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Abstract

We study the Rβ -positivity and the existence of zero-temperature limits for a sequence
of infinite-volume Gibbs measures (μβ (·))β≥0 at inverse temperature β associated to a
family of nearest-neighbor matrices (Qβ )β≥0 reflected at the origin. We use a proba-
bilistic approach based on the continued fraction theory previously introduced in Ferrari
and Martínez (1993) and sharpened in Littin and Martínez (2010). Some necessary and
sufficient conditions are provided to ensure (i) the existence of a unique infinite-volume
Gibbs measure for large but finite values of β, and (ii) the existence of weak limits as
β → ∞. Some application examples are revised to put in context the main results of this
work.
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1. Introduction

We consider a family of nearest-neighbor matrices (Qβ )β≥0 on Z+ = {0, 1, . . .} with
coefficients

Qβ (x, y) =
⎧⎨⎩exp(−βφ(x, y))> 0 if |x − y| = 1,

Qβ (x, y) = 0 if |x − y| �= 1,
x ≥ 0, y ≥ 0. (1.1)

Here, φ(x, y) is a function depending on the two values x, y, commonly known as the potential
of a physical system. By calling Q(m)

β to the mth power of the matrix Qβ , from irreducibil-

ity we get that Rβ := R(Qβ ) = ( lim supn→∞ (Q(2n)
β (x, x))1/2n)−1 is a common convergence

radius, i.e. it is independent of x ∈Z+ (see [17, Theorem 6.1]). For each fixed β ≥ 0, we say
that the matrix Qβ is Rβ -recurrent if

∑∞
n=0 R2n

β Q(2n)
β (x, x) = ∞ for some (equivalently for all)

x ∈Z+, and Rβ -transient when the series converges. If Qβ is Rβ -recurrent, we say that it is

Rβ -null recurrent if limn→∞ Q(2n)
β (x, x)R2n

β = 0, and Rβ -positive recurrent if the limit is non-
zero ([17, 18] are recommended for more details on the definitions and classification of
non-negative matrices).
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Zero-temperature limits on nearest-neighbor matrices 559

For each fixed β ≥ 0, the matrix Qβ induces a Markov chain, say Xβ = (Xβn : n ≥ 0),
which inherits the same recurrence properties as Qβ . Two questions arise from this setting:
(i) Does the Rβ classification depend on β? (ii) Does there exist a Markov chain X∞ such that
limβ→∞ Xβ = X∞ in the finite-distributional sense?

The existence of weak limits as β → ∞ (also called zero-temperature limits) has been
widely studied under different settings: [5–7, 15] in the finite space state, and [9, 11, 13] in
the countable case. We also recommend [4] for results on ergodic optimal problems using
weak KAM methods, and [2] for results on large deviations. The aforementioned references
deal with the problem of zero-temperature limits under sufficient conditions over either the
potential or the space of trajectories. In this article, we prove the existence of zero-temperature
limits for our model through a probabilistic approach rather than the dynamical system point
of view. More precisely, we study the Rβ -positivity dependence on β ≥ 0 under different con-
ditions on the potential. Provided that the weak limit exists, a precise characterization of the
typical configurations of the limiting measure are described. The rest of this article is organized
as follows: In Section 2 we review known results related to the existence of an infinite-volume
Gibbs measure for a Hamiltonian defined on the set of nearest-neighbor trajectories reflected at
the origin. In Section 3 we provide some conditions for the existence of equilibrium measures
for finite values of β. In Section 4 we analyze the existence of weak limits (i.e. in the sense of
finite-dimensional distributions) as β → ∞. Finally, in Section 5 we analyze some application
examples to contextualize our main theorems.

2. Markov chains on non-negative matrices

Observe that in the case of nearest-neighbor matrices (1.1), for each fixed β ≥ 0 there exists
a strictly positive solution to the problem

Qβhβ = R−1
β hβ . (2.1)

For general irreducible non-negative matrices, the existence of a strictly positive solution to
(2.1) is only guaranteed for Rβ -recurrent matrices (see [18, Corollary 2]). Note that the matrix
Pβ = (pβ (x, y) : x, y ∈Z+) defined by

pβ (x, y) = Rβ exp(−βφ(x, y))
hβ (y)

hβ (x)
, x, y ∈Z+, (2.2)

is the stochastic matrix of an irreducible birth-and-death chain Xβ = (Xβn : n ≥ 0) reflected at
0. The matrix Qβ turns out to be Rβ -positive recurrent (respectively Rβ -null recurrent or Rβ -
transient) if and only if Xβ is positive recurrent (respectively null recurrent or transient). Also,
we say that the matrix Qβ is geometrically ergodic if the stopping time τy = inf{n> 0 : Xβn =
y} has exponential moment, i.e. Ex(θτy) := E(θτy | X0 = x)<∞ for some θ > 1. In a similar
way to [16], we need to introduce the sequence of truncated matrices Q[m]

β = (Qβ (x, y), x ≥ m,

y ≥ m) and the sequence Rβ,m := Rβ (Q[m]
β ), m ≥ 0, of their corresponding convergence radius.

