherically transitively
on T.
For k ∈ N, define Sk = Af3(k)

∪ {dk}
Af3(k) and Ek = Ef3(k)

∪ {dk}, filling the rôles

of Sr and Er of § 3. Both are generating sets for Gk. Note that d2k = 1; hence, both sets
consist of involutions.

Lemma 4.2. Let k ∈ N be a positive integer such that k ≡3 0 and g ∈ Gk an element.
Then for all v ∈ LTk

(2), we have

`Sk+2
(g|v) ≤

⌈
`Sk(g)

f(k/3)

⌉
.

Proof. We apply Lemma 3.2. This is possible since by definition, dk two-layer
resembles bf(k/3). Notice that S = Sk and S ′′ = Sk+2. �

Lemma 4.3. Let k ∈ N and let g ∈ Gk. Then for all x ∈ LTk
(1)

`Sk+1
(g2|x) ≤ `Sk(g) + 1.

Proof. Since 〈dk〉
Af3(k) is closed under conjugation with Af3(k)

, we may write

g = d
a1
k · · · da`−1

k c for ` = `Sn(g), for some ai ∈ Af3(k)
for i ∈ [1, `) and c ∈ Sr \ {id}.
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Then g|x = d
a1
k |x · · · d

a`−1
k |xc|x. Now at most every second expression, d

ai
k |x (including c|x

if it is of this form) can evaluate to dk. Otherwise, there is some i such that ai = ai+1 = x,
respectively, a`−1 = x and c = dxk, which implies

g = d
a1
k · · · dai−1

k dxkd
x
kd

ai+2
k · · · da`−1

k c = d
a1
k · · · dai−1

k d
ai+2
k · · · da`−1

k c, (**)

and g = d
a1
k · · · da`−2

k , respectively. But then `Sn(g) ≤ `−2, a contradiction. Hence, there

are at most d`/2e symbols dk in the product d
a1
k |x · · · d

a`−1
k |xc|x. Thus, we have

g|x = d
a′1
k · · · d

a′n−1
k a′n

for some n ≤ d`/2e+ 1 and a′i ∈ Ar for i ∈ [1, n].
Now consider g|x.g. If g ∈ St(1), we have g|x.g = g|x and hence

g2|x = (g|x)2 = d
a′1
k · · · d

a′n−1
k a′nd

a′1
k · · · d

a′n−1
k a′n = d

a′1
k · · · d

a′n−1
k d

a′1a
′
n

k · · · d
a′n−1a

′
n

k ,

thus, `Sk+1
(g2|x) = 2(n−1) ≤ `+1. It remains to consider the case g /∈ St(1). Notice that

every expression d
ai
k in (**) can only contribute one dk-letter to all first-layer sections.

Thus, in g|x and g|x.g, cumulatively, there are at most ` such letters. Collecting the
Af3(k)

-letters to the right, the product g|xg|x.g is at most of length `+ 1. �

Lemma 4.4. Let k ≡3 0 and let g ∈ Gk. Then for all u ∈ LTk
(3),

`Sk+3
(g8|u) ≤

⌈
4 · `Sk(g)
f(k/3)

⌉
+ 1.

Proof. Since Af3(k)
and Af3(k+1) are of exponent two, we have g4 ∈ StGk

(2). Hence,

g8|u = (g4|u1u2)
2|u3 , where u = u1u2u3. Now

`Sk+3
(g8|u) = `Sk+3

((g4|u1u2)
2|u3)

≤ `Sk+2
(g4|u1u2) + 1 (by Lemma 4.3)

≤

⌈
`Sk(g

4)

f(k/3)

⌉
+ 1 (by Lemma 4.2)

≤
⌈
4 · `Sk(g)
f(k/3)

⌉
+ 1.

�

Lemma 4.5. The group G is a 2-group.

