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Abstract

We extend the theory of Koszul modules to the bi-graded case, and prove a vanishing
theorem that allows us to show that the canonical ribbon conjecture of Bayer and
Eisenbud holds over a field of characteristic 0 or at least equal to the Clifford index.
Our results confirm a conjecture of Eisenbud and Schreyer regarding the characteristics
where the generic statement of Green’s conjecture holds. They also recover and extend
to positive characteristics the results of Voisin asserting that Green’s conjecture holds
for generic curves of each gonality.

1. Introduction

One of the most influential open problems in the study of syzygies over the past 35 years, which
remains open to this day, is Green’s conjecture on canonical curves [Gre84, Conjecture 5.1]. It
asserts that for a smooth curve C of genus g in characteristic 0, the (non-)vanishing behavior
of the Koszul cohomology groups Kp,1(C, ωC), where ωC is the canonical bundle, detects the
Clifford index of C:

Ki,1(C, ωC) �= 0 ⇐⇒ i ≤ g − 1 − Cliff(C).
The implication ‘⇐=’ was proved by Green and Lazarsfeld in [Gre84, Appendix], and the converse
amounts by duality to showing that

Ki,2(C, ωC) = 0, for i < Cliff(C). (1.1)

It was soon realized that due to the semi-continuity property of syzygies, one can try to prove
generic versions of Green’s conjecture by constructing examples of curves that exhibit the
vanishing (1.1). Moreover, singular examples of such curves are good enough as long as they
are smoothable. Despite some appealing candidates being proposed over the years (such as
rational cuspidal curves, nodal curves, ribbons), the vanishing (1.1) for generic curves (where
Cliff(C) = �(g − 1)/2�) remained open until the tour de force by Voisin [Voi02, Voi05] that
used cohomology calculations on Hilbert schemes and the geometry of K3 surfaces. Voisin’s
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work shows (1.1) for a generic curve of any gonality d (where Cliff(C) = d − 2), extending ear-
lier results that were established in large genus: g > (d − 1) · (d − 2) in [Sch89], or g ≥ 3d + 2
in [Big02]. Building on [HR98, Voi05], Aprodu describes, inside each d-gonal stratum, explicit
loci where Green’s conjecture holds [Apr05].

More recently, a more elementary and algebraic approach using the theory of Koszul modules
has been used in [AFP+19] to prove (1.1) for rational cuspidal curves, fulfilling one of the early
proposals [Eis92, § 3.I] and recovering Green’s conjecture for generic curves. The main goal of
our paper is to extend the theory of Koszul modules to the bi-graded setting, and verify (1.1)
for rational ribbons, proving the canonical ribbon conjecture [BE95] and recovering Green’s
conjecture for generic curves in each gonality. We note that a proof of the canonical ribbon
conjecture that builds on Voisin’s work was obtained recently by Deopurkar [Deo18].

An important advantage of the approach via Koszul modules is that the methods carry over
to positive characteristic. As stated, Green’s conjecture was known to fail in small characteristic
even for generic curves, by work of Schreyer [Sch86], for instance in genus 7 and characteris-
tic 2. It is then natural to try to identify the appropriate characteristic assumptions to ensure
that Green’s conjecture remains valid (we note that Bopp and Schreyer have proposed a mod-
ification of the conjecture that is characteristic-free [BS21], but we will not pursue this here).
Eisenbud and Schreyer investigated this problem further in [ES19] and conjectured that (1.1)
should hold for generic curves in characteristic ≥ �(g − 1)/2�. Our results confirm this con-
jecture, and improve on the lower bound ≥ (g + 2)/2 from [AFP+19]. We also note that the
restrictions on the characteristic have a clean explanation in our approach, coming from the fact
that symmetric and divided powers are not isomorphic as functors in small characteristics.

We now formulate our results more precisely. Throughout this paper we work over an alge-
braically closed field k. We fix positive integers a, b, and let S(a, b) ⊂ P

a+b+1 denote the rational
normal scroll of type (a, b). By [GP97, Theorem 1.3] there is a unique double structure on S(a, b)
that is numerically a K3 surface; it is denoted X (a, b) and called a K3 carpet. Our interest in
the study of K3 carpets lies in the fact that their hyperplane sections are canonical ribbons of
genus g = a + b + 1 and Clifford index min(a, b), and as such they are degenerations of smooth
canonical curves with the same invariants (see [BE95, Fon93, EG95, ES19] and § 6). We will
prove the following theorem.

Theorem 1.2. Let R = k[Pg] and A = k[X (a, b)] denote the homogeneous coordinate rings of
P

g and X (a, b), respectively. If p = char(k) satisfies p = 0 or p ≥ min(a, b) then

TorR
i (A,k)i+2 = 0 for all i < min(a, b).

By passing to a hyperplane section (and assuming a ≤ b in the theorem above) we obtain
the following results.

Theorem 1.3 (Canonical ribbon conjecture). Let C be a rational ribbon of genus g and Clifford
index a. If p = char(k) satisfies p = 0 or p ≥ a then

Ki,2(C, ωC) = 0 for all i < a.

Corollary 1.4. Over a field k of characteristic p = 0 or p ≥ a, Green’s conjecture is true for
a non-empty Zariski open subset inside the locus of genus-g curves with Clifford index a.

Specializing to the case when the Clifford index is generic, a = �(g − 1)/2�, we confirm the
following conjecture of Eisenbud and Schreyer [ES19, Conjecture 0.1].

Theorem 1.5. Green’s conjecture is true for a general curve of genus g over a field k of
characteristic p = 0 or p ≥ �(g − 1)/2�.
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The main new idea in our paper is the introduction and use of bi-graded Koszul mod-
ules, which we explain next. In the singly-graded case, Koszul modules were introduced by
Papadima and Suciu in [PS15], and they have been used in [AFP+19] to prove the generic
Green’s conjecture via degeneration to cuspidal curves. It is the latter paper that constitutes
the inspiration for our work. The motivation of Papadima and Suciu for defining Koszul mod-
ules comes from geometric group theory, where various incarnations of these modules have
been used to great effect by Sullivan, Dimca, Papadima, Suciu, Hain and many others. In
this setting, a more familiar name for Koszul modules is infinitesimal Alexander invariants
[PS04, § 1.8]. For new applications in this context and a more extensive survey of the rel-
evant literature, the reader can consult [AFP+21]. Although we do not pursue this line of
thought here, it is reasonable to expect, and worthwhile to pursue, analogous applications in
geometric group theory for the algebraic results on bi-graded Koszul modules that we develop
here.

To recall the definition of the singly-graded Koszul modules, we consider a vector space V and
form the polynomial ring S = Sym(V ), endowed with the natural grading where the elements of
V have degree 1. For a subspace K ⊂ ∧2 V , we form the three-term complex

K ⊗ S −→ V ⊗ S −→ S, (1.6)

obtained by replacing
∧2 V ⊗ S in the Koszul complex with the submodule K ⊗ S. The

Koszul module W (V, K) is the middle homology of (1.6). It was shown in [PS15] that W (V, K) is
a finite-length module if and only if the orthogonal complement K⊥ ⊂ (

∧2 V )∨ does not contain
any non-zero decomposable tensors a ∧ b, with a, b ∈ V ∨ (equivalently, the projectivization of
K⊥ does not intersect the Grassmannian Gr(2, V ∨)). Thinking of (

∧2 V )∨ as the subspace of
skew-symmetric tensors in V ∨ ⊗ V ∨, the decomposable elements a ∧ b precisely correspond to
rank-2 tensors.

For the bi-graded setting, we assume that V comes with a decomposition V = V1 ⊕ V2, and
endow the polynomial ring S = Sym(V ) with the bi-grading where S1,0 = V1 and S0,1 = V2.
We regard V1 ⊗ V2 as the subspace of bi-degree (1, 1) elements in

∧2 V , and hence we can
regard any subspace K ⊂ V1 ⊗ V2 as a subset of

∧2 V and form the complex (1.6). The
resulting homology group W (V, K) is then naturally bi-graded, and we call it a bi-graded
Koszul module.