The Markov chain related to Q[m]
β will be denoted by Xβ,[m]. Clearly, Rβ,0 = Rβ and Xβ,[0] =

Xβ . Note that for each fixed β ≥ 0, the sequence (Rβ,m)m≥0 is non-decreasing, i.e. Rβ,m ≤
Rβ,m+1 for all m ≥ 0.

Theorem 2.1 ([16].) Let Qβ be a nearest-neighbor matrix as in (1.1). Assume R(Qβ )> 0. Then
Rβ,m < Rβ,m+1 for some m ≥ 0 if and only if the matrix Qβ is geometrically ergodic and con-

sequently is Rβ -positive recurrent. Conversely, if Rβ,m = Rβ,m+1 for all m ≥ 0, the matrix Q[1]
β

is Rβ -transient and Qβ cannot be geometrically ergodic.
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From (2.1) and (2.2) we observe that, for all x ≥ 1, the transition probabilities defined in
(2.2) satisfy the recurrence formula

pβ (x, x + 1)pβ (x + 1, x) = R2
β exp(−βψ(x)), (2.3)

where ψ(x) = φ(x, x + 1) + φ(x + 1, x). In order to simplify our presentation we set uβ (x) =
pβ (x, x + 1). From the obvious relation pβ (x + 1, x) = 1 − uβ (x + 1) we have

uβ (x) = R2
β exp(−βψ(x))

1 − uβ (x + 1)
, x ≥ 1, (2.4)

with the reflecting condition uβ (0) = pβ (0, 1) = 1. By iterating the formula in (2.4) we deduce
that uβ (x) can be written as the continued fraction

uβ (x) = R2
β exp(−βψ(x))

1 − R2
β exp(−βψ(x + 1))

1 − R2
β exp(−βψ(x + 2))

1 − · · ·

, x ≥ 1. (2.5)

2.1. Hamiltonians and existence of Gibbs measures

In a similar way to [8, 16], we introduce a brief presentation concerning the existence of
Gibbs measures. Let � be the space of trajectories of nearest neighbors reflected at the origin,
i.e. �= {x ∈N

Z

0 : |xk − xk+1| = 1 for all k ∈Z}. Given a discrete interval [i, j] ⊂Z, i ≤ j, and
x ∈�, we denote by x[i, j] = (xi, xi+1, . . . , xj−1, xj) the coordinates of x in the interval [i, j],
and �[i, j] = {x[i, j] : x ∈�} the restriction of � into the interval [i, j]. For each x[i, j] ∈�[i, j]
we consider the Hamiltonian

H[i,j](x) =
j−1∑
k=i

φ(xk, xk+1). (2.6)

By keeping fixed the states u, v at sites i − 1 and j + 1 respectively, we now define, for
x[i, j] ∼ (u, v), Hu,v

[i,j](x) =H[i,j](x) + φ(u, xi) + φ(xj, v), where x[i, j] ∼ (u, v) is used to denote
the restriction |xi − u| = |xj − v| = 1. The Gibbs measure over the finite interval [i, j] at inverse
temperature β and boundary conditions (u, v) is

μ
u,v
[i,j],β (x) = 1

Zu,v
[i,j],β

exp
(−βHu,v

[i,j](x)
)
,

where

Zu,v
[i,j],β =

∑
x∈�[i,j]:

x[i,j]∼(u,v)

exp
(−βHu,v

[i,j](x)
)

is the partition function associated to the Hamiltonian Hu,v
[i,j] in the interval [i, j]. For any

[�,m] ⊂ [i, j] and x̃ ∈�[�,m], we notice that

https://doi.org/10.1017/jpr.2023.59 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.59


Zero-temperature limits on nearest-neighbor matrices 561

μ
u,v
[i,j],β (x̃) = 1

Zu,v
[i,j],β

∑
x∈�[i,j]:
x[�,m]=x̃

exp
(−βHu,v

[i,j](x)
)
.

