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Abstract

A laser stripe sensor has two kinds of calibration methods. One is based on the homography
model between the laser stripe plane and the image plane, which is called the one-step cali-
bration method. The other is based on the simple triangular method, which is named as the
two-step calibration method. However, the geometrical meaning of each element in the one-
step calibration method is not clear as that in the two-step calibration method. A novel math-
ematical derivation is presented to reveal the geometrical meaning of each parameter in the
one-step calibration method, and then the comparative study of the one-step calibration
method and the two-step calibration method is completed and the intrinsic relationship is
derived. What is more, a one-step calibration method is proposed with 7 independent param-
eters rather than 11 independent parameters. Experiments are conducted to verify the accu-
racy and robust of the proposed calibration method.

Introduction

In recent decades, robotic vision has been increasing used in many industry branches, such as
a seam tracking system (Zhang et al., 2009), a weld quality inspecting system (Huang and
Kovacevic, 2011; Jia et al., 2019; Yang et al., 2020), and an inspection system of automobile
assembly (Baeg et al., 2008). The laser stripe sensor has been gaining the widest acceptance
in industry inspection due to fast acquisition time, very simple structure, low cost, and its
robust nature. The inspection principle of a laser stripe sensor is that a laser projector projects
a light stripe plane onto the object’s surface, forming a light stripe. The light stripe is modu-
lated by the depth of the object’s surface. And consequently, the distorted light stripe contains
rich 3D characteristic information of the object surface. The 3D characteristic information of
the object’s surface can be derived from 2D distorted images after 3D reconstruction. To finish
3D reconstruction, on the one hand, intrinsic parameters of the camera should be established;
on the other hand, the pose of the laser projector with respect to the camera also must be
determined.

As we know, there has been two major ways to finish the laser stripe sensor calibration pro-
cess. One is based on the homography model (Huynh et al., 1999) between the light stripe
plane and the image plane, which is called the one-step calibration method, and the other
is based on the simple triangular method (Gan and Tang, 2011), which is named as two-step
calibration method. The one-step calibration method is to determine a 4 × 3 transformation
matrix from the image coordinate system to the camera coordinate system, while the two-step
calibration method is to determine a 4 × 4 transformation matrix which can be explained as
the intersection of a line and a plane. Tremendous efforts have been devoted to the field of
calibrating the structured light stripe sensor and a wide range of methods have been developed.

One-step calibration method

The one-step calibration method is to estimate the homography model between the light stripe
plane and the image plane. The method is mainly based on the perspective, translation, and
rotation transforms in homogeneous coordinate system. Different calibration methods are pro-
posed and they are distinguished based on the form of calibration target and the method to
extract calibration points (control points) for structured light stripe sensor calibration (Gan
and Tang, 2011). Such as Dewar (1988) proposes a strained thread method to obtain several
control points and Duan (2000) uses a Zigzag-like calibration target instead of non-coplanar
multiple thin threads. However, the shortcomings of the above two method are that the num-
ber of generated control points is limited and the accuracy of the control points is usually very
poor. Xu et al. (1995) and Huynh et al. (1999) separately present a invariance of cross-ratio
based method to generate control points in the perspective transformation. A 3D calibration
target is used in both of two methods, but the form of the 3D calibration target is different.
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The 3D calibration target is very difficult to be manufactured
accurately, and it is also very hard to capture the good enough
image via viewing the different planes of the 3D calibration target
at once. Meanwhile, the number of control points is limited. To
overcome the shortcomings of the invariance of cross-ratio
based method, Wei et al. (2003) proposed an invariance of double
cross-ratio based approach to estimate an arbitrary number of
control points. There are also some methods (Forest Collado,
2004; Niola et al., 2011) that the 3D calibration target is consti-
tuted by a 2D calibration target and a movable platform.
However, it is very inconvenient for operation and time-
consuming in calibration process. Recently, several simple laser
vision sensor calibration method as proposed which is based on
a one-step calibration method (Abu-Nabah et al., 2016; Yi and
Min, 2021). Abu-Nabah et al. (2016) used a rectangular notch
calibration blocks while Yi and Min (2021) used a three-
dimensional calibration block.

