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On Limit Multiplicities for Spaces of
Automorphic Forms
Anton Deitmar and Werner Hoffmann

Abstract. LetΓ be a rank-one arithmetic subgroup of a semisimple Lie group G. For fixed K-Type, the spectral
side of the Selberg trace formula defines a distribution on the space of infinitesimal characters of G, whose
discrete part encodes the dimensions of the spaces of square-integrable Γ-automorphic forms. It is shown
that this distribution converges to the Plancherel measure of G when Γ shrinks to the trivial group in a certain
restricted way. The analogous assertion for cocompact lattices Γ follows from results of DeGeorge-Wallach
and Delorme.

Introduction

Let G be a semisimple Lie group and (Γ j) a tower of lattices. This means that every Γ j

is a lattice in G, is normal in Γ1, we have Γ1 ⊃ Γ2 ⊃ · · · and
⋂

j Γ j = {e}. For any
irreducible unitary representation π of G let NΓ j (π) be the multiplicity of π in the uni-
tary G-representation L2(Γ j \ G). In the case that the Γ j are cocompact, DeGeorge and
Wallach [11] showed that

lim
j→∞

NΓ j (π)

vol(Γ j \ G)
= µ({π}),

where µ denotes the Plancherel measure on Ĝ. Using results of Rohlfs and Speh, Savin [33]
proved the same assertion for towers of non-cocompact congruence subgroups. See also
[36] for an alternate approach. The above limit will be nonzero only for π in the discrete
series of G. This is unsatisfactory since it says nothing about other subsets of the unitary
dual. Actually, one should recover the entire Plancherel measure from the numbers NΓ j (π).

In this spirit, DeGeorge and Wallach attached a measure on Ĝ to any cocompact group Γ:

µΓ :=
∑
π∈Ĝ

NΓ(π)δπ.

In the rank one case, DeGeorge and Wallach proved and in general they conjectured that
the sequence of measures

µΓ j

vol(Γ j \ G)

converges vaguely to the Plancherel measure provided the Γ j in the tower are cocompact.
Delorme later proved the conjecture of DeGeorge and Wallach [13]. He also determined in
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certain cases the asymptotics of µΓ(Ω j) when Γ is fixed, butΩ j runs through an expanding
family of subsets of Ĝ. The latter result is a variation of Weyl’s asymptotic law, and the two
types of asymptotics have many features in common.

Of course, Weyl’s law gives less information because one only counts the eigenvalues of
the Laplacian in a bundle over the locally-symmetric space Γ\G/K or, what amounts to the
same, the eigenvalues of the Casimir element in a K-isotypical component of L2(Γ\G). We
shall take an intermediate point of view by fixing a K-type τ and counting the multiplicities
of infinitesimal characters in the corresponding K-isotypical component, which defines
a measure on the parameter space for these infinitesimal characters. This simplification
allows us to concentrate on the difficulties which arise when Γ \ G is noncompact.

In the non-cocompact case one can define a measure µdis
Γ on Ĝ by counting the multi-

plicities in the discretely decomposable subspace of L2(Γ j \ G). But it is not a priori clear
whether this is the right object for studying limit multiplicities.

To begin with, let us look at the case G = PSL2(R). Here we can let the lattice Γ vary in
Teichmüller space, and the most natural measure should vary continuously with the group.
Phillips and Sarnak showed in [28], [29] that for the measure µdis

Γ this is not the case. On
the other hand, one can define another measure µcon

Γ (which is not necessarily positive)
using the winding number of scattering determinant. This measure can be written as

µcon
Γ = cΓdν +

∑
λ

NΓ(λ)µλ,

where cΓ is a constant, λ runs through the poles of the scattering matrix and each µλ is a
certain absolutely continuous measure on the principal series {πν | ν ∈ iR}, which tends
to the delta measure at πν if λ → ν ∈ iR. Selberg showed, using his trace formula, that
the analog of Weyl’s asymptotic law is true for the measure µΓ := µdis

Γ + µcon
Γ (see [34,

p. 668], and [15, Ch. 6, Prop. 3.17]), and in [16] it was proved that this measure depends
continuously on Γ.

In this paper we consider the analog µτ,Γ of this measure on the set of infinitesimal
characters of representations having a fixed K-type τ . Restricting ourselves to certain types
of towers in Q-rank one groups, called local towers of bounded depth in this paper, we are
able to show that

µτ,Γ j

vol(Γ j \ G)

converges to the Plancherel measure as a distribution of order one. We also show that this
sequence converges vaguely to the Plancherel measure on the non-tempered set.

So far we do not know whether the restriction to congruence subgroups really is nec-
essary for the study of limit multiplicities in the noncompact case. If it were the fact that
µΓ depends continuously on Γ would be irrelevant for the given problem. It is because this
measure naturally occurs in the Selberg trace formula that we chose it. We conjecture that
for towers of bounded depth the convergence assertion is true for the discrete part alone.
The analogous conjecture about the Weyl asymptotics has been made in [32]. In that case,
the only approach known so far is to find the asymptotics for µΓ as a whole and then to
show that the continuous contribution is of smaller order. This requires estimating the or-
der of growth of the logarithmic derivative of the scattering matrix, which can be expressed,
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at least in principal, in terms of automorphic L-functions. In our case, the situation is simi-
lar, but more complicated, since we need such bounds uniformly in the level. We can prove
our conjecture in the special case of principal congruence subgroups of SL2(Z), where the
necessary estimates are known.

The paper is organized as follows. In the first section we consider Arthur’s trace formula,
which is an equality of two expansions for the same distribution J( f ). For a tower (Γ j)
of congruence subgroups we consider test functions of the form f j = Pr j ⊗ϕ, where ϕ
is smooth and of compact support on G = G(R), G defined over Q . Further Pr j is the
function that projects to the Γ j-invariants. Using the geometric expansion, we then show

that, for local towers,
(
vol(Γ j \ G)

)−1
J( f j) converges to ϕ(e). The idea then is to switch to

the spectral side and plug in functions for which the trace formula is not necessarily true
but the convergence of J( f j) still holds. To create suitable test functions, we introduce the
central functional calculus in Section 2. Previously, the main tool was Lemma 9.3 from [10]
and its generalization, Lemma 3.7 in [13], which shows that the Fourier transforms of
functions in C0(G) are dense in a certain Schwartz space. We show here that test functions
in C∞c (G) suffice for the same purpose. While it may be possible to prove the convergence
of the geometric side of the trace formula for ϕ ∈ C0(G) in the Q-rank one case, to which
we finally specialize, our approximation result is a significant relief in the general case. In
Section 3 we prove the convergence of J( f j) for the extended class of test functions. For
this purpose, we have to assume that the Q-rank of G is one, because we depend on an
argument of Müller which seems to work only in this case. The spectral estimates we proved
in [12] are crucial for our method. In Section 4 we show the vanishing of the non-tempered
contribution if the R-rank of G is also equal to one. In Section 5 we consider principal
congruence subgroups of SL2(Z), in which case we can show the continuous contribution
to vanish for j →∞.

The second author takes the opportunity to thank the Institute for Advanced Study in
Princeton for hospitality during the completion of this paper.

1 The Geometric Side

In this section we show that for test functions which are of compact support on the group
G, the trace formula distribution converges to the Plancherel measure.

1.1

Let G be a semisimple simply connected linear group over the rational numbers. We embed
the group of rational points G(Q) diagonally into the group of adelic points G(A), where
A is the adele ring of Q . Further consider the group G(Af) of points over the finite adeles
Af. Reserve the letter G for the semisimple real Lie group G = G(R). So we have G(A) =
G(Af)×G. Fix a rational invariant top degree differential form on G and the corresponding
Tamagawa measure on the groups G(Af), G and G(A).

Choose a maximal compact subgroup Kmax =
∏

v Kmax,v such that Kmax,f := Kmax ∩
G(Af) is open in G(Af) and that Kmax,v is a special maximal compact subgroup of G(Qv) for
each finite place v. Then we have G(A) = P(A)Kmax for any parabolic Q-subgroup P of G.
Write K = Kmax,∞ ⊂ G, so that Kmax = Kmax,f × K.

https://doi.org/10.4153/CJM-1999-042-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1999-042-8


On Limit Multiplicities 955

1.2

A tower of subgroups of a given group G is a sequence (Γ j) j∈N of subgroups of G such that

(i) the sequence decreases to the trivial group, i.e., Γ1 ⊃ Γ2 ⊃ Γ3 · · · and
⋂

j Γ j = {1}
and

(ii) each Γ j is normal of finite index in Γ1.