We are interested in the case when dim(Vi) ≥ 2, where the aforementioned results of
[PS15] imply that W (V, K) is never of finite length: indeed, if K ⊂ V1 ⊗ V2 then

∧2 V ∨
i ⊂ K⊥,

hence K⊥ contains decomposable elements. To generalize the results of [PS15], it is then
more convenient to reinterpret the condition that a singly-graded Koszul module W (V, K)
has finite length as saying that the associated coherent sheaf on projective space PV is 0.
For a bi-graded Koszul module, it is then appropriate to instead consider when the corre-
sponding coherent sheaf on the product of projective spaces PV1 × PV2 is 0. Algebraically, this
means that

Wd,e(V, K) = 0, for d, e � 0. (1.7)

Pleasantly, this condition is equivalent to requiring that the orthogonal complement K⊥ ⊂
(V1 ⊗ V2)∨ contains no non-zero tensors of rank ≤ 2 (see Proposition 3.5). By picking bases,
elements of (V1 ⊗ V2)∨ can be interpreted as matrices, and the rank of an element coin-
cides with the usual rank of a matrix. Geometrically, the projectivization of the locus of
rank ≤ 2 is the secant variety of the Segre embedding of PV1 × PV2, that is, the Zariski
closure of the union of all secant lines through any two points of the Segre embedding.
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Remarkably, in analogy with [AFP+19, Theorem 1.3] we can make the vanishing (1.7)
effective.

Theorem 1.8. Let p = char(k), ni = dim(Vi) ≥ 2, and suppose that p = 0 or p ≥ n1 + n2 − 3.
We have that

Wd,e(V, K) = 0 for d, e � 0 ⇐⇒ Wn2−2,n1−2(V, K) = 0.

The condition that K⊥ ⊂ (V1 ⊗ V2)∨ contains no non-zero tensors of rank ≤ 2 can only hold
when dim(K) ≥ 2(n1 + n2 − 2), which is one more than the dimension of the secant variety
of the Segre product PV1 × PV2. In analogy with [AFP+19, Theorem 1.4], in the border-
line case when dim(K) = 2(n1 + n2 − 2), we can determine an exact formula for the Hilbert
function in low bi-degrees for a module W (V, K) satisfying the conditions in Theorem 1.8
(see Theorem 3.3).

We now give a high-level overview of the strategy of proof of Theorem 1.2. If we let B
denote the homogeneous coordinate ring of the scroll S(a, b), then we have a short exact
sequence

0 → ωB → A → B → 0,

where ωB is the canonical module of B. The minimal free resolution of B is an Eagon–Northcott
complex, while the minimal free resolution of ωB is obtained by duality. In particular, we have
Tori(B,k)i+2 = 0, so to prove the desired vanishing of the Tor groups of A, we need to show, for
i < min(a, b), the surjectivity of the connecting homomorphisms

Tori+1(B,k)i+2 → Tori(ωB,k)i+2.

To write everything invariantly, we pick a two-dimensional vector space U and write P(U) for
the corresponding projective line. To keep everything correct in general, we will be careful to
distinguish between divided powers D and symmetric powers Sym; if k has characteristic 0, then
these are isomorphic to one another, so the reader may replace all instances of divided powers
D with symmetric powers Sym if that is their main scenario of interest. The map above takes
the form

Di U ⊗
i+2∧

(Syma−1 U ⊕ Symb−1 U) → Syma+b−2−i U ⊗
i∧

(Syma−1 U ⊕ Symb−1 U), (1.9)

where D is the divided power, Sym is the symmetric power, and
∧

is the exterior power. While
it is possible to give explicit formulas for this map, proving surjectivity from such a formula
is a difficult task (especially since it depends on the characteristic of the field). Instead, we
take a roundabout method that begins with Hermite reciprocity, which is an SL(U)-equivariant
isomorphism

Symd(Di U) =
i∧

(Symd+i−1 U),

described in [AFP+19, § 3.4]. If we decompose both sides of (1.9) using the identity

d∧
(E ⊕ F ) =

⊕
u+v=d

u∧
E ⊗

v∧
F, (1.10)
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then via Hermite reciprocity, the connecting homomorphism takes the form

⊕
u+v=i
u,v≥−1

Di U ⊗ Syma−u−1(Du+1 U) ⊗ Symb−v−1(Dv+1 U)

��⊕
u+v=i
u,v≥0

Syma+b−2−i U ⊗ Syma−u(Du U) ⊗ Symb−v(Dv U)

If we focus on a particular bi-degree (u, v) and sum over all a ≥ u and b ≥ v, then the domain
becomes Di U ⊗ Sym(Du+1 U ⊕ Dv+1 U), a free module over the bi-graded polynomial ring

S = Sym(Du+1 U ⊕ Dv+1 U), where S1,0 = Du+1 U and S0,1 = Dv+1 U.

Miraculously, the target can be given the structure of a finitely generated S-module, so that this
map is a module homomorphism, namely, it is the middle homology of a complex

Du+v+2 U ⊗ S −→ (Du+1 U ⊕ Dv+1 U) ⊗ S −→ S.

This identification is subtle and occupies a great deal of the paper! Since i = u + v, this leads to
a three-term complex of free S-modules

K ⊗ S −→ (Du+1 U ⊕ Dv+1 U) ⊗ S −→ S,

where K is some extension of Du+v U by Du+v+2 U (which is split if the characteristic of k is zero
or large). We denote the middle homology by W (u+1,v+1) and call it a bi-graded Weyman module
(see § 4, and [AFP+19, § 5.1] for the singly-graded case). In fact, this is an instance of a bi-graded
Koszul module with V1 = Du+1 U and V2 = Dv+1 U . Specializing Theorem 1.8 to this situation
gives the following theorem, which itself implies Theorem 1.2.

Theorem 1.11. If p = char(k) satisfies p = 0 or p > u + v then

W
(u,v)
d,e = 0 for d ≥ v, e ≥ u.

Finally, we note that in this situation, we have dim(K) = 2(dim(V1) + dim(V2) − 2); from
the previous discussion, we have a formula for the Hilbert function of W (u,v). Based on this, the
reader can deduce formulas for certain bi-graded components of the Tor-modules of A.

Organization
In § 2 we recall basic constructions in multilinear algebra, and discuss Hermite reciprocity.
Section 3 is concerned with the basic theory of bi-graded Koszul modules, and contains the proof
of the vanishing Theorem 1.8. In § 4 we discuss Weyman modules, showing that they satisfy the
hypothesis of the vanishing theorem and deriving Theorem 1.11. The relationship between the
syzygies of K3 carpets and Weyman modules is presented in § 5, while the geometric applications
are summarized in § 6.

2. Preliminaries

In this section we collect some basic facts and notation regarding multilinear algebra, and recall
some useful aspects of Hermite reciprocity following [AFP+19].
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2.1 Multilinear algebra
Let E be a vector space. The tensor power E⊗d has an action of the symmetric group Sd via
permuting tensor factors. The divided power Dd E is the invariant subspace and the symmetric
power Symd E is the space of coinvariants. In formulas:

Dd E = {x ∈ E⊗d | σ(x) = x for all σ ∈ Sd},
Symd E = E⊗d/{x − σ(x) | σ ∈ Sd, x ∈ U⊗d}.

There is a natural isomorphism

(Dd E)∨=Symd(E∨).

If d! is non-zero in k, and in particular if char(k) = 0, then the composition Dd E → E⊗d →
Symd E is an isomorphism with inverse Symd E ∼= Dd E given by x �→ (1/d!)