Two-step calibration method

The two-step calibration method is that camera is calibrated first
and then the projector is calibrated, and 3D reconstruction is
completed based on the simple triangular method. The camera
has been extensively studied in the past decades, and its modeling
and calibration techniques are very mature (Tsai, 1987; Heikkila
and Silven, 1997; Zhang, 2000). The equation of a plane is used
to accurately represent the light stripe plane illuminated from
the projector, and consequently, at least three known non-
collinear control points on the light stripe plane are needed to
carry out projector calibration. Similar to the one-step calibration
method, an invariance of cross-ratio (Zhou et al., 2005) or double
cross-ratio (Wei et al., 2003) based approach is also employed to
generate control points in two-step calibration method. Mao et al.
(2018) proposed a plane-constraint based calibration approach to
effective and highly accurate extraction of much more control
points for a structured light stripe vision sensor. There are also
some methods that the 3D calibration target is constituted by a
2D calibration target and a movable platform (Li et al., 2008;
Luo et al., 2014; Xie et al., 2014). Yu et al. (2017) proposed a
novel mathematical model for a galvanometric laser scanner
which is based on the two-step calibration model. Irandoust
et al. (2022) investigated the effect of the camera linear movement
and the laser rotational movement on the measurement accuracy
improvement of low resolution/cost laser triangulation scanner,
which is also based on the two-step calibration model. It is very
inconvenient for operation and time-consuming in calibration
process as aforementioned.

In summary, tremendous efforts have been devoted to find the
effective and highly accurate extraction of control points for cali-
brating a structured light stripe vision sensor. However, the intrin-
sic relationship between the above two calibration methods has
not been revealed yet and the geometrical meaning of each ele-
ment in the one-step calibration method has not been discussed
yet. In the paper, a novel mathematical derivation is proposed
to discuss geometrical meaning of each element in the one-step
calibration method via redefining the 3D laser coordinate system.
What is more, the intrinsic relationship between the one-step cali-
bration method and the two-step calibration method is revealed
theoretically. The remaining sections are organized as follows.
Section “Mathematical models of two calibration methods” intro-
duces the mathematical model of the two calibration methods. In
Section “Comparison between two calibration methods”, the

comparative study between two calibration methods is intro-
duced. The 3D laser coordinate system in the one-step calibration
method is redefined to reveal the geometrical meaning of each
element in the homography matrix theoretically. And then the
intrinsic relationship between two calibration methods is estab-
lished. To validate the accuracy of their comparison, experiments
are conducted in “Experiments” and the paper ends with conclud-
ing remarks in Section “Conclusion”.

Mathematical models of two calibration methods

One-step calibration method

The one-step calibration method is based on the homography
model between the light stripe plane and the image plane. The
invariance of cross-ratio (Huynh et al., 1999; Duan, 2000) or dou-
ble cross-ratio (Wei et al., 2003) is used to extract control points.
Finally, the extracted control points and the corresponding image
points are employed to estimate parameters in the homography
model.

Homography is a 3 × 3 transformation matrix which repre-
sents the geometrical relationship between two planes in projec-
tive space. Homography model (Chen and Kak, 1987; Forest
Collado, 2004; Niola et al., 2011) is used to model the transforma-
tion relationship between the image plane and the 3D world coor-
dinate system (WCS) via adding some transformation
relationship. The geometric scheme of homography model is
shown in Figure 1. Here, the camera coordinate system (CCS) is
substituted for the WCS in order to obtain 3D coordinate data
with respect to the camera coordinate system. {C} is the camera
coordinate system, {L} is the 3D laser coordinate system, and
{I} is the image coordinate system (ICS). {L2} is a bi-dimensional
coordinate system which locates at the light stripe plane and its x
and y axis coincide with the x- and y-axis of {L}. The homography
model which relates the image plane and the 3D world coordinate
system can be derived as follows:

P̃c =
xc
yc
zc
1

⎡
⎢⎢⎣

⎤
⎥⎥⎦ = mCTL

LTL2
L2TI ·

u
v
1

⎡
⎣

⎤
⎦ = CTI ·

u
v
1

⎡
⎣

⎤
⎦, (1)

Figure 1. Geometric scheme of homography model.
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CTL = R3×3 T3×1

01×3 1

[ ]
, (2)

LTL2 =
1 0 0
0 1 0
0 0 0
0 0 1

⎡
⎢⎢⎣

⎤
⎥⎥⎦, (3)

L2TI =
r1 r2 r3
r4 r5 r6
r7 r8 r9

⎡
⎣

⎤
⎦, (4)

where μ is an arbitrary scale factor. P̃c = xc yc zc 1
[ ]T

is
homogeneous coordinate of the point in camera coordinate sys-
tem. CTL represents the pose of {L} with respect to {C}. CTI is a
4 × 3 transformation matrix with 11 degrees of freedom.

At least four non-collinear known control points and their cor-
responding image points are required to estimate parameters in
CTI . Equation (1) can be reorganized as follows:

m

xc
yc
zc
1

⎡
⎢⎢⎣

⎤
⎥⎥⎦ =

t1 t2 t3
t4 t5 t6
t7 t8 t9
t10 t11 t12

⎡
⎢⎢⎣

⎤
⎥⎥⎦ ·

u
v
1

⎡
⎣

⎤
⎦, (5)

The arbitrary scale factor μ can be eliminated from Eq. (5):

t1u+ t2v + t3 − xc(ut10 + vt11 + t12) = 0,
t4u+ t5v + t6 − yc(ut10 + vt11 + t12) = 0,
t7u+ t8v + t9 − zc(ut10 + vt11 + t12) = 0.

⎧⎨
⎩ (6)

Equation (6) indicates that one single control points corre-
spondence contributes with three linearly independent equations.
Hence, at least four non-collinear control points are required to
estimate the 11 independent parameters.

Equation (6) can be written as the form

AX= 0, (7)

where

A=

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

ui vi 1 0 0 0 0 0 0 −ui · xci −vi · xci −xci
0 0 0 ui vi 1 0 0 0 −ui · yci −vi · yci −yci
0 0 0 0 0 0 ui vi 1 −ui · zci −vi · zci −zci

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦
,

X = t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
[ ]T

.

Equation (7) can be solved by computing the null space of the
matrix A. Here, t9 is chosen as 1 for the convenience of compar-
ison with the two-step calibration method. It is obvious that the
homography model of the structured light stripe sensor do not
consider neither radial nor tangential lens distortion in the cam-
era model.

Two-step calibration method

The two-step calibration method is to calibrate the camera first
and then calibrate the projector since a laser stripe sensor is com-
posed of a camera and a projector. The camera model and the
projector model are explained in the research in detail, so only
essential equations for the comparative study of the two calibra-
tion methods are listed below.

Here, 3D reconstruction is derived using the intersection of a
line and a plane instead of the triangular-based method. The per-
spective projection model of a camera is shown in Figure 2. The
transformation from the camera coordinate frame to the normal-
ized image plane frame is rewritten as follows:

mP̃I = ITCP̃c =
fu 0 u0 0
0 fv v0 0
0 0 1 0

⎡
⎣

⎤
⎦P̃c, (8)

where P̃c = xc yc zc 1
[ ]T

is homogeneous coordinate of Pc
in the camera coordinate system. P̃I = u v 1

[ ]T
is homoge-

neous coordinate corresponding to Pc in the image plane coordi-
nate system. fu and fv represent the horizontal and vertical focal
length, respectively, and u0 and v0 are the coordinates of the prin-
ciple point with respect to the image plane coordinate frame.