Proof. This follows from Proposition 2.1 and Lemma 4.2. Using the notation of
Proposition 2.1, let n = 10. Since G|u/StG|u(1) is an elementary abelian 2-group for
all u ∈ T0, we see that exp(G|u/StG|u(n)) ≤ 2n. Now, regardless of the value of k mod-
ulo 3, taking the 10th section of some g ∈ Gk allows us to invoke Lemma 4.2 at least
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three times. Hence, for all w ∈ LTk
(10),

`Sk+10
(g|w) ≤

⌈
`Sk(g)

f(0)f(1)f(2)

⌉
=

⌈
`Sk(g)

3 · 7 · 127

⌉
<

`Sk(g)

210
,

and we conclude that G is a 2-group. �

Proof. Proof of Theorem 1.1 Let n, k ∈ N with k ≡3 0, and let g ∈ B
Sk
Gk

(n). Since

exp(Al) = 2 for all l ∈ N, the 23-power of g fixes the third layer of Tn; hence,

ord(g) ≤ 8 ·max{ord(g8|v) | v ∈ LTk
(3)}.

Now Lemma 4.4 implies

π
Sk
Gk

(n) ≤ 8 · πSk+3
Gk+3

(⌈
4·n

f(k/3)

⌉
+ 1

)
.

Writing vk(n) = d4 · n/f(k/3)e+ 1 and

u(n) = min{l ∈ N | vl(vl−1(· · · (v0(n)) · · · )) = 2},

we find

πS
G(u(n)) ≤ 8n · πS3n

G3n
(2).

Now, using the same argument as before, we see that π
S3n
G3n

(2) ≤ 4 by Lemma 4.2. Thus,

deriving tetr2 - u(n) from Lemma 4.1, we obtain

πG - exp8 ◦ slog2 . �

5. Lawlessness growth

Let G be a lawless group generated by a finite set S. By the definition of lawlessness, the
image of the word map w(Gm) is non-trivial for every reduced word w ∈ Fm \ {1} in m
letters, m ∈ N. We may define the complexity of w in G with respect to S by

χS
G(w) = min

{
m∑
i=1

`S(gi) | g = (gi)
m
i=1 ∈ Gm, w(g) 6= 1

}
∈ N.

Now the lawlessness growth function AS
G : N → N of G with respect to S is defined by

AS
G(n) = max{χS

G(w) | w ∈ Fm \ {1} with `S(w) ≤ n}.

This definition is due to Bradford, first given in [4], where he proves the independence
of the growth type from the choice of generating set and establishes a connection to the
period growth in the case of periodic p-groups.
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Proposition 5.1. [4] Let G be a finitely generated lawless periodic p-group for some
prime p and f : N → N some function. Then πS

G(n) ≤ f(n) implies AS
G(f(n)) ≥ n.

Using this, we give examples of groups with large lawlessness growth (cf. [4, Question
10.2]) by proving that the groups constructed in the previous sections are in fact lawless.
As a consequence of Theorem 1.1 and Proposition 5.1, we obtain the following corollary.

Corollary. There is a finitely generated lawless group G such that

AS
G & tetr2 ◦ log8 .

It remains to prove that the group G of Theorem 1.1 is lawless. We prove that it is
weakly branch, which is sufficient by [1]. Our proof is technical but also establishes that
the groups Kr are weakly branch for all integers r > 5. To avoid some obstacles appearing
for small valencies, we look at G6 instead of G = G0, for which the proof of Theorem 1.1
works verbatim, except for the number of generators. Thus, in the remainder of this
section, we write G for G6 and define the function f prescribing the valencies of the tree
upon which G acts by f(0) = 127 and f(n+ 1) = 2f(n) − 1 for n > 0.

Lemma 5.3. Let r ∈ N>5 and let G ≤ Aut(T̃ ) be a group that two-layer resembles Kr

witnessed by b. Define

N = 〈[b, ei, ej ] | i, j ∈ [0, r), i 6= j〉G ≤ Aut(T̃ ), and

N = 〈[b|1Ar
, ei, ej ] | i, j ∈ [0, r), i 6= j〉G|1Ar ≤ Aut(T̃ |1Ar

)

Then for every x ∈ LT̃ (1), we have ristN (x) ≥ N.

Proof. We use left-normed commutators, i.e. [x, y, z] = [[x, y], z]. Write ci,j = [b, ei, ej ]
for the (normal) generators of N. Clearly, N ≤ StG(1). We compute

ci,j |x =


b|1Ar

if x ∈ {1Ar , ei, ej , eiej},

et if x ∈ {et, etei, etej , eteiej} and t ∈ [0, r) \ {i, j},
eiej if x ∈ {1Ar , eiej , ei, ej},
id otherwise.