From a direct calculation, we get, for x̃ ∈�[�,m],

μ
u,v
[i,j],β (x̃) = 1

Zu,v
[i,j],β

Zu,x�
[i,�−1],β exp(−βH[�,m](x̃))Zxm,v

[m+1,j],β ,

where Zu,x�
[i,�−1],β and Zxm,v

[m+1,j],β are the partition functions over the intervals [i, �− 1] and
[m + 1, j] respectively. Recalling the definition in (1.1), the following equalities are valid:

Zu,x�
[i,�−1],β = Q(�−i+1)

β (u, x�), Zxm,v
[m+1,j],β = Q(j−m+1)

β (xm, v),

and therefore, for x̃ ∈�[�,m],

μ
u,v
[i,j],β (x̃) = Q(�−i+1)

β (u, x�)Q
(j−m+1)
β (xm, v)

Q(j−i+2)
β (u, v)

exp(−βH[�,m](x̃)).

[10, Theorem C] states that in the thermodynamic limit [i, j] ↗Z there exists a unique equilib-
rium measure μβ (·) associated to the Hamiltonian Hu,v

[i,j](·) at inverse temperature β > 0 if and
only if the matrix Qβ is Rβ -positive recurrent. In this latter case, there exist λβ = 1/Rβ > 0, an
eigenvector hβ > 0, and an eigenmeasure νβ > 0 with strictly positive components such that

∞∑
y=0

exp(−βφ(x, y))hβ (y) = λβhβ (x),
∞∑

x=0

exp(−βφ(x, y))νβ (x) = λβνβ (y),

and hβ , νβ can be chosen satisfying
∑∞

x=0 hβ (x)νβ (x) = 1. Moreover,

lim
n→∞ R2n+�(x,y)

β Q(2n+�(x,y))
β (x, y) = νβ (y)hβ (x),

since �(x, y) = x − y (mod 2). The equilibrium measure μβ (·) (which is independent of the
boundary conditions u, v) is a Markov chain with stationary distribution πβ (x) = hβ (x)νβ (x),
x ≥ 0, and transition probabilities given by (2.2), so that, for all x̃ ∈�[l,m],

μβ (x̃) = πβ (x̃�)hβ (x̃m)

λm−�
β hβ (x̃�)

exp
(−βH[�,m](x̃)

)= πβ (x̃�)
m−1∏
k=�

hβ (x̃k+1)

λβhβ (x̃k)
exp(−βφ(x̃k, x̃k+1)). (2.7)

Remark 2.1. The Hamiltonian defined in (2.6) can be written in terms of ψ(·). We first set
N[i,j](x; a, b) =∑j−1

k=i 1{xk=a,xk+1=b}, the number of transitions from a to b. It is not difficult to
notice that

H[i,j](x) =
∞∑

a=0

φ(a, a + 1)N[i,j](x; a, a + 1) + φ(a + 1, a)N[i,j](x; a + 1, a).

In the particular case xi = xj, j ≡ i (mod 2), we necessarily have N[i,j](x; a, a +
1) =N[i,j](x; a + 1, a). Since ψ(a) = φ(a, a + 1) + φ(a + 1, a), we now get H[i,j](x) =∑∞

a=0 ψ(a)N[i,j](x; a + 1, a).
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To conclude this section, we present some useful bounds for the sequence Rβ,m, m ≥ 0. Let
us define

Z [m]
2n,β = (

Q[m]
β

)(2n)(m,m) =
∑

x∈�[m][0,2n]:
x0=x2n=m

exp (−βH2n(x)), (2.8)

where �[m] = {x ∈� : xk ≥ m for all k ∈Z} and H2n(x) =H[0,2n](x). Similarly, for m<m′ we

consider the finite matrices Q[m,m′]
β with coordinates m ≤ x ≤ m′ and m ≤ y ≤ m′. In this case

we write

Z [m,m′]
2n,β = (

Q[m,m′]
β

)(2n)(m,m) =
∑

x∈�[m,m′][0,2n]:
x0=x2n=m

exp (−βH2n(x)),

where �[m,m′] = {x ∈� : m ≤ xk ≤ m′ for all k ∈Z}. We now define the power series

Z [m]
β (r) =

∞∑
n=0

r2nZ [m]
2n,β , (2.9)

and similarly, for m<m′, Z [m,m′]
β (r) =∑∞

n=0 r2nZ [m,m′]
2n,β . From the monotone convergence

theorem we get limm′→∞ Z [m,m′]
2n,β (r) =Z [m]

2n,β (r) for each 0< r< Rβ,m fixed. Let us deduce

now some general bounds for Rβ,m and Rβ,[m,m′] := R
(
Q[m,m′]
β

)
, 0 ≤ m<m′. First, we

set αm = infx≥m ψ(x), αm,m′ = minm≤x<m′ ψ(x). For each x ∈�[m] such that x0 = x2n, the
Hamiltonian satisfies H2n(x) ≥ nαm (see Remark 2.1). From (2.8) we get Z [m]