1.3

A subgroup Γ of G(Q) is called a congruence subgroup if there is a compact open subgroup
KΓ of G(Af) such that Γ = G(Q) ∩ KΓ. Whenever we consider a tower (Γ j) of congruence
subgroups we will tacitly assume that Γ1 is maximal, i.e., Γ1 = G(Q) ∩ Kmax,f. A tower of
congruence subgroups (Γ j) will be called local if

(i) there is a finite set S of places, containing∞, such that each KΓ j contains
∏

v /∈S Kmax,v.
(ii) There is finite a place v ∈ S such that for the projection KΓ j ,v of KΓ j to G(Qv) we have⋂

j KΓ j ,v = {1}.

1.4

The principal congruence subgroup of level N in GLn(Z) is defined as the kernel Γn(N)
of the residue map GLn(Z) → GLn(Z/NZ). A tower Γ j of subgroups of G(Q) will be
called a tower of bounded depth (with respect to a faithful Q-rational representation η : G→
GLn) if there exists a sequence of natural numbers N j and a natural number D such that
Γn(N j) ∩ η

(
G(Q)

)
is a subgroup of η(Γ j) of index not exceeding D. It is easy to see that

this notion is independent of the choice of η.

1.5 Remarks

The term tower seems contradictory at the first glance since this tower points downwards;
the notion stems from the tower of coverings (G/Γ j) of the manifold G/Γ1.

Note that in the case of local towers the condition ii) implies that the KΓ j ,v form a basis
of neighborhoods of the unit element in G(Qv). To see this, take any open neighborhood
U of the unit element in G(Qv), then B j := KΓ j ,v −U is a decreasing sequence of compact
subsets with

⋂
j B j = ∅. By the finite intersection property there exists a j0 such that

B j = ∅ for all j ≤ j0. This means that for all j ≤ j0 we have KΓ j ,v ⊂ U .
Another remark belongs here: We could also consider a group G defined over a number

field F/Q . This would give a slightly more general notion of a local tower, but we chose to
work over the rationals in order to keep the presentation as simple as possible.

1.6

We fix a tower (Γ j) of congruence subgroups. Let ϕ ∈ C∞c (G) and define for each j a
function f j = f j,ϕ by

f j :=
1

vol(KΓ)
1KΓ j
⊗ ϕ.
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Note that this could also be written as f j =
1

[Γ1:Γ j ]
· 1

vol(KΓ j ) 1KΓ j
⊗ ϕ.

Apply Arthur’s trace formula [2], [3] to f j (notation as in loc. cit.):

∑
o∈O

Jo( f j ) =
∑
χ∈X

Jχ( f j ).

For simplicity we will write J( f j) for either side of the trace formula.

Proposition 1.7 Assume the tower (Γ j) is local. As j → ∞, the geometric side of the trace
formula (and hence the spectral one, too) converges to

vol(Γ \ G)ϕ(e),

where Γ = Γ1.

Proof For unexplained notation see [2]. Recall the definition of the geometric terms [2]:
On G(Q) we have the equivalence relation: x ∼ y iff the semisimple parts of x and y are
conjugate in G(Q). Let O be the set of equivalence classes in G(Q). For f ∈ C∞c

(
G(A)

)
,

each parabolic P ⊃ P0 and each o ∈ O let

KP,o, f (x, y) :=
∑

γ∈MP(Q)∩o

∫
NP(A)

f (x−1γny) dn

and

kT
o (x, f ) :=

∑
P⊃P0

(−1)dim AP

∑
δ∈P(Q)\G(Q)

KP,o, f (δx, δx)τ̂P
(
HP(δx)− TP

)
,

then for T sufficiently regular

JT
o ( f ) =

∫
G(Q)\G(A)

kT
o (x, f ) dx.

In [4, p. 18], Arthur shows that JT
o ( f ) is a polynomial in T, and he defines Jo( f ) := JT0

o ( f )
for a special point T0.

Let ou ∈ O be the class of unipotent elements. To prove the proposition we first consider
the sum ∑

o 6=ou

JT
o ( f j)

and show that it tends to zero for any sufficiently regular T. Following Arthur in the proof
of Theorem 7.1 in [2] this sum can be estimated by

∑
P1⊂P2

∫
P1(Q)\G(A)

F1(x,T)σ2
1

(
H0(x)− T

)
kP1,P2 (x, f j) dx,
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where kP1,P2 (x, f j) equals

∑
γ∈E⊂M1(Q)−ou

∑
ζ∈n2

1(Q) ′

∣∣∣∣
∫

n1(A)
f j

(
x−1γe(X)x

)
ψ(〈X, ζ〉) dX

∣∣∣∣ .
The sum over γ is finite and can be taken outside. Since γ is not unipotent, it has eigen-
values different from 1 and so has γe(X) for any X. Let p ∈ S be as in condition (ii). Let
A ⊂ G(Qp) be the closure of the set of all G(Qp)-conjugates of all elements of the form
γe(X), X ∈ n1(Qp). Then the unit element does not lie in A, and since the KΓ j ,v form a
basis of neighborhoods of the unit element in G(Qv), they do not intersect A for sufficiently
large j. This shows that we have ∑

o 6=ou

JT
o ( f j ) = 0

for j ≥ j0, which also implies the same assertion without the superscript T.
Now we are left with the unipotent contribution Jou ( f ). Recall from Theorem 8.1 in [7]

that this is a linear combination of the distributions JM(u, f ) and from Corollary 6.2 in [8]
that the latter is an integral over uG relative to a measure which is absolutely continuous
with respect to the invariant measure class. According to Corollary 4.4 and Corollary 8.4
in [7] the contribution with u = e gives us

f j(e) vol
(
G(Q) \ G(A)

)
= ϕ(e) vol(Γ \ G).

So it remains to show that JM(u, f j) tends to zero for u 6= e unipotent. Write

JM(u, f ) =

∫
uG

f (x) dm(x).

By condition (ii) the set supp( f j ) ∩ uG shrinks to the empty set as j → ∞. Therefore the
above integral tends to zero for u 6= e. The proposition is proven.

Conjecture 1.8 The above proposition holds for arbitrary towers of congruence subgroups.

2 The Functional Calculus

In this section we are going to construct test functions on the group with prescribed Fourier
transform on the unitary dual. The reader may compare this to the Paley-Wiener theorems
by Clozel and Delorme [9] and Arthur [6]. Our construction differs from those in that our
functions depend on different parameters, namely the infinitesimal character and a K-type,
whereas the usual Paley-Wiener functions depend on induction parameters. The induction
parameters give a more complete result but are not as easy to handle as ours.

2.1

We will construct test functions by a functional calculus on the center z of the universal
enveloping algebra U (g), where g is the complex Lie algebra of G. On U (g) we have the
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antilinear involution X 7→ X∗, defined on the real form g0 = LieRG by X 7→ −X. Then by
definition we have for any π ∈ Ĝ that π(X∗) = π(X)∗ for X ∈ U (g). Clearly ∗ preserves z

and hence defines an involution on z.
For any Levi subalgebra m of g we denote the center of U (m) by zm. The (relative)

Harish-Chandra homomorphism z → zm, T 7→ Tm, is characterized by the following fact:
Let p = m⊕n be any parabolic subgroup of g with Levi component m and p− = m⊕n− the
opposite parabolic. Let ρ be the linear functional on m defined by 2ρ(X) = tr

(
adn(X)

)
and

let tρ be the automorphism of U (m) given for X ∈ m by tρ(X) := X − ρ(X). Then we have
for any T ∈ z that T− tρ(Tm) ∈ U (g)n or equivalently T− tρ(Tm) ∈ n−U (g). The Harish-
Chandra homomorphism is injective, and zm becomes a finitely generated module over z.
In particular, if m = h is a Cartan subalgebra, we get the Harish-Chandra isomorphism
z→ U (h)W , where W is the Weyl group of (g, h).

Now let M be a Levi subgroup of G defined over the reals, m the complexified Lie algebra
of M := M(R). Then m is stable under the involution ∗, further p∗ is again a parabolic
subalgebra with corresponding ρp∗ . We have ρp∗ = −ρ∗, where ρ∗(X) = ρ(X∗). It follows
T∗−tρp∗

(
(Tm)∗

)
=
(
T−t−ρ(Tm)

)∗
∈ U (g)n∗, thus the Harish-Chandra homomorphism

commutes with the involution ∗.