Let i, j, k,m, n be pairwise distinct elements of [0, r) (here we need r > 4). We look at

[ci,j , c
ek
m,n]. Since both ci,j and c

ek
m,n are in St(1), taking the commutator commutes with

taking sections. All sections except b|1Ar
commute, so we have [ci,j , c

ek
m,n]|x = id for all

x 6∈ {1Ar , ei, ej , eiej , ek, ekem, eken, ekemen}. Since r > 5, all these vertices are distinct.
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Furthermore, for the remaining cases, we calculate

[ci,j , c
ek
m,n]|x =


[b|1Ar

, ek] if x = 1Ar ,

[ek, b|1Ar
] if x = ek,

[b|1Ar
, id] = id if x ∈ {ei, ej , eiej},

[id, b|1Ar
] = id if x ∈ {ekem, eken, ekemen}.

Now let l ∈ [0, r) \ {i, j, k}. Then c
el
i,j |1Ar

= el and c
el
i,j |ek = ci,j |ekel = id. Consequently,

[ci,j , c
ek
m,n, c

el
i,j ]|x =

[b|1Ar
, ek, el] if x = 1Ar ,

id else;

thus, ristN (1Ar ) ≥ 〈[b|1Ar
, ei, ej ] | i, j ∈ [0, r), i 6= j〉. Since {bei |1Ar

| i ∈ [0, r)}∪ {b|1Ar
}

generates G|1Ar
, for every g ∈ G|1Ar

, we find an element ĝ ∈ StG(1) such that ĝ|1Ar
= g.

Conjugating with these elements, we find ristN (1Ar ) ≥ N . Since G acts transitively on
the first layer, all rigid vertex stabilizers are conjugate, and we obtain the result. �

Proposition 5.4. Let r ∈ N>5. Then Kr is weakly regular branch, hence lawless.

Proof. This follows directly from Lemma 5.3, since the two normal subgroups N,N
are equal in the case of Kr. �

Lemma 5.5. Let k ∈ N and x ∈ LTk
(1). Then StGk

(1)|x ≥ Gk+1.

Proof. Observe Ek+1 = {dk|x | x ∈ LTk
(1)} and that Gk acts transitively on

LTk
(1). �

Proposition 5.6. The group G = G6 is a weakly branch group, hence a lawless group.

Proof. Let k ∈ N be an integer such that k ≡3 0. We adopt the following notation to
better distinguish between the generators of Af3(k)

and Af3(k+3). If a = ei0 . . . eit is a
non-trivial element of Af3(k)

, we write ei0...it for the generator dk+2|a of Af3(k+3). Each
element of Ef3(k+3) appears in this way. Define

Nk = 〈[dk, ei, ej ] | i, j ∈ [0, f3(k)), i 6= j〉Gk , and

Mk =

〈
[[dk, a1], [dk, a2]

g]

∣∣∣∣∣ g ∈ Gk, a1 = ejeijeleil, a2 = enemnesems,

i, j, l,m, n, s ∈ [0, f3(k − 1))pairwise distinct

〉Gk

.

The group Gk two-layer resembles Pf3(k)
; thus, Lemma 5.3 implies ristNk+1

(u) ≥ Nk+2

for u ∈ LTk+1
(1). We show that

ristMk
(w) ≥ Nk+1for k > 0, and (†)
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ristNk+2
(v) ≥ Mk+3. (‡)

Using this, we see that for all u ∈ LT (l),

ristG(u) ≥

Ml if l ≡3 0,

Nl otherwise.

Since Nl and Ml are non-trivial for all l ∈ N, this shows that G is a weakly branch group.
In both cases, it is enough to show that the normal generators of Nk+1, respectively,

Mk+3, are contained in the rigid vertex stabilizer of 1Af3(k+1)
, respectively, 1Af3(k+3)

.

Using Lemma 5.5, we find the full normal subgroup within the rigid vertex stabilizer of
1Af3(k)

, and since Gk acts spherically transitive, all rigid vertex stabilizers of the same

layer are conjugate.

We first prove Equation (†). Let k > 0. Let a1, a2 ∈ B
Ef3(k)
Af3(k)

(4) such that

[[dk, a1], [dk, a2]] is a normal generator of Mk. Calculate

[dk, a1]|x = dkd
a1
k |x =


dk+1 if x ∈ {1Af3(k)

, a1},

et if x ∈ {et, eta1}, for some t ∈ [0, f3(k)),

id otherwise.