2n,β ≤Z [m]
2n,0

exp(−nβαm). Since Z [m]
2n,0 = Card(�[m][0, 2n] : x0 = x2n = m), from (2.9) it follows that

Z [m]
β (r) ≤Z [m]

0 (r exp (−βαm/2) ), and thus

Rβ,m ≥ exp(βαm/2)R0,m. (2.10)

Following the same ideas, from the inequality Z [m,m′]
2n,β ≤Z [m,m′]

2n,0 exp (−nβαm,m′ ) we

get Z [m,m′]
β (r) ≤Z [m,m′]

0 (r exp (−βαm,m′/2)) and hence we obtain the preliminary bound

Rβ,[m,m′] ≥ exp
(
βαm,m′/2

)
R0,[m,m′]. When β = 0, the values of R0,[m,m′] and R0,m can be

computed explicitly. Since Q[m,m′]
0 is a tridiagonal matrix with constant coefficients, from

the Perron–Frobenius theorem we have that the convergence radius is strictly positive and
it is the inverse of the spectral radius. [14, Theorem 2.2] states the main eigenvalue is

λ
[m,m′]
0 = 2 cos (π/(m′ − m + 2)), so R0,[m,m′] = 1/λ[m,m′]

0 . From [17, Theorem 6.8] and by
taking the limit m′ → ∞ we actually get R0 = R0,m = 1/2 for all m ≥ 0, which implies that
Q[1]

0 is 1/2-transient. The sequence of truncated matrices Q[m]
0 remains constant, in particular

Q[1]
0 = Q0, and therefore the matrix Q0 is always 1/2-transient.

3. Existence of equilibrium measures

The behavior of (ψ(x))x≥0 plays a crucial role in the recurrence properties of Qβ . Keeping
this in mind, we review in more detail the main assumptions of this work.

(C0) The function ψ(x) has a minimum, denoted here by α(φ) := minx≥0 ψ(x)>−∞. We
also assume that there exists a subset M⊆Z+ such that ψ(x) = α(φ) for all x ∈M and
infx∈Z+\M ψ(x) ≥ α(φ) +� for some �> 0.
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Provided that (1) holds, we have one of the following:

(C1) M is finite, i.e. the minimum is attained in a finite number of indices.

(C2) M is a sub-sequence {xk}k≥0 satisfying limk→∞ xk = ∞.

Without loss of generality we can assume α(φ) = 0, since in any other case we only
need to take ψ̃(x) =ψ(x) − α(φ) and the argument does not vary. Observe that when (C0)
and (C1) hold, lim infx→∞ ψ(x) ≥ α(φ) +�. Hence, there exists N0 ≥ 0 and ε≥� such that
αm ≥ α(φ) + ε for all m>N0 and αN0 = α(φ). We now state our main results of this section.

Theorem 3.1. Assume that (C0) and (C1) hold. Then there exists 0 ≤ βc <∞ such that, for all
β > βc, the matrix Qβ is geometrically ergodic.

The following corollary establishes a similar result when ψ diverges to infinity.

Corollary 3.1. Assume that (C0) holds and that limx→∞ ψ(x) = ∞. Then, for all β > 0, the
matrix Qβ is geometrically ergodic.

The proof of these results will be derived at the end of this section. The case (C2) has more
complex behavior depending on the local (and global) configurations of those values where
ψ(x) = α(φ). To describe it in more detail the next definition is required.

Definition 3.1. We say that the discrete interval Ix0,� = [x0, x0 + �− 1] is a run of size
�≥ 2 (the value �= ∞ is permitted) for the matrix Q[m]

β ifψ(x) = α(φ) for x ∈ [x0, x0 + �− 1),
ψ(x0 + �− 1)>α(φ), and ψ(x0 − 1)>α(φ) if x0 ≥ m + 1.

Let R be all those values of x ∈Z+ in some run of Qβ . Each x ∈R belongs to a unique
run of size 2 ≤ �≤ ∞, so that R can be partitioned into the form R=⋃∞

�=2 R�, where R� is
used to indicate the collection of runs of size �. If ψ has no runs of size � we write R� = ∅.
For each non-empty R�, we can find {xk}1≤k≤|R�| (possibly an infinite sequence) such that

R� =⋃|R�|
k=1 Ixk,�. From the construction, we notice that Ixk,� ∩ Ixk′ ,�′ = ∅ if either k �= k′ or

� �= �′. We now define

�max := �max(Qβ ) = sup{�≥ 2 : R� �= ∅}, (3.1)

which is allowed to be infinite (the value of β has no influence in the definition of �max). The
following lemma establishes a preliminary bound on the convergence radius in terms of �max.