Lemma 2.2 The C-algebra z has a set of algebraically independent homogeneous selfadjoint
generators T1,T2, . . . ,Tr. Moreover, for T1 one can choose the Casimir element C.

Proof Let H be a Cartan subgroup of G and write h for its complex Lie algebra. We have
the Harish-Chandra isomorphism z → U (h)W , which commutes with the involution ∗.
The natural gradation on U (h) ∼= S(h), the symmetric algebra, gives a gradation on z:

z =

∞⊕
k=0

Grk(z).

which is preserved by the involution ∗ and so is the filtration:

Fk(z) :=
⊕
l≤k

Grl(z),

so
(
Fk(z)

)∗
= Fk(z). There is a set of algebraically independent generators C = S1, . . . Sr ,

which are homogeneous with respect to (Gr.) [17]. We will show that, whenever S j is not
selfadjoint, we can replace it either with 1

2 (S j + S∗j ) or with i
2 (S j − S∗j ) to get the desired set

of generators.
We will proceed by induction on k and consider all generators inside Fk(z). For k = 0

we have Fk(z) = C and we are done. Now suppose, all generators inside Fk(z) are chosen
selfadjoint already. Let B denote the algebra generated by Fk(z) and all selfadjoint elements
in {S1, . . . , Sr}. Let S j1 , . . . , S jt denote the non selfadjoint generators which lie in Grk+1(z).
We then have

Fk+1(z) = B ∩ Fk+1(z) + Span(S j1 , . . . , S jt )

= B ∩ Fk+1(z) + Span(S j1 + S∗j1
, S j1 − S∗j1

, . . . , S jt + S∗jt
, S jt − S∗jt

).
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By linear algebra it becomes clear that we can choose Ri with either Ri = S ji + S∗ji
or

Ri = i(S ji − S∗ji
) such that

Fk+1(z) = B ∩ Fk+1(z) + Span(R1, . . . ,Rt ).

This shows that the algebra generated by Fk(z) and R1, . . . ,Rt contains S j1 , . . . , S jt , so we
can replace the S j1 , . . . , S jt by the selfadjoint elements R1, . . . ,Rt . By induction the claim
follows.

2.3

The involution ∗ on z defines a real structure on the affine algebraic variety Spec z. We have
the set VC := HomC-alg(z,C) of C-valued points and the set V = {χ ∈ VC | χ(T∗) =

χ(T)} of R-valued points, and the ideal z∩ gU (g) defines a point 0 ∈ V . The infinitesimal
character χπ of an irreducible unitary representation π will lie in V .

The fact that z is a polynomial ring implies that Spec z has the structure of an affine space
and VC that of a complex vector space. By the preceding lemma, V is a real subspace and
VC its complexification. However, these linear structures are noncanonical. By choosing
self-adjoint generators of z, we fix an isomorphism V → Rr, which allows us to pull the
standard Euclidean norm ‖.‖ back to V . If ‖.‖ ′ comes from another choice of generators,
we have ‖x‖ ′ ≤ C(1 + ‖x‖)N for positive constants C and N .

Thus, we can unambiguously define the space S of Schwartz functions f on V by the
seminorms

| f |n,D = sup
x∈V
|(1 + ‖x‖)nD f (x)|,

where n runs through N and D through the algebra D of differential operators on V with
polynomial coefficients. It is, of course, sufficient to take for D the monomials in the deriva-
tions with respect to a fixed basis. Since the order of any D ∈ D is independent of the choice
of generators for z, it makes sense to define the space Sd ⊂ Cd(V ) by requiring the finiteness
of | f |n,D for ord D ≤ d only.

2.4

If ρ is an arbitrary unitary representation of G acting on a Hilbert space H, then H decom-
poses as an integral over Ĝ:

H =

∫
Ĝ

H(π) dm(π),

where m is some measure depending on H and H(π) a multiple of the representation space
Hπ of π [14]. For any continuous function f on V we define the operator

ρ( f ) :=

∫
Ĝ

f (χπ) IdH(π) dm(π),

where χπ is the infinitesimal character of π. This is a densely defined operator on the
Hilbert space H. If f is the polynomial function on V defined by some T ∈ z, then ρ( f ) =
ρ(T).
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2.5

Now we fix an irreducible unitary representation τ of K acting on a finite dimensional
Hilbert space Hτ .

We have an obvious representation ρτ of the algebra z on the space of K-invariants
(H ⊗ τ )K := (H ⊗ Hτ )K . Let Iτ be the intersection of z with the left ideal in U (g) gener-
ated by the annihilator of τ̆ in U (k). Since Iτ acts trivially, ρτ factors through the quotient
algebra zτ := z/Iτ . For f as before, we likewise define the operator

ρτ ( f ) :=

∫
Ĝ

f (χπ) Id(H(π)⊗τ )K dm(π).

If (Hπ ⊗ τ )K 6= 0, then χπ vanishes on Iτ . Thus, if f vanishes on the subvariety VC,τ

defined by Iτ , then ρτ ( f ) = 0. In other words, ρτ ( f ) depends only on the restriction of f
to V ∩VC,τ . (A description of VC,τ can be read off from Prop. 1.11 of [37], but we do not
need it.)

In fact, ρτ ( f ) depends only on the restriction to an even smaller subset of V . Let CK ∈
U (k) denote the Casimir element induced by the restriction of the Killing form of g; then
τ (CK) = λτ Id with λτ ≥ 0. Let Ĝ(τ ) be the set of all π ∈ Ĝ for which τ occurs in π|K .

Lemma 2.6 Let T ∈ z of degree k. Then there exists a positive constant c such that for each

π ∈ Ĝ(τ ) we have λτ − χπ(C) ≥ 0 and |χπ(T)| ≤ c
(
2λτ − χπ(C)

)k/2
.

Proof If X ∈ g is a unit vector for the inner product X 7→ −B(X, θX), where B denotes
the Killing form and θ the Cartan involution defined by K, then there is an orthonormal
basis X1, . . . ,Xn with X = X1, and

∑n
i=1 X2

i = C − 2CK . Let π ∈ Ĝ(τ ) and take a nonzero
smooth vector v in the τ -isotypical component of Hπ . Then

‖Xv‖2 ≤
n∑

i=1

‖Xiv‖
2 =

(
(2CK −C)v, v

)
=
(
2λτ − χπ(C)

)
‖v‖2.

Considering a basis for the Killing-orthogonal complement of k only, one obtains in the
same way that 0 ≤

(
λτ − χπ(C)

)
‖v‖2, which proves the first assertion. We deduce from

these two inequalities that for each T ∈ U (g) of degree k there exists a positive constant c
independent of π such that

‖Tv‖ ≤ c
(
2λτ − χπ(C)

)k/2
‖v‖.

Specializing to T ∈ z, we get our second assertion.

2.7

We want to prove that there are enough f ∈ S for which ρτ ( f ) is represented by a smooth
compactly supported kernel. Let C∞c (G, τ ) be the algebra of smooth compactly supported
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functions F on G with values in End(Hτ ) satisfying F(k1xk2) = τ (k−1
1 )F(x)τ (k2). The

representation of this algebra in H ⊗ τ given by

v ⊗ w 7→

∫
G
ρ(x)v ⊗ F(x)w dx

restricts to a representation in (H ⊗ τ )K , which we also denote by ρτ .

Proposition 2.8 Let Bτ be the set of all continuous functions f on V for which there is a
function F ∈ C∞c (G, τ ) such that ρτ ( f ) = ρτ (F) for all unitary representations ρ of G. Then
Bτ ∩ S is dense in S.

The proof will be given in several steps. First we consider functions f of the form f (χ) =
h
(
−χ(C)

)
for some h ∈ S(R). In this case ρτ ( f ) = h

(
−ρτ (C)

)
, where the right-hand side

is defined by the usual functional calculus.

Lemma 2.9 Let h ∈ S(R), c ∈ R, and suppose that there exists an even Paley-Wiener
function g such that h(x2 − c) = g(x) for all x ∈ C with x2 − c ∈ R. If we define f ∈ S by
f (χ) = h

(
−χ(C)

)
, then f ∈ Bτ .

The assumption on h is in fact independent of c. Indeed, if g is an even Paley-Wiener
function, then so is g1(z) := g(

√
z2 + c). This curious fact follows directly from the defi-

nition, since (Im z)2 − c ≤ (Im
√

z2 + c)2 ≤ (Im z)2 for c > 0. Our lemma can also be
deduced from the Paley-Wiener theorem of [6], but we give an independent proof.