∑
σ∈Sd

σ(x).
The exterior powers

∧d E are the skew-invariants of E⊗d, that is,

d∧
E = {x ∈ E⊗d | σ(x) = sgn(σ)x for all σ ∈ Sd}.

For e1, . . . , ed ∈ E, we use the notation

e1 ∧ · · · ∧ ed =
∑

σ∈Sd

sgn(σ)eσ(1) ⊗ · · · ⊗ eσ(d) ∈
d∧

E

and e1 · · · ed to denote the image of e1 ⊗ · · · ⊗ ed in Symd E.
For Dd E, and d1 + · · · + dr = d, we use e

(d1)
1 · · · e(dr)

r to denote the sum over the orbit of
e⊗d1
1 ⊗ · · · ⊗ e⊗dr

r in E⊗d. For u, v ≥ 0, we define comultiplication maps

Δu,v : Du+v E → Du E ⊗ Dv E

which are the linear duals of the multiplication maps

Symu(E∨) ⊗ Symv(E∨) → Symu+v(E∨).

Since multiplication is associative, comultiplication is coassociative, that is, we have (1 ⊗ Δv,w) ◦
Δu,v+w = (Δu,v ⊗ 1) ◦ Δu+v,w as maps Du+v+w E → Du E ⊗ Dv E ⊗ Dw E.

Similarly, we also define comultiplication maps

Δu,v :
u+v∧

E →
u∧

E ⊗
v∧

E

as the linear duals of the multiplication maps
u∧

(E∨) ⊗
v∧

(E∨) →
u+v∧

(E∨).

Again, this comultiplication is coassociative.

2.2 Hermite reciprocity
We let U be a two-dimensional k-vector space, and use SL(U) to denote the group of linear
operators on U with determinant 1. We fix a basis {1, x} for U which gives an identification∧2 U � k via 1 ∧ x �→ 1, and we use this to identify U � U∨. Hermite reciprocity is an SL(U)-
equivariant isomorphism

Symd(Di U) =
i∧

(Symd+i−1 U).
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We will not make use of the explicit form of this isomorphism, but the reader can see
[AFP+19, § 3.4] for details. Under Hermite reciprocity, the multiplication map

Dd U ⊗ Syme−d+1(Dd U) → Syme−d+2(Dd U)

takes the form

ν : Dd U ⊗
d∧

(Syme U) →
d∧

(Syme+1 U).

See [AFP+19, Eq. (43) and Proof of Lemma 3.3] for a formula for ν.

Proposition 2.1. The following square commutes:

Dd U ⊗∧d(Syme U)
ν ��

��

∧d(Syme+1 U)

��

Dd−1 U ⊗∧d−1(Syme U) ⊗ Syme+1 U
ν⊗1

�� ∧d−1(Syme+1 U) ⊗ Syme+1 U

where the left map is comultiplication on both factors followed by multiplication, and the right
map is exterior comultiplication.

Proof. See [AFP+19, Proposition 5.9]. �

3. Bi-graded Koszul modules

In this section we generalize the notion of Koszul modules to the bi-graded setting, and study the
natural analogue of finite-length modules (see [PS15, AFP+21]). We show that these modules
satisfy a strong vanishing theorem, and we give a sharp upper bound for their bi-graded Hilbert
function (our results parallel [AFP+19, Theorems 1.3 and 1.4]). We let V1, V2 denote finite-
dimensional k-vector spaces, and let V = V1 ⊕ V2. We write ni = dim(Vi), assume that ni ≥ 2,
and let n = n1 + n2. We consider a subspace K ⊆ V1 ⊗ V2 and let m = dim(K). We have a
decomposition

2∧
V =

2∧
V1 ⊕ (V1 ⊗ V2) ⊕

2∧
V2,

which allows us to think of K as a subspace of
∧2 V . We consider the symmetric algebra S =

Sym(V ) and define the Koszul module W (V, K) to be the middle homology of the three-term
complex

K ⊗ S
δ2|K⊗S

�� V ⊗ S
δ1 �� S (3.1)

where δ1, δ2 are Koszul differentials.
We consider S as a bi-graded polynomial ring where the elements of V1 have degree (1, 0),

and those of V2 have degree (0, 1). The bi-degree (d, e) component is

Sd,e = Symd(V1) ⊗ Syme(V2).

The Koszul module W (V, K) inherits a natural bi-grading, where the bi-degree (d, e) component
is the homology of

K ⊗ Sd,e −→ V1 ⊗ Sd,e+1 ⊕ V2 ⊗ Sd+1,e −→ Sd+1,e+1.
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We are interested in understanding the vanishing behavior of Wd,e(V, K). We note that W (V, K)
is generated in bi-degree (0, 0), so if Wd0,e0(V, K) = 0 for some (d0, e0) then Wd,e(V, K) = 0 for
all (d, e) with d ≥ d0, e ≥ e0.

Theorem 3.2. Let p = char(k) and suppose that p = 0 or p ≥ n − 3. We have that

Wd,e(V, K) = 0 for d, e � 0 ⇐⇒ Wn2−2,n1−2(V, K) = 0.

As explained in Remark 3.6 below, the equivalent conditions in Theorem 3.2 can only be
true when m ≥ 2n − 4. If we further assume that m = 2n − 4 then we get an exact formula
for the Hilbert function of W (V, K) in low bi-degrees, as follows (compare with [AFP+19,
Theorem 1.4]).

Theorem 3.3. With the assumptions in Theorem 3.2, suppose that Wn2−2,n1−2(V, K) = 0. If
we let Δ1 = n1 − 2 − e and Δ2 = n2 − 2 − d, then we have for all d ≤ n2 − 2 and e ≤ n1 − 2 that

dim(Wd,e(V, K))

≤ 2 ·
(

d + n1 − 1
d

)
·
(

e + n2 − 1
e

)
·
(
n1−1

2

) · Δ2 +
(
n2−1

2

) · Δ1 − (n − 3) · Δ1 · Δ2

(d + 1) · (e + 1)
.

Moreover, equality holds when m = 2n − 4.

To understand geometrically the asymptotic vanishing property of the bi-graded components
of W (V, K), we consider the associated Koszul sheaf on P = PV1 × PV2, denoted by W(V, K),
and defined as the middle homology of

K ⊗OP
α−→ V1 ⊗OP(0, 1) ⊕ V2 ⊗OP(1, 0)

β−→ OP(1, 1). (3.4a)

In what follows, we let G = ker(β), so it fits into the short exact sequence

0 −→ G −→ V1 ⊗OP(0, 1) ⊕ V2 ⊗OP(1, 0) −→ OP(1, 1) −→ 0. (3.4b)

Note that G is locally free since β is surjective.
We have that Wd,e(V, K) = H0(P,W(V, K) ⊗OP(d, e)) for d, e � 0, and in particular the

vanishing holds asymptotically if and only if W(V, K) is the zero sheaf. To characterize this
condition, we define the orthogonal complement of K to be

K⊥ = {φ ∈ V ∨
1 ⊗ V ∨

2 : φ|K = 0}
and prove the following proposition.

Proposition 3.5. We have that W(V, K) = 0 if and only if K⊥ contains no non-zero tensors
of rank at most 2.