The column rank of ITC is deficient, so there is no left inverse
matrix of ITC . ITC which represents the pinhole model of the
camera can be considered as a 3D spatial line in the camera coor-
dinate system. What is more, the point Pc is laid on the light stripe
plane, so an additional equation can be given below:

axc + byc + czc + d = 0, (9)

where a b c d
( )

are the estimated plane parameters and
a b c

( )
are the normal vector of the plane. The point Pc

xc yc zc
( )

is expressed in the camera coordinate system.
Equations (8) and (9) are combined as follow:

mP̃I0 = m

u
v
1
0

⎡
⎢⎢⎣

⎤
⎥⎥⎦ = I0TCP̃c =

fu 0 u0 0
0 fv v0 0
0 0 1 0
a b c d

⎡
⎢⎢⎣

⎤
⎥⎥⎦

xc
yc
zc
1

⎡
⎢⎢⎣

⎤
⎥⎥⎦, (10)

where I0TC is an invertible matrix due to the structure of the laser
stripe sensor, and Pc is very easy to calculate. The first two rows in
matrix I0TC describe a 3D spatial line in the camera coordinate
system and the last row represents a 3D plane in the same

Figure 2. Perspective projection model of a camera.
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coordinate system. The intersection of the spatial line and plane is
derived from Eq. (10). Compared with Eq. (1) and Eq. (10), the
geometrical meaning of each element in the one-step calibration
method is not clear as that is the two-step calibration method.

Comparison between two calibration methods

Geometrical insight into the one-step calibration method

Though parameters in homography model can be easily esti-
mated, the geometrical meaning of each element is not clear as
indicated in Eq. (10). Here, a transformation of geometric scheme
for homography model is proposed as shown in Figure 3.
Compared with geometric scheme in Figure 1, the definition of
{L} and {L2} is more specific to reflect the structure of the laser
stripe sensor. The original of the {L} is the projection of the ori-
ginal of the {C} onto the light stripe plane. The x-axis of the {L} is
defined that the intersection of the z-axis of the {C} and the light
stripe plane lies in the x-axis of the {L}. The z-axis of the {L} is the
norm vector of the light stripe plane. The rest coordinate systems
are unchanged as shown in Figure 1.

Assuming that the equation of the light stripe plane is given in
Eq. (9). The coordinate of the projection of the original of the {C}
onto the light stripe plane is given below:

O{L} = −ad −bd −cd
[ ]T

. (11)

The intersection of the z-axis of the {C} and the light stripe
plane is given as follow:

PZ = 0 0 − d
c

[ ]T
. (12)

The direction vector of the x-axis of the {L} is expressed below:

X{L} = a
M

b
M

(c2 − 1)
cM

[ ]T
, (13)

M =
����������������������
a2 + b2 + (c− 1/c)2

√
. (14)

The direction vector of the z-axis of the {L} is given below:

Z{L} = a b c
[ ]T

. (15)

The pose of {L} with respect to {C} is described as follow:

CTL =
a/M −b/

��������
a2 + b2

√
a −ad

b/M a/
��������
a2 + b2

√
b −bd

(c2 − 1)/cM 0 c −cd
0 0 0 1

⎡
⎢⎢⎣

⎤
⎥⎥⎦. (16)

The homography matrix L2TI in Eq. (1) is an invertible matrix
and is calculated via computing the invertible matrix ITL2. ITL2

can be decomposed as follow:

ITL2 = ITC · CTL · LTL2, (17)

where ITL2 represents the pose of {L2} with respect to {I}, ITC

represents the pose of {C} with respect to {I}, CTL represents

the pose of {L} with respect to {C}, and LTL2 represents the
pose of {L2} with respect to {L}.