Proof First we consider the case when ρ is the right regular representation of G. The mea-
sure m is then, of course, the Plancherel measure µ. Let Eτ = G×K Hτ be the homogeneous
vector bundle over the symmetric space X = G/K corresponding to τ . The space of smooth

sections of Eτ may be identified with the space of K-invariants
(
C∞(G) ⊗ Hτ

)K
, where K

acts on C∞(G) by right translations. Analogously the Hilbert space of L2-sections may be

identified with
(
L2(G)⊗Hτ

)K
. Therefore the operator ρτ ( f ) may be viewed as an operator

on L2(X, Eτ ).
By the above identification, the representation ρτ of z embeds zτ into the algebra of G-

invariant differential operators in Eτ (see [25]). If C ∈ z is the Casimir element as before,
then∆τ := ρτ (−C)+λτ Id is the Bochner-Laplace operator in Eτ (see [24]). For simplicity
of notation we choose c = λτ , i.e., ρτ ( f ) = g(

√
∆τ ).

The operator ∆τ + 1 is strictly positive. It is clear that im h(∆τ ) ⊂ im(∆τ + 1)−N for
any N ∈ N. Since the operators (∆τ + 1)−N become more and more regular as N grows
it follows that h(∆τ ) is a smoothing operator, i.e., an integral operator whose kernel is a
smooth section of Eτ � E∗τ . By the above identification, we may view this kernel as a func-
tionΦ(x, y) on G×G with values in End(Hτ ) satisfying Φ(xk1, yk2) = τ (k−1

1 )Φ(x, y)τ (k2)
for k1, k2 ∈ K. Since f (∆τ ) commutes with the action of G by left translations, we have
Φ(gx, g y) = Φ(x, y), henceΦ(x, y) = F(y−1x) for some smooth function F, and the action
of f (∆τ ) on compactly supported sections is given by ρτ (F).

By functional calculus we have

ρτ ( f ) = g(
√
∆τ ) = (2π)−1

∫ ∞
−∞

ĝ(t) cos(t
√
∆τ ) dt,
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where ĝ denotes the Fourier transform of g. It is known that the Cauchy problem for the
wave equation in the bundle Eτ ,

v̈ = −∆τ v, v(0) = v0, v̇(0) = 0

with smooth initial datum v0 has a unique smooth solution for all times, which for square
integrable sections v0 is given by v(t) = cos(t

√
∆τ )v0. The solution operator cos(t

√
∆τ )

extends to a bounded operator in the Fréchet space C∞(X, Eτ ), which allows us to extend
f (∆τ ) by the above formula. Moreover, the solutions have propagation speed one (see
for example [35, Chs. 2 and 6]. Thus, if g is supported in [−r, r], then f (∆τ ) can spread
the support of v0 only over a distance r. Consequently, F has compact support, and ρτ (F)
extends to a bounded operator on L2(X, Eτ ) and C∞(X, Eτ ). The equality f (∆τ ) = ρτ (F)
remains true by continuity.

Now we consider the case of π ∈ Ĝ. We fix a continuous linear functional l on Hπ

and consider for each v ∈ Hπ the matrix coefficient cv(g) := l
(
π(g)v

)
. Then v 7→ cv

is a continuous linear map from Hπ to the Fréchet space C(G), which intertwines π with
the right regular representation ρ and preserves smooth vectors. For nonzero l this map
is nonzero, hence injective by the irreducibility of π. Tensoring with Hτ and taking K-
invariants, we get an embedding

eτ : (Hπ ⊗ τ )K →
(
C∞(G)⊗ τ

)K ∼= C∞(X, Eτ ),

which obviously intertwines the representations πτ and ρτ of C∞c (G, τ ). Since eitπτ
√
λτ−C

is determined by an ordinary differential equation just as eit
√
∆τ was, it is easy to deduce

that eτπτ ( f ) = ρτ ( f )eτ . Now the assertion of the proposition for π follows from the
known assertion for ρ. The general case of a reducible representation follows by functional
calculus.

Lemma 2.10 Let r, k ∈ N, U = {x ∈ Rr | x1 ≥ 1, ‖x‖ ≤ xk
1}, where x1 denotes the first

coordinate of x. Denote by B the set of all functions f ∈ S(Rr) whose restriction to U is of
the form p(x)g(

√
x1) for a polynomial function p on Rr and an even Paley-Wiener function g

on R. Then B is dense in S(Rr).

Proof We choose a smooth homogeneous function η on R × R+ such that η(u, v) = u
for v ≤ u and η(u, v) = v for v ≥ 2u. If we now define a function ν on {x ∈ Rr |
‖x‖ > 1} by ν(x) = η(x1, ‖x‖1/k), then ν extends to a strictly positive smooth function
on Rr such that ν(x) = x1 for x ∈ B. Its partial derivatives of any positive order are
bounded, and c−1

1 (1 + ‖x‖)1/k ≤ ν(x) ≤ c1(1 + ‖x‖) for some c1 > 0. Thus, the map
h 7→ h ◦ ν is continuous from S(R) to S(Rr), and h

(
ν(x)

)
= h(x1) for x ∈ B. Remember

that multiplication by a polynomial function is a continuous endomorphism of S(Rr).
The set of all h ∈ S(R) such that h(x1) = g(

√
x1) for an even Paley-Wiener function g

and all x1 ≥ c−1
1 is clearly dense in S(R). Therefore, the closure of B contains all functions

of the form p(x)h
(
ν(x)

)
, where p is a polynomial and h ∈ S(R).

If Ω is a compact subset of Rr, then there exists h ∈ C∞c (R) such that h
(
ν(x)

)
= 1 for

x ∈ Ω. DenoteΩ ′ = supp(h ◦ ν). Let us topologize C∞(Ω ′) by the seminorms supΩ ′ |D f |,
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where D runs through the differential operators with constant coefficients. Then multipli-
cation by h ◦ ν defines a continuous map C∞(Ω ′) → C∞c (Rr), which is the identity on
functions with support in Ω. It is well known that the set of polynomial functions is dense
in C∞(Ω ′). Therefore the closure of B contains all smooth functions with support in Ω.
Now the assertion follows from the density of C∞c (Rr) in S(Rr).

Proof of Proposition 2.8 It is clear that the relation defining Bτ needs only be checked
for ρ = π ∈ Ĝ(τ̆ ). We know by Lemma 2.9 that certain functions f belong to Bτ . Let
F be the corresponding kernel on G. If T ∈ z, then it is easy to check that ρτ (T)ρτ ( f ) =
ρτ (TF). Since TF ∈ C∞c (G, τ ), we have p f ∈ Bτ , where p is the polynomial function
on V corresponding to T. Using the generators from Lemma 2.2, we identify V with Rr.
Choose k ∈ N such that the degrees of the generators are bounded by 2k. After replacing
T1 by c − C , c � 0, and possibly rescaling the other generators, Lemma 2.6 shows that
{χπ | π ∈ Ĝ(τ̆ )} is contained in the set U figuring in Lemma 2.10. Thus, B ⊂ Bτ , and the
density of B in S proved in Lemma 2.10 implies the assertion.

For the trace formula we need scalar test functions on G. These can be obtained as usual
from the τ -spherical functions constructed above.

Lemma 2.11 If f ∈ Bτ , then there exists a smooth compactly supported function ϕ on G
such that

π(ϕ) = (dim τ )−1 f (χπ) Prτ̆ ,

for each π ∈ Ĝ, where Prτ̆ is the projection to the K-type τ̆ .

Proof For each unitary representation ρ of G on a space H we have a bounded linear map

iτ : (H ⊗Hτ )K ⊗H∗τ → H

induced by the convolution Hτ ⊗ H∗τ → C. Its image is the K-isotypical component
of type τ . If F ∈ C∞c (G, τ ) and ϕ(g) = tr F(g), then an easy calculation shows that
iτ ◦

(
ρτ (F) ⊗ Id

)
= dim(τ )ρ(ϕ) ◦ iτ . Moreover, ρ(ϕ) vanishes on all other K-isotypical

components. If we take for ρ some π ∈ Ĝ and if F and f are related as in the Proposition,
then ρτ (F) = f (χπ), and the assertion follows.