Proof. The condition W(V, K) = 0 is equivalent to the exactness of (3.4a) in the middle, which in
turn is equivalent to the surjectivity of the induced map α : K ⊗OP −→ G. This can be checked
fiber by fiber, and since G is locally free, the middle exactness of (3.4a) can also be checked fiber
by fiber. Fix a k-point p = ([f1], [f2]) ∈ P, with fi ∈ V ∨

i , and restrict (3.4a). We get a complex
of vector spaces

K
αp−→ V1 ⊕ V2

f1⊕f2−→ k,

which is exact if and only if the dual complex

k
(f1,f2)−→ V ∨

1 ⊕ V ∨
2

α∨
p−→ K∨
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is exact. Writing V ∨ = V ∨
1 ⊕ V ∨

2 and f = (f1, f2), we observe that the map α∨
p is obtained as

the composition

V ∨ ∧f−→
2∧

V ∨ � K∨, (3.5a)

where the second map is the dual projection to the inclusion K ⊂ ∧2 V , and therefore has kernel
equal to

∧2 V ∨
1 ⊕ K⊥ ⊕∧2 V ∨

2 . It follows that (3.5a) fails to be exact if and only if one can
find g = (g1, g2) ∈ V ∨ which is not a multiple of f and such that f ∧ g ∈ ∧2 V ∨

1 ⊕ K⊥ ⊕∧2 V ∨
2 .

Since
f ∧ g = (f1 ∧ g1, f1 ⊗ g2 − g1 ⊗ f2, f2 ∧ g2),

we get that (3.5a) fails to be exact if and only if K⊥ contains a non-zero tensor f1 ⊗ g2 − g1 ⊗ f2

of rank at most 2. �
Remark 3.6. Note that K⊥ defines a linear space H of codimension m in P(V1 ⊗ V2), which
in turn is the ambient space of the Segre embedding X of PV1 × PV2. The condition in
Proposition 3.5 is then equivalent to the fact that H is disjoint from Sec(X), the variety of secant
lines to X. Since dim(Sec(X)) = 2n − 5, this is only possible when m ≥ 2n − 4. Moreover, if H
is generic of codimension m = 2n − 4 then H ∩ Sec(X) = ∅.
Lemma 3.7. For r = 0, . . . , n − 4 we have that Symr(G∨) ⊗OP(−1,−1) has no non-zero
cohomology groups.

Proof. Dualizing (3.4b) and taking symmetric powers, we get a short exact sequence

0−→Symr−1(V)⊗OP(−2,−2) −→ Symr(V) ⊗OP(−1,−1) −→ Symr(G∨)⊗OP(−1,−1) −→ 0,

where
V = V ∨

1 ⊗OP(0,−1) ⊕ V ∨
2 ⊗OP(−1, 0).

It is then enough to check that the sheaves Symr(V) ⊗OP(−1,−1) and Symr−1(V) ⊗OP(−2,−2)
have no non-zero cohomology groups.

First note that Symr(V) ⊗OP(−1,−1) decomposes as a direct sum of OP(i, j) with i, j < 0
and i + j = −r − 2 ≥ −n + 2, while Symr−1(V) ⊗OP(−2,−2) decomposes as a direct sum of
OP(i, j) with i, j < 0 and i + j = (−r + 1) − 4 ≥ −n + 1.

Next, the condition i + j ≥ −n + 1 implies that either i ≥ −n1 + 1 or j ≥ −n2 + 1, so at least
one of OPV1(i) or OPV2(j) has no non-zero cohomology groups and so OP(i, j) has no non-zero
cohomology groups by Künneth’s formula. �

In the next proof we will need the Buchsbaum–Rim complex, for which we now recall the
important details. Let X be a scheme and α : E → F be a morphism of locally free sheaves on
X with rank(E) = e and rank(F ) = f (and e ≥ f). The Buchsbaum–Rim complex B(α)• of α
has terms

B(α)0 = F,

B(α)1 = E,

B(α)r =
r+f−1∧

E ⊗ det(F∨) ⊗ Dr−2(F∨) for r = 2, . . . , e − f + 1,

and the differential B(α)1 → B(α)0 is α (this is the complex C1 in [Eis95, § A2.6] where it is
treated in the local setting – the terms det(F∨), which are omitted there, are necessary to
globalize this construction). This is exact in positive degrees if the ideal sheaf of maximal minors
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of α has depth ≥ e − f + 1, with the convention that the unit ideal has infinite depth (exactness
can be checked locally, in which case it follows from [Eis95, Theorem A2.10]). In our application
below, X = P and α is surjective, and hence the ideal sheaf of maximal minors is the unit ideal.

Proof of Theorem 3.2. The implication ‘⇐’ follows from the fact that W (V, K) is generated in
bi-degree (0, 0). To prove ‘⇒’, we first reduce to the case m = 2n − 4. As remarked earlier, the
vanishing Wd,e(V, K) = 0 for d, e � 0 is equivalent to W(V, K) = 0, which is further equivalent
to the fact that the linear space H ⊆ P(V1 ⊗ V2) corresponding to K⊥ is disjoint from Sec(X).
Assuming that this condition is satisfied, a generic choice of a linear space H ′ ⊇ H of codimension
2n − 4 will still have the property that H ′ ∩ Sec(X) = ∅, so it gives a bi-graded Koszul module
W (V, K ′) with K ′ ⊆ K and dim(K ′) = 2n − 4. The inclusion K ′ ⊆ K induces a natural surjec-
tion W (V, K ′) � W (V, K), so a vanishing for W (V, K ′) will imply the corresponding vanishing
for W (V, K).

We assume that m = 2n − 4 and let G = ker(β) as in the proof of Proposition 3.5. Since
W(V, K) = 0, we have that the map α : K ⊗OP −→ G is surjective, so it gives an exact
Buchsbaum–Rim complex B• with

B0 = G,

B1 = K ⊗OP,

Br =
n+r−2∧

K ⊗ det
(G∨)⊗ Dr−2

(G∨) for r = 2, . . . , n − 2.

The condition Wn2−2,n1−2(V, K) = 0 is equivalent to the fact that after twisting by OP(n2 − 2,
n1 − 2), the induced map on global sections

H0(P,B1(n2 − 2, n1 − 2)) −→ H0(P,B0(n2 − 2, n1 − 2)) (3.8)

is surjective. Since B•(n2 − 2, n1 − 2) is an exact complex, its hypercohomology groups are all
zero. Using the hypercohomology spectral sequence, in order to prove the surjectivity of (3.8) it
suffices to check that the sheaves Br(n2 − 2, n1 − 2) have no cohomology (in fact, it is enough
that Hr−1(P,Br(n2 − 2, n1 − 2)) = 0) for r = 2, . . . , n − 2.

Since 0 ≤ r − 2 ≤ n − 4, it follows from our hypothesis that p = 0 or p > r − 2, thus
Dr−2(G∨) = Symr−2(G∨). Moreover, we have that det(G∨) = OP(−n2 + 1,−n1 + 1), so

Br(n2 − 2, n1 − 2) =
n+r−2∧

K ⊗OP(−1,−1) ⊗ Symr−2
(G∨), for r = 2, . . . , n − 2.

The desired vanishing now follows from Lemma 3.7. �
Proof of Theorem 3.3. Using the projection argument from the proof of Theorem 3.2, it suffices
to consider the case when m = 2n − 4 and show that we get an exact formula for dim(Wd,e(V, K))
in the given range. Restricting (3.1) to bi-degree (d, e), we get a complex

K ⊗ Sd,e
αd,e−→ V1 ⊗ Sd,e+1 ⊕ V2 ⊗ Sd+1,e

βd,e−→ Sd+1,e+1

whose middle homology is Wd,e(V, K). We get that dim(Wd,e(V, K)) ≥ χd,e, where

χd,e = dim
(
V1 ⊗ Sd,e+1 ⊕ V2 ⊗ Sd+1,e

)− dim(Sd+1,e+1) − dim(K ⊗ Sd,e)

is the Euler characteristic of the above complex. Moreover, since βd,e is surjective, we have that
dim(Wd,e(V, K)) = χd,e if and only if αd,e is injective. A direct calculation shows that

χd,e = 2 ·
(

d + n1 − 1
d

)
·
(

e + n2 − 1
e

)
·
(
n1−1

2

) · Δ2 +
(
n2−1

2

) · Δ1 − (n − 3) · Δ1 · Δ2

(d + 1) · (e + 1)
,
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so to prove Theorem 3.3 it suffices to show that αd,e is injective for d ≤ n2 − 2, e ≤ n1 − 2.
Since αd,e is a homogeneous component of a map of free modules, we have that if αd0,e0 is
injective then αd,e is also injective for all d ≤ d0 and e ≤ e0. It is then enough to prove that
αn2−2,n1−2 is injective. Notice that for d = n2 − 2 and e = n1 − 2, we have Δ1 = Δ2 = 0, so
χn2−2,n1−2 = 0. Moreover, we know by Theorem 3.2 that Wn2−2,n1−2(V, K) = 0, so αn2−2,n1−2 is
injective. �

4. Bi-graded Weyman modules

The fundamental connection described in [AFP+19] between (standard graded) Koszul modules
and syzygies goes through Weyman modules. We define their analogues in the bi-graded setting,
and show that they satisfy (in most characteristics) the hypothesis of Theorem 3.2.