The reason why ITL2 is chosen to calculate the homography
matrix L2TI is that ITC is given in Eq. (5) and LTL2 does not
lose any information (L2TL will lose information of the z-axis of
{L}). Equations (1), (3), (5), (16), and (17) are combined to derive
the following equation:

CTI = inv(ITL2
L2TL

LTC)

=

1/ fu 0 −u0/ fu
0 1/ fv −v0/ fv
0 0 1

− a
fu · d − b

fv · d
au0
fu · d + bv0

fv · d − c
d

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦. (18)

Equation (1) can be rewritten as follow:

P̃c =
xc
yc
zc
1

⎡
⎢⎢⎣

⎤
⎥⎥⎦ = mCTI ·

u
v
1

⎡
⎣

⎤
⎦

= m

1/ fu 0 −u0/ fu
0 1/ fv −v0/ fv
0 0 1

− a
fu · d − b

fv · d
au0
fu · d + bv0

fv · d − c
d

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦P̃I . (19)

Both sides of Eq. (19) are premultiplied by I0TC indicated in
Eq. (10):

I0TcP̃c = mI0Tc
CTI ·

u
v
1

⎡
⎣

⎤
⎦ = m

1 0 0
0 1 0
0 0 1
0 0 0

⎡
⎢⎢⎣

⎤
⎥⎥⎦P̃I =

u
v
1
0

⎡
⎢⎢⎣

⎤
⎥⎥⎦

= mP̃I0. (20)

As shown in Eq. (19), the geometrical meaning of each ele-
ment in the one-step calibration method is as clear as that in

Figure 3. A transformation of geometric scheme for homography model.
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the two-step calibration method. There are only 7 rather than 11
degrees of freedom in the one-step calibration method. Compare
Eq. (20) with Eq. (10), the two calibration methods are identical
essentially without considering lens distortion.

The proposed one-step calibration method

As we know in the literature of the sensitivity matrix, if the matrix A
in Eq. (7) has full rank but a large condition number (a feature
known as ill-condition), the identified parameters are greatly affected
by the inevitable noise (measurement noise and model errors). From
aforementioned analysis, there are four redundant parameters in the
traditional one-step calibration method if CCS is substituted for
WCS. The redundant parameters will increase the condition num-
ber of the matrix A and compromise the robustness of the identified
parameters. And consequently, a proposed one-step calibration
method with seven independent parameters is proposed.

Combined Eqs (5), (6), (7), and (19), a one-step calibration
method without redundant parameters is presented via rewriting
Eq. (7):

..

. ..
. ..

. ..
. ..

. ..
. ..

.

ui 1 0 0 −ui · xci −vi · xci −xci
0 0 vi 1 −ui · yci −vi · yci −yci
0 0 0 0 −ui · zci −vi · zci −zci

..

. ..
. ..

. ..
. ..

. ..
. ..

.

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

t1
t3
t5
t6
t10
t11
t12

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

..

.

0
0
−1

..

.

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦
, (21)

where ti has the same meaning as indicated in Eq. (7).
It can be noticed that at least three non-collinear control points

with respect to CCS are required to estimate the seven independent
parameters. The two-step calibration method has four independent
intrinsic parameters and three laser stripe plane parameters which
equals to the number of independent parameters in the proposed
one-step calibration method. What is more, at least three non-
collinear control points are required to calibration the laser projector.

Error analysis

Theoretically, I0HI is a 4 × 3 matrix as shown in Eq. (20).
However, the one-step calibration method simplifies the camera
as a pin hole model without considering lens distortion, so the
focal length and the coordinates of the principle point are inevi-
table different from that in the two-calibration method. The
matrix I0HI is given below considering the inevitable errors:

I0HI =
fu + Dfu 0 u0 + Du0 0

0 fv + Dfv v0 + Dv0 0
0 0 1 0
a b c d

⎡
⎢⎢⎣

⎤
⎥⎥⎦

×

1/ fu 0 −u0/ fu
0 1/ fv −v0/ fv
0 0 1

− a
fu · d − b

fv · d
au0
fu · d + bv0

fv · d − c
d

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦, (22)

where Δfu and Δfv represent errors of horizontal and vertical focal
length, respectively, and Δu0 and Δv0 are the coordinate errors of
the principle point.

Here, I0HI i j
( )

represents the element at the i row and the j
column in the matrix I0HI .