2.12

Next we check that the Schwartz space behaves well under the Harish-Chandra homomor-
phism. Let M be a Levi subgroup of G defined over R and define VM,C := HomC-alg(zm,C).
The involution ∗ defines a real structure and a corresponding real subspace VM. Introduce
DM, SM and Sd

M by analogy to the case M = G. Since the Harish-Chandra homomor-
phism z → zm commutes with ∗, it defines a finite morphism rM = rG

M : VM,C → VC

satisfying rM(VM) ⊂ V and rM(0) = 0. For Levi subgroups M ′ ⊂ M ⊂ G we have
(Tm)m ′ = Tm ′ , hence rM

M ′rM = rM ′ .
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Lemma 2.13 The pullback by rM defines continuous maps r∗M : S→ SM, Sd → Sd
M. More

precisely, for each n ∈ N and each D ∈ DM there are finitely many ni ∈ N and Di ∈ D with
ord Di ≤ ord D such that

|r∗M f |n,D ≤
s∑

i=1

| f |ni ,Di .

Proof If x ∈ VC and rM(x) = 0, then x = 0. In fact, by the transitivity of the maps rM it
is enough to check this if M = H is a Cartan subgroup, in which case it follows from the
standard identification VC =W \ h∗. Now the continuous function ‖rM(x)‖ is seen to be
bounded from zero for ‖x‖ = 1. If we attach suitable positive weights to the generators of
z and zm, the maps rH and rM

H (and hence rM) become homogeneous. Thus we get

‖x‖ ≤ C
(
1 + ‖rM(x)‖

)N

for some C > 0, N ∈ N. The asserted estimate can easily be deduced from this inequality
and the chain rule.

2.14

Finally, let us fix some notation in the case that the Levi subgroup M is defined over Q .
Write X(M)Q for the group of its rational characters defined over Q . Let M1 = {m ∈ M :
|ψ(x)| = 1 ∀ψ ∈ X(M)Q} and denote the maximal Q-split torus in the center of M by AM.
Then M = M1AM and correspondingly m = m1⊕aM,C, where AM := AM(R)0 and aM is
its Lie algebra. This defines a decomposition VM,C = V 1

M,C× a∗M,C and VM = V 1
M× ia∗M.

3 The Convergence Theorem

3.1

Let HS be the usual Hilbert field over the unitary dual Ĝ whose fiber over π ∈ Ĝ is the
space HS(π) of Hilbert-Schmidt operators in Hπ . The scalar product on HS(π) is 〈T, S〉 =
tr(TS∗). Now ϕ ∈ C∞c (G) defines a section

ϕ̂ : Ĝ→ HS

by ϕ̂(π) = π(ϕ). Furthermore, π(ϕ) is of trace class and

ϕ(e) =

∫
Ĝ

tr ϕ̂(π) dµ(π),

where µ is the Plancherel measure. The spectral side of the trace formula gives an explicit
expansion of the distribution J(1KΓ ⊗ ϕ) in terms of the section ϕ̂. In particular, if

ϕ̂(π) = (dim τ )−1 f (χπ) Prτ̆
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for all π ∈ Ĝ as in Lemma 2.11, we may define

Jτ , j( f ) := J

(
1

vol(KΓ)
1KΓ j
⊗ ϕ

)
.

The convergence assertion of Proposition 1.7 then reads

Jτ , j( f )
j→∞
−→ vol(Γ \ G)

∫
Ĝ

[π : τ̆] f (χπ) dµ(π).

However, from our previous discussion this follows only for f in a dense subspace Bτ of S.
In this section we will show that Jτ , j extends continuously to S and that the convergence
assertion still holds, provided G has Q-rank one and the tower (Γ j) satisfies a certain mild
assumption. Note that we consider functions for which the geometric expansion in the
trace formula does not converge any more. Thus, from now on we will assume that

rankQ G = 1.

3.2

First we introduce the necessary notation to write down the spectral side of the trace
formula in this special case. Fix a parabolic Q-subgroup P 6= G with Levi decomposi-
tion P = MN, and let χ ∈ V 1

M. We consider the space HP(χ) of all functions φ on
N(A)M(Q)AM \ G(A) whose pullback to M(Q) \M(A)1 × Kmax is square integrable and
which satisfy φ(Tx) = χ(T)φ(x) for T ∈ zm in the distributional sense. Thus, we use χ as
in [1], but not as in [2]. Given φ ∈ HP(χ) and λ ∈ a∗M,C, put φλ(x) = e〈λ+ρ,HP(x)〉φ(x),
where 2ρ(H) = tr adn(H) and HP : G(A) → aM is defined by 〈ψ,HP(nmk)〉 = |ψ(m)|
for all ψ ∈ X(M)Q , n ∈ N(A), m ∈ M(A) and k ∈ Kmax. Then we get a representation
IP(χ, λ) of G(A) on HP(χ) by(

IP(χ, λ, y)φ
)
λ
(x) = φλ(xy)

for x, y ∈ G(A). It is easy to see that IP(χ, λ,T) = rM(χ, λ)(T) IdHP(χ) for T ∈ z.
In the theory of Eisenstein series one considers the operator M(χ, λ) from the subspace

of Kmax-finite vectors in HP(χ) to that in HP(wχ) which is defined for Reλ − ρ positive
with respect to P by

(
M(χ, λ)φ

)
−λ

(x) =

∫
N(A)

φλ(w̃nx) dn

and has a meromorphic continuation to a∗M,C. Here w denotes the only nontrivial el-
ement of the Weyl group of (G,A) and w̃ ∈ G(Q) any of its representatives. Let us
write HP(χ, τ , j) for the τ̆ -isotypical subspace in the space of KΓ j -fixed vectors in HP(χ).
This is a finite-dimensional space of analytic functions. The operator M(χ, λ) intertwines
IP(χ, λ) with IP(wχ,wλ), hence maps HP(χ, τ , j) to HP(wχ, τ , j). Moreover, it satisfies

M(χ, λ)M(wχ,wλ) = Id, M(χ, λ)∗ = M(χ, λ̄)

(equality of meromorphic functions). Note that wλ = −λ. If T ∈ aM is a truncation
parameter, we put MT(χ, λ) = e−2λ(T)M(χ, λ). We denote the restriction of M(χ, λ) to
HP(χ, τ , j) by M(χ, λ, τ , j) and write NΓ j (π) for the multiplicity of π in L2(Γ j \ G).
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3.3

The spectral side of the trace formula JT
τ , j( f ) is given by

1

[Γ1 : Γ j]

( ∑
π∈Ĝ(τ̆ )

NΓ j (π)[π : τ̆] f (χπ)

−
1

dim τ
·

1

4π

∑
χ

∫
a∗M

tr
(
MT(wχ,−iλ, τ , j)M ′

T(χ, iλ, τ , j)
)
r∗M( f )(χ, iλ) dλ

+
1

dim τ
·

1

4

∑
χ=wχ

tr
(
M(χ, 0, τ , j)

)
r∗M( f )(χ, 0)

)
.

Here we have identified a∗M with R, which explains the meaning of the complex derivative
M ′

T(χ, λ, τ , j) = d
dλMT(χ, λ, τ , j) and the measure dλ. This formula is a special case of

Theorem 8.2 in [5], where groups of arbitrary rank are treated. If one wants to avoid going
through the general case, one can also extract it from [1]. In that earlier paper, a different
kind of truncation was used, for which the spectral side is only asymptotic to JT

τ , j( f ) as
T →∞. In both references it is proved that all sums and integrals occurring in the formula
are absolutely convergent. For the second term this is meant in an iterated sense, and the
same assertion will follow from the proof of Lemma 3.7 below. The stronger assertion that
the integral over (χ, λ) ∈ {1,w} \ VM is absolutely convergent can be deduced from an
argument of Langlands (see [18, Theorem 4.2]).

If we define the winding number of the scattering determinant

φT(χ,Λ, τ , j) =

∫ Λ
0

tr
(
MT(χ,−iλ, τ , j)M ′

T(χ, iλ, τ , j)
)

dλ,

an odd real-valued function of the real variable Λ by the functional equations, then the
continuous contribution to JT

τ , j( f ) can be written as a Stielties integral

−
1

[Γ1 : Γ j] dim τ
·

1

2π

∑
χ

∫ ∞
0

r∗M( f )(χ, iλ) dφT(χ, λ, τ , j).

