R₄-TOPOLOGICAL SPACES¹

M.G. Murdeshwar and S.A. Naimpally

In his paper "Indexed systems of neighborhoods for general topological spaces" (Amer. Math. Monthly 68, (1961), 886-893), A. S. Davis defined a hierarchy of what he called regularity axioms. The R_1 -axiom is independent of both T_0 and T_1 , but is strictly weaker than T_2 . In this note, we propose to study the properties of the spaces satisfying the R_1 -axiom. In particular, we will show that in many well-known results, the hypothesis can be weakened from T_2 to R_1 , which is part of our motivation in studying R_1 -spaces.

1. <u>Definition</u>. A topological space (X, τ) is said to be R iff for every pair of points x, y of X, $\bar{x} \neq \bar{y}$ implies x and y have disjoint neighborhoods.

It is easy to see that $T_2 = R_1 + T_1$. That R_1 is independent of T_0 and of T_1 is shown by the following examples. An infinite set with the finite complement topology is T_1 but not R_1 . On the other hand, the set {a, b, c} equipped with the topology consisting of \emptyset , {a,b}, {c} is an R_1 -space but not T_0 .

2. LEMMA. In an R_1 -space, if G is an open neighborhood of a point x, then $\overline{x} \subset G$. (In the terminology of Davis: every R_1 -space is R_0).

<u>Proof.</u> If $y \in \overline{G}^{c}$, then $\overline{y} \subset \overline{G}^{c}$. This means $\overline{x} \neq \overline{y}$ and

¹ Research partially supported by the Summer Research Institute of the Canadian Mathematical Congress.

so x and y have disjoint neighborhoods. Therefore $y \notin \overline{x}$ and $\overline{x} \subset G$.

3. COROLLARY. A topological space is R_1 iff whenever $\overline{x} \neq \overline{y}$, \overline{x} and \overline{y} have disjoint neighborhoods.

4. THEOREM. The R_1 property is hereditary, productive, projective and a topological invariant.

The routine verification of this theorem is omitted.

Since every finite set is compact, the following theorem follows from the fact that $T_2 = T_1 + R_1$.

5. THEOREM. An R_1 -space is T_2 iff every compact subset is closed.

6. THEOREM. An R_1 -space is T_2 iff every sequence has at most one limit.

<u>Proof.</u> Such a space is necessarily T_{4} .

7. LEMMA. If, in an R_1 -space, A is a compact subset $\overline{x} \cap A = \emptyset$, then x and A have disjoint neighborhoods.

<u>Proof.</u> For each $y \in A$, $\overline{x} \neq \overline{y}$ and hence x and y have disjoint neighborhoods, U and V respectively. Since A is compact, there exist points y_1, y_2, \dots, y_n of A such that n $A \subset \bigcup V = V$. If $U = \bigcap U$, then U and V are disi=1 y_i i=1 y_i

joint neighborhoods of x and A respectively.

8. THEOREM. A compact R₄-space is normal.

This can be proved by using Lemma 7 and by repeating the technique used in its proof.

If X is a topological space and $X^* = X \cup \{\infty\}$, $\infty \notin X$, we topologize X* as follows: a set G is open in X* iff (i) G is open in X or (ii) X* - G is a closed, compact subset of X.

The space X* is called the one-point compactification of X.

9. THEOREM. The one-point compactification of X is R_1 iff X is R_1 and locally compact. (A space is said to be locally compact iff every point has a closed, compact neighborhood).

<u>Proof.</u> The "only if" part is trivial. For the converse, if x, $y \in X^*$ and $\overline{x} \neq \overline{y}$, then we must show that x and y have disjoint neighborhoods. If x, $y \in X$, there is nothing to prove. Suppose then that $x \in X$ and $y = \infty$. Since $\{\infty\}$ is a closed subset of X^* , $\overline{\infty} = \infty \neq \overline{x}$. Let U be a closed compact neighborhood (in the topology of X) of x. Then U and X^* - U are disjoint neighborhoods of x and ∞ respectively.

10. COROLLARY. A locally compact R₁-space is completely regular.

<u>Proof.</u> The one-point compactification of such a space is normal and hence completely regular. Since complete regularity is hereditary, the given space is completely regular.

11. THEOREM. An R_{4} paracompact space is normal.

<u>Proof.</u> Since a regular paracompact space is normal, it suffices to prove that an R_1 paracompact space is regular. Let A be a closed set of an R_1 paracompact space X and $x \in A^C$. For each $y \in A$, $\overline{y} \subset A$ and $\overline{x} \subset A^C$ (by Lemma 2). Since the space is R_1 , x and y have disjoint neighborhoods U and V respectively. Then $A^C \cup \{V_y \mid y \in A\}$ is an open y cover of X and hence must have an open locally finite refinement $\{V_{\alpha}\}$. $V = \{V_{\alpha} \mid V_{\alpha} \cap A \neq \emptyset\}$ is an open neighborhood of A. Now, there exists a neighborhood W of x which meets only finitely many sets V_1, V_2, \ldots, V_n of $\{V_{\alpha}\}$. Each such V_i that meets A must lie in some V_{y_i} , $y_i \in A$. Therefore the V_i is an open neighborhood of x.

University of Alberta, Edmonton