For i, j ≥ 0 we consider the surjective multiplication map

μu,v : Symu U ⊗ Symv U −→ Symu+v U.

The kernel of μu,v is naturally identified with Symu−1 U ⊗ Symv−1 U via the inclusion

ιu,v : Symu−1 U ⊗ Symv−1 U → Symu U ⊗ Symv U

f ⊗ g �→ f ⊗ xg − xf ⊗ g.

More generally, for t ≤ u, v the composition ιtu,v = ιu,v ◦ ιu−1,v−1 ◦ · · · ◦ ιu−t+1,v−t+1 is given by

f ⊗ g �→
t∑

i=0

(−1)i

(
t

i

)
· xif ⊗ xt−ig.

We let

Qu,v = Coker(ιu,v ◦ ιu−1,v−1),

which gives a short exact sequence

0 −→ Symu−2 U ⊗ Symv−2 U −→ Symu U ⊗ Symv U
Ψu,v−→ Qu,v −→ 0.

In characteristic 0 (or sufficiently large characteristic), one has an SL(U)-equivariant decompo-
sition Qu,v � Symu+v U ⊕ Symu+v−2 U , but in general we only have an extension

0 −→ Symu+v−2 U −→ Qu,v −→ Symu+v U −→ 0. (4.1)

Remark 4.2. If char(k) = p > 0 then
(
p
i

)
= 0 in k for 0 < i < p, and thus for u, v ≥ p we have

ιpu,v(f ⊗ g) = f ⊗ xpg − xpf ⊗ g.

Since Im(ιpu,v) ⊂ Im(ι2u,v) = ker(Ψu,v), this shows that ker(Ψu,v) contains rank-2 tensors. We will
show that this is no longer the case when p > min(u, v).

We let Vi = (Symni−1 U)∨ = Dni−1 U , and let K = Q∨
n1−1,n2−1, considered as a subspace of

V1 ⊗ V2 via the inclusion Ψ∨
n1−1,n2−1. We note that

dim(Vi) = ni and dim(K) = 2n − 4.

We define the bi-graded Weyman module W (n1−1,n2−1) := W (V, K).

Proposition 4.3. Let p = char(k) and suppose that p = 0 or that p > min(u, v). Then
ker(Ψu,v) contains no non-zero tensors of rank at most 2.
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Proof. We assume without loss of generality that u ≤ v, identify as usual Symd U with polyno-
mials of degree ≤ d in x, and consider the derivation ∂ = ∂/∂x : k(x) −→ k(x). We note that
ker(Ψu,v) = Im(ι2u,v) is generated by elements of the form

ι2u,v(x
a ⊗ xb) = xa ⊗ xb+2 − 2xa+1 ⊗ xb+1 + xa+2 ⊗ xb,

which are both in ker(μu,v) and in the kernel of the composition

Symu U ⊗ Symv U
∂⊗id

��

Φ

��
Symu−1 U ⊗ Symv U

μu−1,v
�� Symu+v−1 U

Suppose now that T ∈ ker(Ψu,v) is a non-zero tensor of rank at most 2. If T = f ⊗ g, then
0 = μu,v(T ) = fg, which forces either f = 0 or g = 0, contradicting the fact that T �= 0. We may
therefore assume that

T = f1 ⊗ g1 + f2 ⊗ g2, f1, f2 ∈ Symu U are not proportional, and T ∈ ker(μu,v) ∩ ker(Φ).

Using the fact that 0 = μu,v(T ) = f1g1 + f2g2, we get

∂

(
f1

f2

)
=

(∂f1)f2 − (∂f2)f1

f2
2

=
[
(∂f1)g1 + (∂f2)g2

] 1
f2g1

=
Φ(T )
f2g1

= 0.

Since ker(∂) = k(xp), we conclude that f1/f2 ∈ k(xp). By our hypothesis, we have that p = 0 or
p > u, which in turn forces f1/f2 ∈ k, contradicting the fact that f1, f2 were not proportional. �

It follows from Proposition 4.3 that if p = 0 or p ≥ min(n1, n2) then Proposition 3.5 applies
to the bi-graded Weyman module W (n1−1,n2−1). Using Theorem 3.2, we obtain the following
corollary.

Corollary 4.4. If n1, n2 ≥ 2 and p = char(k) satisfies p = 0 or p ≥ n1 + n2 − 3 then

W
(n1−1,n2−1)
d,e = 0 for d ≥ n2 − 2, e ≥ n1 − 2.

5. Syzygies of K3 carpets

Fix positive integers a, b. In this section we study the syzygies of the K3 carpet X (a, b), obtained
as a double structure on a rational normal scroll of type (a, b). We show that via Hermite
reciprocity, these syzygies can be built from components of bi-graded Weyman modules. Using
Corollary 4.4, this yields a vanishing result for syzygies of K3 carpets that was conjectured by
Eisenbud and Schreyer in [ES19].

5.1 Rational normal scrolls
Let

S(a, b) ⊆ P(Syma U ⊕ Symb U) � Pa+b+1

denote the rational normal scroll of type (a, b). It is abstractly isomorphic to the projective
bundle PPU (E), where E = E1 ⊕ E2, E1 = OPU (a), E2 = OPU (b). Let B denote the homogeneous
coordinate ring of the scroll, which is naturally bi-graded with

Bd,e = H0(PU, Symd(E1) ⊗ Syme(E2)) = Symda+eb U.

We let
R = Sym(Syma U ⊕ Symb U)
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denote the homogeneous coordinate ring of the ambient projective space, with its natural
bi-grading. We have that B = R/I, where I is the ideal of the scroll, generated by

2∧
U ⊗

2∧
(Syma−1 U ⊕ Symb−1 U) ⊂ R1,1.

More explicitly, the multiplication map

U ⊗ (Syma−1 U ⊕ Symb−1 U) → Syma U ⊕ Symb U

can be represented as a 2 × (a + b) matrix whose entries are the linear forms in R, and I is
generated by the 2 × 2 minors of this matrix. In particular, it is resolved by an Eagon–Northcott
complex and so

Tori(B,k)i+1 = Di−1 U ⊗
i+1∧

(Syma−1 U ⊕ Symb−1 U), 1 ≤ i ≤ a + b − 1. (5.1)

The canonical module ωB of B is identified with H0(PU, ωPU ⊗ det(E) ⊗ Sym(E)), with
bi-grading

(ωB)d,e = H0(PU, ωPU ⊗ det(E) ⊗ Symd−1(E1) ⊗ Syme−1(E2)),

and in particular it is generated in bi-degree (1, 1) by (ωB)1,1 = Syma+b−2 U . Dualizing (5.1) and
taking into account the bi-grading gives (with u + v = i)

TorR
i (ωB,k)u+1,v+1 = Syma+b−2−u−v U ⊗

u∧
(Syma−1 U) ⊗

v∧
(Symb−1 U). (5.2)

We have a surjective map φ : I −→ ωB, which at the level of generators is given by a map

I2,0 ⊕ I1,1 ⊕ I0,2
∧2(Syma−1 U) ⊕ (Syma−1 U ⊗ Symb−1 U) ⊕∧2(Symb−1 U)

φ1,1

��
(ωB)1,1 Syma+b−2 U

where φ1,1 sends
∧2(Syma−1 U) and

∧2(Symb−1 U) to zero, and it is described on Syma−1 U ⊗
Symb−1 U by the natural multiplication map. We let A denote the coordinate ring of the
associated K3 carpet X (a, b), which is obtained as an R-module extension

0 −→ ωB −→ A −→ B −→ 0 (5.3)

induced by φ ∈ HomR(I, ωB) = Ext1R(B, ωB).
For the next result, we collapse the bi-grading on A to a single grading by An =

⊕
i+j=n Ai,j .