3.4

We need to sharpen a result of Müller [26, Theorem 7.1 and Corollary 3.25]. The restriction
of the Killing form of g to m1 defines a Casimir element CM ∈ zm1 , and we put µχ =
χ(−CM) + λτ . It is easy to see that µχ ≥ 0. Let us normalize the identification of a∗M
with R in such a way that the restriction of the Killing form becomes multiplication. Given
O = {χ,wχ}, let HP(O) =

∑
χ ′∈O HP(χ ′). If wχ = χ, this is just HP(χ). We write

µO := µχ = µwχ and φT(O, λ, τ , j) :=
∑

χ ′∈O φT(χ ′, λ, τ , j). The maps MT(χ, λ) and
MT(wχ, λ) define an operator MT(O, λ) in HP(O), and

φT(O,Λ, τ , j) = −i

∫ Λ
0

d

dλ
log det MT(O, iλ, τ , j) dλ.
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An expression for this winding number in terms of the poles of the function MT(O, iλ, τ , j)
is given in Theorem 6.9 of [26]. In a certain sence, it plays the role of a spectral counting
function for the continuous spectrum.

Theorem 3.5 Fix τ , T � 0 be as before and let (Γ j) be a tower of bounded depth as defined
in section 1. Then there exist constants C > 0, ε > 0 such that for all X ≥ 0 and all j ∈ N the
following estimates hold:

∑
O:ρ2+µO≤X

|φT(O,ΛO, τ , j)| ≤ C[Γ1 : Γ j](1 + X)n/2,

∑
O:ρ2+µO≤X

∑
µ∈]0,ρ]

rank Resλ=µ MT(O, λ, τ , j) ≤ C[Γ1 : Γ j](1 + X)n/2,

∑
O:ρ2+µO≤X

dim HP(O, τ , j) ≤ C
(
[Γ1 : Γ j](1 + X)n/2

)1−ε
,

where n = dim X, O runs through {1,w} \V 1
M, and Λ2

O + ρ2 + µO ≤ X for each O.

Proof Given φ ∈ HP(O, τ , j) and δ ∈ G(Q), we have a function φδ(x) := φ(δx) on
δ−1NAMδ(Γ j ∩ δ−1Pδ) \ G. Assigning to each φ the tuple (φδ)δ∈P(Q)\G(Q)/Γ j

, we get an
isomorphism of HP(O, τ , j) with the space E(σ,O) in [26] for Γ = Γ j and σ = τ , and
one can check (cf. [27, Ch. 2]) that our operator MT(O, λ, τ , j) corresponds to the opera-
tor Ct (s) defined in [26, p. 485]. Müller proved the above estimate for a fixed group Γ and
without summing over O (with a somewhat stronger growth in O). We will now check how
the constants in his estimates depend on j, using the notation of [26] freely.

Fix T � 0 and let ∆ΓT be the cut-off Laplacian with coefficients in the bundle Γ \ Eτ
as defined in section 1 of [12]. This operator is nonnegative and was denoted by ∆̃T in
[26, p. 489]. Let NΓT (X) be the number of its eigenvalues (counted with multiplicity) not
exceeding X. In [12, Corollary 3], we proved that there exists a constant C1 > 0 such that
for all j ∈ N and X > 0 we have

N
Γ j

T (X) ≤ C1[Γ1 : Γ j](1 + X)n/2

provided (Γ j) is a tower of bounded depth. This is just the necessary generalization of
Theorem 3.23 in [26], on which all the subsequent estimates depend. However, those
estimates are devaluated for our present purposes by the appearance of the factor d =
dO = dim E(σ,O) (cf. the proofs of Corollary 3.25 and Theorem 7.1), which also grows
with j. Fortunately, all one needs in order to avoid this factor is the following remark: If
Φ(1), . . . ,Φ(d ′) ∈ E(σ,O) are linearly independent and s 6= 0, then the functions
ΛTE(Φ(k), s) are linearly independent, too.

Indeed, suppose some nontrivial linear combination vanishes:

d ′∑
k=1

ckΛ
TE(Φ(k), s) = 0.
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Since the truncation operator ΛT leaves functions unchanged on an open subset of G and
since the Eisenstein series are analytic, the same relation is valid withoutΛT . If we now take
the constant term along a cuspidal parabolic Pl evaluated at ax with varying a ∈ Al, then
from (3.2) and (2.1) of [26] we get

d ′∑
k=1

ck

(
estΦ(k)

l + e−st
(
C(s)Φ(k)

)
l

)
= 0

for all l and all t ∈ R. (Note that the additional subscript i is not necessary in the rank one
case.) Writing this for two suitable values of t and taking an appropriate linear combina-

tion, we obtain
∑d ′

k=1 ckΦ
(k)
l = 0 for all l, contradicting the choice of the Φ(k).

To prove our first estimate, let us go through the proof of Theorem 7.1 in [26]. For

each fixed O, the integral in question is bounded by the number 2π
∑dO

k=1

(
nO,k(ΛO) + 1

)
.

Here, nO,k(ΛO) denotes the number of points w ∈ ]0,ΛO] with eiβk(w) = −1, where
β1(w), . . . , βdO

(w) are real-valued real-analytic functions such that eiβk(w) are the eigen-
values of the operator Ct (iw) (which depends on O). If Φ is an eigenfunction of Ct (iw),
then by [26, Lemma 3.14],ΛTE(Φ, iw) is an eigenfunction of∆ΓT with eigenvalue w2 +ρ2 +
χ(−CM) + λτ = w2 + ρ2 + µO.

Functions Φ coming from different orbits O yield linearly independent functions
ΛTE(Φ, iw), because the constant terms of the latter are orthogonal. For fixed O, it is clear
that eigenfunctions with different eigenvalues are linearly independent, while for those with
the same parameter w > 0 the linear independence follows from the preceding remark.
Thus we know that the values O and w ∈ ]0,ΛO] with eiβk(w) = −1 for some k produce∑

O

∑
k nO,k(ΛO) linearly independent eigenfunctions of∆ΓT . We deduce from the spectral

estimate that

∑
O:ρ2+µO≤X

dO∑
k=1

nO,k(ΛO) ≤ C2[Γ1 : Γ j](1 + X)n/2.

(The upshot is that in equation (7.2) of [26], we need not pass from the sum to the maxi-
mum times d.) The last assertion of the theorem allows us to replace nO,k(ΛO) by
nO,k(ΛO) + 1.

For Corollary 3.25 the argument is similar. For fixed O, the eigenvalues of Ct (u) for
u ≥ 0 are given by real-valued real-analytic functions λk(u), k = 1, . . . , dO, defined on
the complement of a finite set Mk depending on k, such that (u − u0)λk(u) is real-analytic
and positive at each u0 ∈ Mk (see [26, Prop. 3.6]). Let nO,k be the number of values u > 0
with λk(u) = −1. For each O, the sum of the ranks of the residues we have to estimate
equals

∑d
k=1 #(Mk), which does not exceed

∑d
k=1(nO,k + 1) (cf. [26, p. 487]). By the same

argument as above we conclude that

∑
O:ρ2+µO≤X

dO∑
k=1

nO,k ≤ C2[Γ1 : Γ j](1 + X)n/2.

We mention that, if wχ 6= χ, the meromorphic function M(χ, λ) has actually no poles in
the right half-plane (see [1, Lemma 3.4]).
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It remains to prove the last inequality. If we denote the projection of Γ j ∩ δ−1Pδ
(resp. K ∩ δ−1Pδ) on δ−1Mδ by Γ j,δ (resp. Kδ), then HP(χ, τ , j) is isomorphic to the

χ-eigenspace in
⊕

δ∈P(Q)\G(Q)/Γ j

(
L2(Γ j,δ \ δ−1M1δ)⊗ τ

)Kδ . Since−CM acts in this space
as generalized Laplacian and µχ = χ(−CM) + λτ , we conclude from [12, Corollary 4] (in
the simple cocompact case), that there exists C3 > 0 such that for all j and all X > 0

∑
χ:ρ2+µχ≤X

dim HP(χ, τ , j) ≤ C3

∑
δ∈P(Q)\G(Q)/Γ j

vol(Γ j,δ \ δ
−1M1δ/Kδ)(1 + X)n ′/2,

where n ′ = dim(δ−1M1δ/Kδ) and the various left-invariant measures are compatible in
the obvious sense. We want to show that the sum of volumes is bounded by C4[Γ1 : Γ j]1−ε

for some ε > 0. If (Γ ′j) is another tower with Γ ′j ⊂ Γ j and [Γ j : Γ ′j] ≤ D for all j, then
[Γ j,δ : Γ ′j,δ] ≤ D. Thus we may suppose that our tower has strictly bounded depth in the

sense of [12, Section 2]. The disjoint union of the manifolds Γ j ∩ δ−1Pδ \δ−1Pδ/Kδ with δ
running through P(Q)\G(Q)/Γ j is a covering of the analogous space with j = 1 of degree
[Γ1 : Γ j], and therefore

∑
δ∈P(Q)\G(Q)/Γ j

[Γ1 ∩ δ
−1Nδ : Γ j ∩ δ

−1Nδ] vol(Γ j,δ \ δ
−1M1δ/Kδ) = C5[Γ1 : Γ j].