I0HI 1 1
( ) = ( fu + Dfu)

1
fu
= 1+ Dfu

fu
, (23)

I0HI 1 3
( ) = ( fu + Dfu)

−u0
fu

+ u0 + Du0

= Du0 − Dfu
u0
fu
, (24)

I0HI 2 2
( ) = ( fv + Dfv)

1
fv
= 1+ Dfv

fv
, (25)

I0HI 2 3
( ) = ( fv + Dfv)

−v0
fv

+ v0 + Dv0

= Dv0 − Dfv
v0
fv
, (26)

I0HI 1 2
( ) = I0HI 2 1

( ) = I0HI 3 1
( ) = I0HI 3 2

( )
= I0HI 4 1

( ) = I0HI 4 2
( ) = I0HI 4 3

( )
= 0, (27)

I0HI 3 3
( ) = 1. (28)

The element I0HI 1 1
( )

and element I0HI 2 2
( )

represent
margin of errors of horizontal and vertical focal length, respec-
tively, and the element I0HI 1 3

( )
and element I0HI 2 3

( )
represent errors in pixels. Consequently, errors of element
I0HI 1 3

( )
and element I0HI 2 3

( )
are much larger than errors

of element I0HI 1 1
( )

and element I0HI 2 2
( )

.

Experiments

Experiment setup

Here, a rotational laser stripe sensor is designed using a one-
mirror galvanometer element as the mechanical device as
shown in Figure 4. What is more, a video of the laser sensor
can be found in the paper (Yu et al., 2017). The rotational laser
scanner is mainly comprised of a CCD camera (Basler
acA1300/30um, sensor size 4.86 mm × 3.62 mm, resolution
1296 px × 966 px) with 16 mm lens, a laser line projector (wave-
length is 730 nm, line width ≤1 mm), and a one-mirror galvan-
ometer element. To validate comparative accuracy of the two
calibration methods, the galvanometer element rotates at 23 dif-
ferent angles to construct 23 laser stripe sensors which are differ-
ent from the pose of the light stripe plane with respect to CCS.

Calibration procedure

Theoretically, at least four non-collinear control points with
respect to CCS are required to complete the aforementioned
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three calibration methods. The planar calibration target (7 × 7 dot
array) is located at 20 different poses and the last two poses are
captured twice in two cases, one with no laser stripe line projected
onto the planar for camera calibration and the other with a laser
stripe line for extracting control points. There are 20 images for
camera calibration and 2 images for extracting control points.

Figure 5 shows the last two images of the planar calibration
target in camera calibration procedure. The coordinate (i,j) in
Figure 5 indicates that the center of the circle locates at the ith
row and the jth column. The distance between the adjacent two
circles is 3.75 mm in both the horizontal and the vertical direc-
tions. The procedure of determining the coordinate is modeled
as Single Source Shortest Paths (SSSPs) and solved via
Bellman-Ford algorithm. Figure 6 shows the two captured images
with 23 strip lines lying on the planar target. Figure 6(a) shows
the 23 strip lines lying on the 19th pose of the planar target
and Figure 6(b) shows the 23 strip lines lying on the 20th pose
of the planar target. The poses of the last two planar targets are
known after camera calibration, and control points lay on 23
laser stripe planes can be calculated via the plane-constraint
based method. The extracted control points are used to carry
out aforementioned three calibration methods.

Experiment results
(1) Robustness analysis of two models

The traditional one-step calibration method is compared with the
proposed one-step calibration method with respect to the

condition number of the matrix A and stability of the identified
parameters related to the structure of the camera. The ratio of
the condition number is used to verify the redundancy of the
model via numerical analysis (Joubair and Bonev, 2014).
Figure 7 shows the comparison of the matrix A’s condition num-
ber, and the condition number of the traditional one-step calibra-
tion method is at least several hundred times larger than that of
the proposed one-step calibration method.