Proposition 5.4. The Hilbert series of A is∑
n≥0

(dimAn)tn =
1 + (a + b − 1)t + (a + b − 1)t2 + t3

(1 − t)3
.

Proof. The Hilbert series of A is a sum of the Hilbert series of B and ωB, so we calculate each
separately. We have Bi,j = Symia+jb U , so dim Bi,j = ia + jb + 1, and hence

dimBn =
n∑

i=0

(ia + (n − i)b + 1) =
n(n + 1)

2
(a + b) + n + 1.
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Next, we have (ωB)i,j = Symia+jb−2 U for i, j ≥ 1 and 0 otherwise, and in particular,

dim(ωB)n =
n−1∑
i=1

(ia + (n − i)b − 1) =
n(n − 1)

2
(a + b) − n + 1 (n ≥ 1).

So

dim A0 = 1, dimAn = n2(a + b) + 2 (n ≥ 1),

and ∑
n≥0

(dimAn)tn =
(a + b)t(t + 1)

(1 − t)3
+

2
1 − t

− 1 =
1 + (a + b − 1)t + (a + b − 1)t2 + t3

(1 − t)3
. �

5.2 The main result
One has that A is Gorenstein with Castelnuovo–Mumford regularity 3, and it is conjectured in
[ES19] that

TorR
i (A,k)i+2 = 0, for i < min(a, b),

provided that p = char(k) satisfies p = 0 or p ≥ min(a, b). We prove this conjecture as a conse-
quence of our basic results on bi-graded Koszul modules. More precisely, we show the following
theorem.

Theorem 5.5. Consider non-negative integers u, v ≥ 0 with u + v = i. We have that

TorR
i (A,k)u+1,v+1 � W

(u+1,v+1)
a−1−u,b−1−v.

In particular, if p = char(k) satisfies p = 0 or p ≥ min(a, b) and if i < min(a, b) then

TorR
i (A,k)i+2 = 0.

To prove the first part of the theorem, we note that (5.3) induces an exact sequence

· · · −→ TorR
i+1(B,k)i+2 −→ TorR

i (ωB,k)i+2 −→ TorR
i (A,k)i+2 −→ TorR

i (B,k)i+2 −→ · · · .
Since TorR

i (B,k)i+2 = 0 for all i, and TorR
i+1(B,k)i+2 = TorR

i (I,k)i+2, it follows that

TorR
i (A,k)i+2 = Coker

(
TorR

i (I,k)i+2 −→ TorR
i (ωB,k)i+2

)
,

where the maps are induced by the surjection I � ωB described earlier.

Proposition 5.6. We have

TorR
i (I,k)u+1,v+1 = Du+v U ⊗ Syma−1−u(Du+1 U) ⊗ Symb−1−v(Dv+1 U).

Proof. Using (5.1), we have

TorR
i (I,k)u+1,v+1 = Du+v U ⊗

u+1∧
(Syma−1 U) ⊗

v+1∧
(Symb−1 U)

so the identification follows abstractly from Hermite reciprocity. �

Define

S (u, v) = Sym(Du+1 U ⊕ Dv+1 U),

M (u, v) =
⊕

d+e≥2

Symd+e−2 U ⊗ Symd(Du U) ⊗ Syme(Dv U).
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For simplicity, we will also write S for S (u, v). Both have bi-gradings via

Sd,e = Symd(Du+1 U) ⊗ Syme(Dv+1 U),

M (u, v)d,e = Symd+e−2 U ⊗ Symd(Du U) ⊗ Syme(Dv U).

We will see in the proof of the next result that M (u, v) can be given the structure of a finitely
generated S-module.

Proposition 5.7. TorR
i (ωB,k)u+1,v+1 = Wa−1−u,b−1−v(V, K), where V = Du+1 U ⊕ Dv+1 U

and K = Du+v+2 U .

Proof. Apply Hermite reciprocity to (5.2) to get

TorR
i (ωB,k)u+1,v+1 = Syma+b−2−u−v U ⊗ Syma−u(Du U) ⊗ Symb−v(Dv U).

We have a short exact sequence of vector bundles over P(U):

0 → O(−u − 1) ⊕O(−v − 1) → Du+1 U ⊕ Dv+1 U → (Du U)(1) ⊕ (Dv U)(1) → 0.

Using [Wey03, § 5], we have a minimal complex F• with terms

Fi =
⊕
j≥0

Hj

(
PU,

i+j∧
(O(−u − 1) ⊕O(−v − 1)) ⊗O(−2)

)
⊗ S(−i − j)

whose homology is

H0(F•) = H0(P(U); Sym((Du U)(1) ⊕ (Dv U)(1)) ⊗O(−2)) = M (u, v),

H−1(F•) = H1(P(U); Sym((Du U)(1) ⊕ (Dv U)(1)) ⊗O(−2)) = k.

Here we treat the terms as singly-graded modules, though they can be made bi-graded by setting
deg(Du+1 U) = (1, 0) and deg(Dv+1 U) = (0, 1). Explicitly, the terms are

F−1 = S,

F0 = (Du+1 U ⊗ S(−1, 0)) ⊕ (Dv+1 U ⊗ S(0,−1)),

F1 = Du+v+2 U ⊗ S(−1,−1).

Hence M (u, v) is realized as a bi-graded Koszul module with K = Du+v+2 U , V1 = Du+1 U , and
V2 = Dv+1 U , and so

TorR
i (ωB,k)u+1,v+1 = M (u, v)a−u,b−v = Wa−1−u,b−1−v(V, K). �

Using the dual of (4.1), we can form the Weyman module W (u+1,v+1) = W (V, Q∨
u+1,v+1) in

two steps. We first use the subspace K = Du+v+2 U ⊂ Q∨
u+1,v+1 and form the Koszul module

W (V, K) in part (2). Then there is a natural map

Du+v U ⊗ S(−1,−1) −→ W (V, K) (5.8)

induced by the identification Du+v U � Q∨
u+1,v+1/K, and the cokernel of this map is by definition

W (V, Q∨
u+1,v+1) = W (u+1,v+1).
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5.3 Some complexes
Make the following definitions:

A (u, v) = Du+v+2 U ⊗ S(−1,−1) (u, v ≥ −1),

B(u, v) = Du+1 U ⊗ Dv+1 U ⊗ S(−1,−1) (u, v ≥ −1),

C ′(u, v) = Du U ⊗ Dv U ⊗ S(−1,−1) (u, v ≥ 0),

C (u, v) = Du−1 U ⊗ Dv−1 U ⊗ S(−1,−1) (u, v ≥ 1),

D1(u, v) = Du+1 U ⊗ S(−1, 0) (u ≥ −1),

D2(u, v) = Dv+1 U ⊗ S(0,−1) (v ≥ −1),

D(u, v) = D1(u, v) ⊕ D2(u, v) (u, v ≥ −1),

N (u, v) = Du+v U ⊗ S(−1,−1) (u, v ≥ 0).

The map (5.8) is the middle homology of the following map between three-term complexes.