Since (Γ j) has strictly bounded depth, there are positive constants ε, ε1 such that
[Γ1 ∩ δ−1Nδ : Γ j ∩ δ−1Nδ] ≥ ε1[Γ1 : Γ j]ε for all j and δ (cf. [12, Lemma 2]), and
the assertion follows.

3.6

Define

Jτ ,∞( f ) := vol(Γ \ G)

∫
Ĝ

[π : τ̆] f (χπ) dµ(π),

where µ denotes the Plancherel measure, and let Jτ , j = JT0
τ , j with T0 as in Section 1.

Lemma 3.7 Suppose that rankQ G = 1 and that (Γ j) is a tower of bounded depth. Then
Jτ , j extends to a continuous linear functional on S1. Moreover, there are C > 0, ni ∈ N and
Di ∈ D of order≤ 1 such that for j = 1, . . . ,∞ we have

| Jτ , j( f )| ≤ C
s∑

i=1

| f |ni ,Di .

We write ‖ f ‖ :=
∑s

i=1 | f |ni ,Di .

Proof For j =∞ this follows from Harish-Chandra’s formula for the Plancherel measure.
Now we consider the terms in Jτ , j( f ) for j < ∞. One easily sees that, for truncation

parameters T � T ′,

JT
τ , j( f )− JT ′

τ , j( f )

https://doi.org/10.4153/CJM-1999-042-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1999-042-8


970 Anton Deitmar and Werner Hoffmann

equals

|T − T ′|

[Γ1 : Γ j] dim τ
·

1

2π

∑
χ

dim HP(χ, τ , j)

∫
a∗M

r∗M( f )(χ, iλ) dλ,

which tends to zero as j → ∞ by the third inequality in Theorem 3.5. Thus it suffices
to consider any T. Let f ∈ S0 and m ∈ N. Multiplying f by the polynomial function
χ 7→

(
1 + λτ + χ(−C)

)m
, where C denotes the Casimir element, we get another function

f1 ∈ S0, and there are m ′ ∈ N and C1 > 0 with | f1|0,1 ≤ C1| f |m ′,1. Let us write NΓ(π) =
NΓ,cus(π) + NΓ,res(π) in the obvious way. Then

∑
π∈Ĝ(τ̆ )

NΓ j ,cus(π)[π : τ̆]| f (χπ)| ≤ | f1|0,1
∑
π∈Ĝ(τ̆ )

NΓ j ,cus(π)[π : τ̆ ]
(
1 + λτ + χ(−C)

)−m

≤ C1| f |m ′,1 tr
(
(1 +∆

Γ j
cus)
−m
)
,

where ∆Γcus denotes the restriction of the Bochner-Laplace operator ∆Γ in Γ \ Eτ to the
cuspidal subspace. In [12, Corollary 4], we have proved that the spectral counting function

N
Γ j
cus(X) of∆

Γ j
cus satisfies

N
Γ j
cus(X) ≤ C2[Γ1 : Γ j](1 + X)n/2

with a constant C2 independent of j ∈ N and X > 0. Thus, if we choose m > n/2, then

[Γ1 : Γ j]−1 tr
(
(1 +∆

Γ j
cus)−m

)
is bounded uniformly in j.

Next we come to the residual contribution. For χ = wχ and µ ∈ ]0, ρ],
Resλ=µ M(χ, λ, τ , j) is positive semidefinite and defines an inner product on the quotient
of HP(χ, τ , j) by the corresponding nullspace. The direct sum of these quotients over all
µ and χ is isometric to the residual subspace of the τ̆ -isotypical component of L2(Γ \ G)
(see [1, Section 2]). Therefore,∑

π∈Ĝ(τ̆ )

NΓ j ,res(π)[π : τ̆]| f (χπ)|

is less than or equal to

(dim τ )−1
∑
χ=wχ

∑
µ∈]0,ρ]

rank Resλ=µ M(χ, λ, τ , j)|rCM∗( f )(χ, µ)|.

Since rM(χ, λ)(−C) = χ(−CM) + ρ2 − λ2, we have

r∗M( f )(Oχ, λ) = (1− λ2 + ρ2 + µχ)−mr∗M( f1)(χ, λ),

and the previous expression is bounded by

|r∗M( f1)|0,1(dim τ )−1
∑
χ=wχ

(1 + µχ)−m
∑

µ∈]0,ρ]

rank Resλ=µ M(χ, λ, τ , j).
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Using the second estimate from Theorem 3.5 and Lemma 2.13, we see that this expression,
divided by [Γ1 : Γ j], is bounded by C3| f |m ′ ′,1 for some m ′′ ∈ N and C3 > 0 indepen-
dent of j. Thus we have shown that the discrete part of the spectral distribution extends
continuously to S0.

For the continuous part we have to take f ∈ S1. Suppressing the dependence of the
winding number on T, τ and j for the moment, we can write, for Λ ≥ 0,∫ Λ

−Λ

d

dλ
φ(χ, λ)r∗M( f )(χ, iλ) dλ = 2φ(χ,Λ)r∗M( f )(χ, iΛ)

− 2

∫ Λ
0
φ(χ, λ)

d

dλ
r∗M( f )(χ, iλ) dλ.

Here we want to estimate the terms on the right-hand side. Expressing r∗M( f ) in terms of
r∗M( f1) as above, we obtain with Lemma 2.13

|r∗M( f )(χ, iλ)| ≤ C4| f1|0,1(1 + λ2 + ρ2 + µχ)−m,∣∣∣∣ d

dΛ
r∗M( f )(χ, iλ)

∣∣∣∣
≤ C4

(
| f1|0,D(1 + λ2 + ρ2 + µχ)−m + | f1|0,1 |λ|(1 + λ2 + ρ2 + µχ)−m−1

)
≤ C4

(
| f1|0,D + | f1|0,1

)
(1 + λ2 + ρ2 + µχ)−m

for some C4 > 0 and D ∈ D of order 1. The seminorms of f1 occurring here can be
expressed by a linear combination of seminorms of f , which we denote by ‖ f ‖ as in the
statement of the lemma. Inserting these bounds, we get

∑
χ∈O

∣∣∣∣∣
∫ Λ
−Λ

d

dλ
φ(χ, λ)r∗M( f )(χ, iλ) dλ

∣∣∣∣∣
≤ C5‖ f ‖

(
|φ(O,Λ)|(1 + Λ2 + ρ2 + µO)−m +

∫ Λ
0
|φ(O, λ)|(1 + λ2 + ρ2 + µO)−m dλ

)
.

For each natural number ν ≥ 1, the sum of these expressions over those O with ν − 1 ≤
ρ2 + µO ≤ ν is bounded by

C5‖ f ‖
∑

ν−1≤ρ2+µO≤ν

(
|φ(O,Λ)|(Λ2 + ν)−m +

∫ Λ
0
|φ(O, λ)|(λ2 + ν)−m dλ

)
,

but since ∑
O:ρ2+µO≤ν

|φT(O, λ, τ , j)| ≤ C[Γ1 : Γ j](1 + λ2 + ν)n/2

by Theorem 3.5, this is bounded by

CC5‖ f ‖[Γ1 : Γ j]2n/2

(
(Λ2 + ν)n/2−m +

∫ Λ
0

(λ2 + ν)n/2−m dλ

)
,
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which tends to C6‖ f ‖[Γ1 : Γ j]ν(n−1)/2−m as Λ→∞, provided we choose m > (n + 1)/2.
Summing over ν, we obtain, as desired,∑

χ

∣∣∣∣
∫ ∞
−∞

d

dλ
φT(χ, λ, τ , j)r∗M( f )(χ, iλ) dλ

∣∣∣∣ ≤ C7‖ f ‖[Γ1 : Γ j].

It remains to consider the last summand of the spectral distribution. We have∑
χ=wχ

|tr
(
M(χ, 0, τ , j)

)
r∗M( f )(χ, 0)| ≤

∑
χ=wχ

‖M(χ, 0, τ , j)‖1 |r
∗
M( f )(χ, 0)|,

where ‖ . ‖1 means trace norm. Since M(χ, 0, τ , j)2 = 1, we know that ‖M(χ, 0, τ , j)‖1 ≤
dim HP(χ, τ , j), and the third inequality of Theorem 3.5 suffices to complete the proof.