(2) Errors analysis of identified parameters

The one-step calibration method simplifies the camera as pin
hole model without considering lens distortion, so the focal
length and the coordinates of the principle point are inevitable
different in two calibration methods. Comparison of errors of
each element in the matrix I0HI between two one-step calibration
methods are shown in Figure 8. Elements in the matrix I0HI using
two-step calibration method are used as nominal values. Errors of
element I0HI(1, 3) and element I0HI(2, 3) are much larger than
those of other elements. As to the aforementioned CCD camera,
the nominal coordinates of the principle point are 648 px(u0) and
483 px(v0), and both of the horizontal (fu) and vertical (fv) focal
length are 4267 px. As indicated in Eq. (22) and Figure 8, error of
the element I0HI(1, 1) is less than 5 ×10–4, so error of the element
I0HI(1, 3) mainly depends on Δu0. It is the same with error of ele-
ment of I0HI(2, 3). Errors of element I0HI(1, 1) and element
I0HI(2, 2) are very small, because the focal length is very large

Figure 4. Schematic diagram of the rotational laser stripe sensor.

Figure 5. The last two images of the planar target. (a) The 19th planar target. (b) The 20th planar target.
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(about 4267 px). Error of element of I0HI(3, 3) is always zero,
because t9 is chosen as 1 for estimating 11 independent parame-
ters in the one-step calibration method described in Section
“One-step calibration method”. Errors of the rest elements is non-
zero but much smaller than others.

(3) Accuracy evaluation

Here, accuracy of the proposed one-step calibration method is
evaluated via measuring a standard sphere from six different
poses as shown in Figure 9. The standard sphere is a bearing
steel ball and is coated with matt material and is measured on a
CMM (Thome, 2 + (L/350) μm). True values of the sphere radius
is 12.7080 mm and its standard deviation is 12.1 μm. The pro-
posed calibration method is compared with other two calibration
models, such as a traditional one-step calibration model and a
two-step calibration model. However, there are 23 stripe lines in
the view of the sensor, and each pose of the stripe line is fixed
in the CCS owing to the high repeatability of the stepper
motor. Inspired by LUT, three other calibration methods are

repeated 23 times at each pose of the laser stripe plane to com-
plete the calibration of the rotational laser scanner. Accuracy
comparison among three methods is shown in Figure 10. It can
be seen that accuracy of the proposed calibration method is nearly
same as that of the two-step calibration method which is consis-
tent with errors analysis of identified parameters as shown in
Figure 8.

Conclusion

In this paper, two kinds of calibration methods for a laser stripe
sensor are compared. The geometrical meaning of each element
in the one-step calibration method is not clear as that is the two-
step calibration method, so a novel mathematical derivation is
presented to reveal the geometrical meaning of each parameter
in the one-step calibration method, and then the comparative
study of the one-step calibration method and the two-step calibra-
tion method is completed and the intrinsic relationship is derived.
Meanwhile, we found the one-step calibration method has 7 inde-
pendent parameters rather than 11 independent parameters, then
a one-step calibration method without redundant parameters is

Figure 6. Stripe lines lying on the last two planar targets. (a) Laser stripes lying on the 19th planar target. (b) Laser stripes lying on the 20th planar target.

Figure 7. Comparison of condition number of two one-step cali-
bration methods.
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Figure 8. Errors of each element in the matrix I0HI.

Figure 9. (a) The experimental setup. (b) The processed gray image.
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proposed. Finally, experiments are conducted to verify the accu-
racy of their comparison and the robust of the proposed one-step
calibration method. What is more, the proposed one-step calibra-
tion method is suitable for a seam tracking system, because the
laser stripe vision sensor of a seam tracking system needs a
large depth of field and then the optical path is designed accord-
ing to Scheimpflug theorem.

Future work will advance the proposed calibration method one
more step to worker use by designing a three-dimensional calibra-
tion target and calibration procedure. Meanwhile, we also plan to
investigate the effect of the lens distortion on the measurement
accuracy of the proposed calibration method and provide a guid-
ance to use the proposed calibration method.
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