C (u, v)
0 �� S (u, v)

B(u, v) ��

(ιu,v◦ιu+1,v+1)∗
��

D(u, v)

��

A (u, v)
id ��

μ∗
u+1,v+1

��

A (u, v)

��
(5.9)

The right-hand side is just the complex computing W (V, K), and the middle horizontal map
comes from the inclusion

Du+1 U ⊗ Dv+1 U →
2∧

(Du+1 U ⊕ Dv+1 U) → (Du+1 U ⊕ Dv+1 U)⊗2.

Let Z be one of the symbols A , B, C ′, C , D , S . We construct a double complex1 Φ(Z) of free
R-modules with terms

Φ(Z)u,v = Z(u, v)a−u,b−v ⊗ R.

We will now describe the differentials, which on generators take the form

Z(u, v)a−u,b−v → Z(u − 1, v)a−u+1,b−v ⊗ Syma U,

Z(u, v)a−u,b−v → Z(u, v − 1)a−u,b−v+1 ⊗ Symb U.

We call the first map the ‘u-component’ and the second map the ‘v-component’.
For the cases Z ∈ {A , B, C ′, C }, we can write Z(u, v) as GZ(u, v) ⊗ S(−1,−1). In each of

these cases, we have two maps

GZ(u, v) → GZ(u − 1, v) ⊗ U,

GZ(u, v) → GZ(u, v − 1) ⊗ U

via comultiplication. We will describe the differentials in terms of these maps for these cases.

1 Our differentials will only be correct up to a sign. Choosing a sign convention is a purely formal matter which
we will ignore in favor of readability.
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The u-component takes the form

GZ(u, v) ⊗ Syma−u−1(Du+1 U) ⊗ Symb−v−1(Dv+1 U)

��

GZ(u − 1, v) ⊗ Syma−u(Du U) ⊗ Symb−v−1(Dv+1 U) ⊗ Syma U

Applying Hermite reciprocity, this becomes

GZ(u, v) ⊗
u+1∧

(Syma−1 U) ⊗
v+1∧

(Symb−1 U)

��

GZ(u − 1, v) ⊗
u∧

(Syma−1 U) ⊗
v+1∧

(Symb−1 U) ⊗ Syma U

To define this map, we use the comultiplication maps

GZ(u, v) → GZ(u − 1, v) ⊗ U,

u+1∧
(Syma−1 U) →

u∧
(Syma−1 U) ⊗ Syma−1 U

and then apply multiplication on the last two factors to get the factor Syma U . The v-component
is defined in a completely analogous way.

Now consider Z = D1. The u-component takes the form

Du+1 U ⊗ Syma−u−1(Du+1 U) ⊗ Symb−v(Dv+1 U)

��

Du U ⊗ Syma−u(Du U) ⊗ Symb−v(Dv+1 U) ⊗ Syma U

Applying Hermite reciprocity, this maps takes the form

Du+1 U ⊗
u+1∧

(Syma−1 U) ⊗
v+1∧

(Symb U)

��

Du U ⊗
u∧

(Syma−1 U) ⊗
v+1∧

(Symb U) ⊗ Syma U

This is defined as before: we use the comultiplication maps

Du+1 U → Du U ⊗ U

u+1∧
(Syma−1 U) →

u∧
(Syma−1 U) ⊗ Syma−1 U
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and multiply the last factors together. Under Hermite reciprocity, the v-component takes the
form

Du+1 U ⊗
u+1∧

(Syma−1 U) ⊗
v+1∧

(Symb U)

��

Du+1 U ⊗
u+1∧

(Syma−1 U) ⊗
v∧

(Symb U) ⊗ Symb U

This is obtained by simply using the comultiplication map on the last exterior power factor. The
definitions for D2 are completely analogous, so we will omit the details.

Now consider Z = S . The u-component takes the form (the horizontal equalities are Hermite
reciprocity)

Syma−u(Du+1 U) ⊗ Symb−v(Dv+1 U)

��

∧u+1(Syma U) ⊗∧v+1(Symb U)

��

Syma−u+1(Du U) ⊗ Symb−v(Dv+1 U) ⊗ Syma U
∧u(Syma U) ⊗∧v+1(Symb U) ⊗ Syma U

The right vertical map is defined using exterior comultiplication.

5.4 Maps between the complexes
Applying Φ to (5.9), we get the following diagram.

Φ(C )
0 �� Φ(S )

Φ(B) ��

Φ(ι)

��

Φ(D)

��

Φ(A )
id ��

Φ(μ)

��

Φ(A )

��

Proposition 5.10. All of the maps above are morphisms of double complexes.

Proof. For the map Φ(A ) → Φ(B), compatibility in the u-direction amounts to the commu-
tativity of the following diagram, which follows from coassociativity of the divided power
comultiplication:

Du+v+2 U ��

��

Du+1 U ⊗ Dv+1 U

��

Du+v+1 U ⊗ U �� Du U ⊗ U ⊗ Dv+1 U

Compatibility in the v-direction is analogous. The map Φ(A ) → Φ(D) is analogous.
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Now consider Φ(B) → Φ(C ). We can factor it into two pieces: Φ(B) → Φ(C ′) → Φ(C ). First,
we have the formula

ι∗u+1,v+1 : Du+1 U ⊗ Dv+1 U → Du U ⊗ Dv U

x(i) ⊗ x(j) �→ x(i−1) ⊗ x(j) − x(i) ⊗ x(j−1).

It follows from this explicit formula that the following diagram commutes, where the vertical
maps are comultiplication:

Du+1 U ⊗ Dv+1 U
ι∗u+1,v+1

��

��

Du U ⊗ Dv U

��

Du U ⊗ U ⊗ Dv+1 U
ι∗u,v

�� Du−1 U ⊗ U ⊗ Dv U

This implies compatibility of Φ(B) → Φ(C ′) in the u-direction, and the v-direction is similar.
Also similarly, this can be used to prove compatibility of the map Φ(C ′) → Φ(C ).

Compatibility of Φ(D) → Φ(S ) reduces to Proposition 2.1.
Finally, we prove compatibility of Φ(B) → Φ(D). This map is a sum of two components,

and the check is similar for both of them, so we will just explain the map Φ(B) → Φ(D1).
Compatibility in the u-direction is formal: the differential acts on different factors from the map
Φ(B) → Φ(D). Compatibility in the v-direction follows from Proposition 2.1. �

5.5 Homology of these complexes
Consider the following data:

Z E F

A (Syma−1 U)(−1) ⊕ (Symb−1 U)(−1) O(a) ⊕O(b)
D1 (Syma−1 U)(−1) ⊕ Symb U O(a)
D2 Syma U ⊕ (Symb−1 U)(−1) O(b)

In each case, we have a short exact sequence 0 → E → Syma U ⊕ Symb U → F → 0 of vector
bundles over the projective variety PU such that

tot(Φ(Z))i−1 =
⊕
j≥0

Hj(PU,O(−2) ⊗
i+j∧

E) ⊗ R.

Following [Wey03, § 5], the terms on the right-hand side have the structure of a minimal complex
over R by taking the derived pushforward of the Koszul complex on E. This describes the
differentials that we have defined on the terms on the left-hand side, so we conclude that the
homology is

Hi−1(tot(Φ(Z))) =
⊕
d≥0

Hi(PU,O(−2) ⊗ Symd F ).
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Explicitly, we get

H−2(Φ(A )) = k,

H−1(Φ(A )) =
⊕
d,e≥0

Symda+eb−2 U,

H−2(Φ(D1)) = k,

H−1(Φ(D1)) =
⊕
d≥0

Symda−2 U,

H−2(Φ(D2)) = k,

H−1(Φ(D2)) =
⊕
e≥0

Symeb−2 U.