Now we come to the main result of the present paper. As before, let S denote the space
of Schwartz functions on V and S1 the larger space introduced in the previous section.

Theorem 3.8 Suppose that rankQ G = 1 and that (Γ j) is a local tower of bounded depth.
For any f ∈ S1 we have

Jτ , j( f )
j→∞
−→ vol(Γ \ G)

∫
Ĝ

[π : τ̆] f (χπ) dµ(π) = Jτ ,∞( f ).

Proof Let f ∈ S and ε > 0 be arbitrary. By Proposition 2.8 there is some function g ∈ Bτ

with ‖ f − g‖ < ε, and Lemma 2.11 yields a function ϕ ∈ C∞c (G) which can be inserted in
the trace formula. It follows that

| Jτ , j( f )− Jτ ,∞( f )| ≤ | Jτ , j( f )− Jτ , j(g)| + | Jτ , j(g)− Jτ ,∞(g)| + | Jτ ,∞(g)− Jτ ,∞( f )|.

The first and the third summands on the right-hand side are less than εC . The second
summand converges to zero as j →∞ by Proposition 1.7. The theorem follows.

3.9

The third inequality of Theorem 3.5 shows that the last term in Jτ , j( f ) tends to zero as j →
∞. The other two terms constitute the measure µτ,Γ j on V alluded to in the introduction.
Since the bounds for both of them are deduced from the spectral bounds of the cut-off
Laplacian, one cannot prove along the same lines that the continuous part is of smaller
order than the discrete part as j →∞.

It would be desirable to prove the analogue of our theorem for measures on Ĝ in the
spirit of [13].

For any lattice Γ ⊂ G define the measure

µdis
Γ :=

1

vol(Γ \ G)

∑
π∈Ĝ

NΓ(π)δπ.

In Section 5 we will give some evidence for the following:

Conjecture 3.10 Let (Γ j) be a tower of bounded depth. Then the sequence of measures
µdis
Γ / vol(Γ j \ G) tends vaguely to the Plancherel measure µ.
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4 The Non-Tempered Spectrum

4.1

Let Ĝtemp ⊂ Ĝ be the tempered dual, this is a closed subset. Consider the natural map
Ĝ → V , π 7→ χπ. Let Vtemp be the image of Ĝtemp then Vtemp is a closed subset of V . Let
Vnt = V −Vtemp be its complement.

4.2 Example

Consider the special case G = SL2. Then z = C[C] and the map χ 7→ −χ(C) maps VC

isomorphically to C and V to R. An inspection shows:

Vtemp =

{
1− n2

4

∣∣∣∣ n = 0, 1, . . .

}
∪

]
1

4
,∞

[
.

We now bring the K-type into the picture. Let Ĝ(τ ) be the subset of Ĝ of all π ∈ Ĝ with
[π, τ ] 6= 0. Let Vtemp(τ ) be the image in V of Ĝtemp(τ ) = Ĝ(τ ) ∩ Ĝtemp.

4.3 Example

Again G = SL2 and now τ = 1, the trivial K-type. We get

Vtemp(1) =

[
1

4
,∞

[
.

In this setting we have the

Selberg’s conjecture For any congruence subgroup Γ of SL2(Q): if π ∈ Ĝ(1) occurs in
L2(Γ \ G) then χπ ∈ Vtemp(1).

Recently Luo, Rudnick and Sarnak [23] have proven:

χπ ∈

[
21

100
,∞

[
.

Theorem 4.4 Suppose rankR G = 1. Fix a K-type τ and let U be an open and relatively
compact subset of Vnt(τ ). Let for j ∈ N:

N j(U ) :=
∑
π∈Ĝ
χπ∈U

NΓ j (π)[π : τ ],

then the quotient N j (U )
[Γ1:Γ j ]

tends to zero as j →∞.

Proof Since we have real rank one here, the intertwining terms in Jτ , j will be supported
in the tempered spectrum Vtemp(τ ). Now apply Theorem 3.8 to any compactly supported
positive smooth function f on V which is zero on Vtemp(τ ) and 1 on U .
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Corollary 4.5 Choose ε > 0 and let for a tower (Γ j) of congruence subgroups in SL2(Q) the
number N j(ε) be defined by

N j(ε) :=
∑

π∈Ĝ(1),χπ<
1
4−ε

NΓ j (π),

then N j (ε)
[Γ1:Γ j ]

tends to zero as j tends to infinity.

Proof Apply the theorem to U =
]
−T, 1

4 − ε
[

for any T > 0.

This corollary also follows from the density theorem of [20]. Note that for towers of
Hecke congruence subgroups, which are not covered by our definition of towers, a much
stronger density theorem has been obtained in [22].

5 A Special Case

5.1

In this section we consider the group G = PSL2 and its principal congruence subgroups,
i.e., the projections of Γ(N) ⊂ SL2(Z). Since dim M1 = 0, we may omit χ ∈ V 1

M from the
notation. The scattering matrix for the group Γ(N) and the trivial K-type τ = 1 will be
denoted by M(λ,N), where we identify a∗ with R in such a way that ρ corresponds to 1.
Huxley [19] has found the following explicit formula in terms of Dirichlet L-functions:

det M(λ,N)

equals

(−1)
h−h0

2

(
N

π

)−hλ
(
Γ( 1−λ

2 )

Γ( 1+λ
2 )

)∏
(m1m2q1)−λ

L(1− λ, χ̄1χ̄2ωm1m2 )

L(1 + λ, χ1χ2ωm1m2 )
.

Here h = [Γ(1) : {±1}Γ(N)]/N is the number of cusps (which is equal to N2

2

∏
p|N (1− 1

p2 )

for N ≥ 3), h0 = N
∏

p|N (1 + 1
p ) = − tr M(0,N), and ωm denotes the trivial Dirichlet

character modulo m. The product is taken over all quadruples (m1,m2, χ1, χ2) where m1,
m2 are coprime natural numbers and the χi are Dirichlet characters with conductor qi such
that miqi |N for 1 = 1, 2 and χ1(−1) = χ2(−1). The number of such quadruples equals h.
Of course, we may replace χ̄i by χi in the numerator.

We deduce from [30, Satz 7.1], that for each ε > 0 there exists C > 0 such that for all
k ∈ N, all Dirichlet characters χ modulo k and all t ∈ R we have∣∣∣∣L ′(1− it, χ)

L(1− it, χ)
+

L′(1 + it, χ)

L(1 + it, χ)

∣∣∣∣ ≤ C

(
log k(|t| + 2) +

k−ε

k−2ε + t2

)
.

Here the second term in the bound is only necessary for at most one character χ modulo
each k. In Huxley’s formula, only characters modulo k with k|N occur, and one easily
deduces

Lemma 5.2 For each ε > 0 there is a constant C such that, for all N ∈ N and all λ ∈ R,

[Γ(1) : Γ(N)]−1| tr M(iλ,N)−1M ′(iλ,N)| ≤ CN−1
(

Nε + log(|λ| + 2)
)
.
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5.3

For any lattice Γ ⊂ G define the measure µdis
Γ on Ĝ by

µdis
Γ :=

1

vol(Γ \ G)

∑
π∈Ĝ

NΓ(π)δπ.

We can now easily deduce the following result, which is also contained in a preprint by
Sarnak from 1983 ([31], also compare [21, end of Section 3]).

Theorem 5.4 Let N j be an increasing sequence of natural numbers and Γ j the image of
Γ(N j) in G = PSL2(R). For the tower Γ j , the sequence of measures µdis

Γ j
converges vaguely

to the Plancherel measure µ.

Proof For the restriction of the measures to the discrete series Ĝdis, this is known (see [33]).
Thus we need only consider the complement, which is Ĝ(1). The preceding lemma shows
that the assertion of Lemma 3.7 extends to f ∈ S0 and, moreover, that the continuous part
of Jτ , j( f ) tends to zero as j →∞. The assertion of Theorem 3.8 now reads

∫
Ĝ(1)

f (χπ) dµΓ j (π)
j→∞
−→

∫
Ĝ(1)

f (χπ) dµ(π).

On Ĝ(1) the map π → χπ is injective. Now we can approximate any element of Cc(V ) by
Schwartz functions to get the claim.
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