We want to compute [[dk, a1], [dk, a2]
es ] for arbitrary s ∈ [0, f3(k)). The set of vertices

where this element might have non-trivial sections is {1Af3(k)
, a1, es, esa2}.

We now prove that the sections [dk, a1]|esa2 and [dk, a2]
es |a1 are trivial, i.e. that

esa2 /∈ {1Af3(k)
, a1, et, eta1 | t ∈ [0, f3(k)), and

esa1 /∈ {1Af3(k)
, a2, et, eta2 | t ∈ [0, f3(k)).

Now `Af3(k)
(esa2) ≥ f3(k) − 5; hence, esa2 is neither trivial nor equal to a1 of length

4. Here we use that f3(k) ≥ f(0) > 9. Finally, eta1 = esa2 implies a1es = a2et, which
contradicts the definition of a1 and a2. This proves the first, and by analogy the second,
non-inclusion statement above.
Thus, we find

[[dk, a1], [dk, a2]
es ]|x =


[dk+1, es] if x = 1Af3(k)

,

[es, dk+1] if x = es,

id otherwise.

For every q ∈ [0, f3(k)) \ {s}, we obtain

h = [[dk, a1], [dk, a2]
es , [dk, a1]

eq ] ∈ ristMk
(1Af3(k)

),
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such that h|1Af3(k)
= [dk+1, es, eq]. This concludes the proof of Equation (†).

We now prove Equation (‡). Write ci,j for the element [dk+2, ei, ej ] ∈ Nk+2, where
i, j ∈ [0, f3(k + 2)) are two distinct integers. Observe that

ci,j |1Af3(k+2)
= dk+3eiejeij

and that ci,j |u ∈ Af3(k+3) for all u ∈ LTk+2
(1) except the (distinct) vertices 1Af3(k+2)

,

ei, ej and eiej . Thus, for l ∈ [0, f3(k + 2)) \ {i, j}, we compute

[ci,j , ci,l]|x =


[dk+3eiejeij , dk+3eieleil] if x = 1Af3(k+2)

,

possibly non-trivial if x ∈ {1Af3(k)
, ei, ej , el, eiej , eiel},

id otherwise.

By Lemma 5.5, there is an element ĝ0 ∈ StGk+2
(1) such that ĝ0|1Af3(k+2)

= eiejeij .

Now

[ci,j , ci,l]
ĝ0 |1Af3(k+2)

= [dk+3eiejeij , dk+3eieleil]
eiejeij = [dk+3, ejeleijeil],

and the set of vertices x such that [ci,j , ci,l]
g0 |x is possibly non-trivial, as for [ci,j , ci,l],

the set {1Af3(k)
, ei, ej , el, eiej , eiel}.

Let g ∈ Gk+3. There is an element ĝ1 ∈ StGk
(1) such that ĝ1|1Af3(k)

= g. We conclude

that for three pairwise distinct integers m,n, s ∈ [0, f3(k+2)) \ {i, j, l} (which is possible
since the minimum value of f 3 greater then 5)

[[ci,j , ci,l], [cm,n, cm,s]
ĝ]|1Af3(k)

= [[dk+2, ejeijeleil], [dk+2, enemnesems]
g],

while all other sections are trivial; hence, ristNk
(1A) ≥ Mk+1. �

6. Open questions and related concepts

In [2], the authors refer to an unpublished text of Leonov [8], where he establishes a
connection between the word growth and the period growth of the Grigorchuk group.
It seems plausible that there is such a connection: slow word growth makes for few
elements of a given length, hence for a smaller set of candidates that might have big
order. Consequently, we pose the following refinement of the question of Bradford.
Q3 Is there an infinite finitely generated residually finite periodic group of

exponential word growth and sublinear period growth?

To answer this, it would be sufficient to prove that the groups constructed in
Theorem 1.1 and Theorem 1.2 are of exponential growth, but we doubt that this is true.
In view of the numerical relation between the word and period growth in the Grigorchuk
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group, we think that the groups G and Gε are interesting candidates for groups of slow
intermediate word growth. Thus we ask:
Q4 Of what growth type is the word growth of G and of Gε?
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(1) M. Abért, Group laws and free subgroups in topological groups, Bull. Lond. Math. Soc.
37(04) (2005), 525–534.
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