Next, Φ(N ) and Φ(M ) are respectively the homology of Φ(A ) → Φ(B) → Φ(C ) and
Φ(A ) → Φ(D) → Φ(S ), and hence they inherit the structure of double complex. We now identify
the corresponding total complexes.

Proposition 5.11. Φ(N ) is the quotient complex of the minimal free resolution of the
ideal I of the rational normal scroll by the terms Di U ⊗∧i+2(Syma−1 U) ⊗ R and Di U ⊗∧i+2(Symb−1 U) ⊗ R.

Proof. First, we have a short exact sequence of double complexes

0 → Φ(A ) → Φ(B) → Φ(C ′) → 0

as shown in the proof of Proposition 5.10. Next, we have a short exact sequence

0 → Φ(N ) → Φ(C ′) → Φ(C ) → 0

where the last map is a morphism of double complexes, and hence Φ(N ) inherits a double
complex structure from being the kernel of this map.

By coassociativity of comultiplication, the following diagram commutes.

Du+v U
μ∗

u,v
��

��

Du U ⊗ Dv U

��

Du+v−1 U ⊗ U
μ∗

u−1,v
�� Du−1 U ⊗ U ⊗ Dv U

commutes, where in the bottom map the U factor is not being used in μ∗
u−1,v.

This implies that for the u-component of Φ(N ), we use the comultiplication maps

Du+v U → Du+v−1 U ⊗ U,

u+1∧
(Syma−1 U) →

u∧
(Syma−1 U) ⊗ Syma−1 U

together with the multiplication U ⊗ Syma−1 U → Syma U . The v-component is defined similarly.
This agrees with the quotient complex of the minimal free resolution of the ideal I of the rational
normal scroll. �
Proposition 5.12. Φ(M ) is the first linear strand of the minimal free resolution of ωB.

Proof. First, the total complex of Φ(S ) is a Koszul complex on Syma U ⊕ Symb U shifted by 2,
so H−2(Φ(S )) = k and any other homology vanishes.
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From the proof of Proposition 5.7, we have a complex

0 → Φ(A ) → Φ(D)
f−→ Φ(S ) → R[−a,−b] → 0

whose middle homology is Φ(M ). From the exact sequence

0 → ker f → Φ(D) → Φ(S ) → R[−a,−b] → 0

and the calculations earlier, we conclude that

Ha+b−2(ker f) = R, H−2(ker f) = k, H−1(ker f) = H−1(Φ(D)).

Next, from the short exact sequence 0 → Φ(A ) → ker f → Φ(M ) → 0, we get an exact
sequence

0 → H0(Φ(M )) → H−1(Φ(A )) → H−1(ker f) → H−1(Φ(M )) → 0

and Ha+b−2(Φ(M )) = R. Since Φ(M ) is concentrated in non-negative homological degrees, we
conclude that

H0(Φ(M )) =
⊕
d,e≥1

Symda+eb−2 U.

Next, Φ(M )0 = Syma+b−2 U ⊗ R, so H0(Φ(M )) is generated by its lowest-degree term. We
conclude that Φ(M ) is the first linear strand of the minimal free resolution of ωB. �

Proof of Theorem 5.5. Proposition 5.10 implies that we get a map of complexes

F : Φ(N ) → Φ(M ).

On components of degree 0 this takes the form

Syma−1 U ⊗ Symb−1 U ⊗ R → Syma+b−2 U ⊗ R.

This is the standard multiplication map, which follows from the explicit description of the map
Φ(B) → Φ(D). In particular, F lifts the surjection I → ωB, so that we can identify its maps
with the induced maps on Tor.

To prove the last vanishing statement, we fix a bi-degree (u + 1, v + 1), with u + v = i.
We use Corollary 4.4, with n1 = u + 2 and n2 = v + 2. We have that n1 + n2 − 3 = u + v +
1 = i + 1 ≤ min(a, b), so the assumptions on the characteristic in the corollary are satisfied.
We have, moreover, that a − 1 − u ≥ i − u = n2 − 2, and b − 1 − v ≥ i − v = n1 − 2, so
W

(u+1,v+1)
a−1−u,b−1−v = 0. �

6. Green’s conjecture

A canonical ribbon is a scheme which is a double structure on a rational normal curve.
A hyperplane section of X (a, g − 1 − a) corresponds to a choice of polynomials (f1, f2) ∈
Syma U ⊕ Symg−1−a U and is a canonical ribbon if and only if f1, f2 is a regular sequence
[BE95, § 2]. These ribbons have Clifford index a in the sense of [BE95, § 2]. Since the homo-
geneous coordinate ring of X (a, g − 1 − a) is Cohen–Macaulay, it has the same graded Betti
numbers as any canonical ribbon of Clifford index a in Pg−1. Theorem 5.5 then implies that the
graded Betti numbers βi,i+2 of canonical ribbons of Clifford index a are 0 for i < a.

Proposition 6.1. Assume that the characteristic is not 2. The canonical ribbons realized above
can be smoothed out to a curve of gonality a + 2 and Clifford index a.
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Proof. In characteristic 0, this follows from the proof of [Fon93, Theorem 2]. The two key inputs
for the proof are:

• [Fon93, Theorem 1], which identifies ribbon structures with lines in the normal space to the
hyperelliptic locus in the versal deformation space at some fixed hyperelliptic curve; and

• [EG95, Theorem 2.1], which states that if a family of smooth curves of Clifford index e
degenerates to a ribbon, then the resulting Clifford index is ≤ e.

The proof of the first result goes through verbatim if we assume that 2 is invertible in k. To
replace the latter result, it suffices to prove the following: if C is the generic fiber of a flat family
of smooth curves degenerating to one of the canonical ribbons above, then the Clifford index of
C is ≥ a. To see this, we note first that the Hilbert series for a canonical ribbon is the same as
the Hilbert series of a canonical curve of genus a + b + 1, namely,

1 + (a + b − 1)t + (a + b − 1)t2 + t3

(1 − t)2
,

which follows by passing to a hyperplane section in Proposition 5.4 (and using that A is
Cohen–Macaulay). Using [BG85, Proposition 2.15], it follows that the Betti numbers in our
family are upper semicontinuous. From the discussion above, we know that for the canonical
ribbon βi,i+2 = 0 for i < a, so we must also have that βi,i+2(C) = 0 for i < a. Using [Eis05,
Corollary 9.7], this implies that the Clifford index of C is ≥ a. �

We are now ready to deduce the generic Green’s conjecture in each gonality.

Theorem 6.2. Pick integers a ≥ 1 and g ≥ 2a + 1. If the characteristic of k is either 0 or p ≥ a,
then there is a non-empty Zariski open subset of curves of gonality a + 2 and Clifford index a
which satisfy Green’s conjecture, that is, βi,i+2 = 0 for i < a under the canonical embedding.

Proof. If p = 2, then a is 1 or 2. If a ≥ 1, then β0,2 = 0 for non-hyperelliptic curves by Noether’s
theorem. If a = 2, then β1,3 = 0 for non-trigonal curves by Petri’s theorem. So for the remainder
of the proof, we may assume that the characteristic is different from 2.

The condition βi,i+2 = 0 for i < a is open in the locus of curves of gonality a + 2 in the
moduli of curves of genus g. The condition that a curve of gonality a + 2 has Clifford index a is
also open. Their intersection is non-empty by Proposition 6.1. �

As a consequence, we solve [ES19, Conjecture 0.1].

Corollary 6.3. Let k be a field of characteristic p where either p = 0 or p ≥ �(g − 1)/2�. Then
a general curve of genus g satisfies Green’s conjecture, that is, βi,i+2 = 0 for i < �(g − 1)/2�.
Proof. A curve of genus g has Clifford index ≤ �(g − 1)/2� and for a general curve, this is the
value of the Clifford index [Eis05, Theorem 8.16]. Hence the result follows from Theorem 6.2. �
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