Lemma 3.1. Assume that (C0) holds with α(φ) = 0. For every m ≥ 0, β > 0 we have

1

4
≤ R2

β,m ≤ 1

4 cos2
(
π/
(
�

[m]
max + 1

)) , (3.2)

where �[m]
max = �max(Q[m]

β ). In particular, if �[m]
max = ∞, then R2

β,m = 1
4 is constant.

Proof. Suppose first that �[m]
max <∞. Observe that, for each fixed m ≥ 0, the inequality

1
4 = R2

0,m ≤ R2
β,m applies when ψ(x) ≥ 0. Now, if Ix0,� is a run of Q[m]

β , with 2 ≤ �≤ �[m]
max and

x0 ≥ m, then Rβ,m ≤ R(Q
Ix0,�

β ), where Q
Ix0,�

β := (Qβ (x, y); x, y ∈ Ix0,�). From [14, Theorem 2.2]
we know that

R(Q
Ix0,�

β ) = 1

2 cos (π/(�+ 1))

(the inverse of its largest eigenvalue). The inequality (3.2) is obtained by taking �= �
[m]
max.
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Now observe that �max = ∞ implies �[m]
max = ∞ for all m ≥ 0. From its definition in (3.1),

we can find a sub-sequence {�[m]
k }k≥1 satisfying limk→∞ �

[m]
k = ∞ such that

1

4
≤ R2

β,m ≤ 1

4 cos2
(
π/
(
�

[m]
k + 1

))
holds for every k ≥ 1 (this is possible by taking the convergence radius of the truncated matrix

Q
I
x0,�

[m]
k

β , where Ix0,�
[m]
k

is a discrete interval contained in some run of Q[m]
β ). The proof finishes

by letting k → ∞. �

Remark 3.1. The matrix Qβ is Rβ -recurrent if and only if P0(τ0 <∞) = 1. From [8] we
know that this is equivalent to the condition F0(Rβ ) = 1, where {Fx(Rβ )}x≥0 is defined
recursively as

Fx(Rβ ) = R2
β exp(−βψ(x))

1 −Fx+1(Rβ )
, x ≥ 0.

If (C0) holds with �max = ∞ and α(φ) = 0, from Lemma 3.1 we get that Rβ,m = 1
2 for all m ≥ 0,

β ≥ 0. This implies that R2
β exp(−βψ(x)) ≤ 1

4 for each x ≥ 0, and thus

Fx(Rβ ) ≤ 1/4

1 − 1/4

1 − 1/4

1 − · · ·

= 1

2
. (3.3)

In particular, F0(Rβ ) ≤ 1
2 < 1, so that Qβ is 1

2 -transient for all β ≥ 0. The same occurs if the
limit limx→∞ ψ(x) = α(φ) = 0 exists. From (2.10), and recalling that R0,m = 1

2 ,

1

2
exp

(
β inf

x≥m
ψ(x)/2

)
≤ Rβ,m ≤ 1

2
exp

(
β sup

x≥m
ψ(x)/2

)
.

By letting m → ∞, since limx→∞ ψ(x) = 0 the only option is limm→∞ Rβ,m = 1
2 , and conse-

quently Rβ,m = 1
2 for all m ≥ 0. Hence, (3.3) applies in this case and we conclude that Qβ is

1
2 -transient for all β ≥ 0.

The next theorem establishes the behavior of Qβ for finite �max.

Theorem 3.2. Assume that (C0) and (C2) hold, and assume that �max <∞. If the number of
runs of size �max is finite, i.e. |R�max |<∞, there exists βc <∞ such that, for all β > βc, the
matrix Qβ is geometrically ergodic.

The proof relies on Proposition 3.1, so is given at the end of this section.

Proposition 3.1. If (C0) and (C1) hold with �[m]
max <∞ and α(φ) = 0, for all m ≥ 0 we have

lim
β→∞ R2

β,m = 1

4 cos2
(
π/
(
�

[m]
max + 1

)) := c∞(�[m]
max).

Proof. Since R2
β,m is a non-decreasing function of β and it takes values in the interval

[ 1
4 , 1

]
,

the limit exists. Moreover, from (3.2), we deduce that limβ→∞ R2
β,m ≤ c∞(�[m]

max). To prove the
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converse, let us first introduce the random variable

Nout(n, Xβ,[m]) :=
∞∑

a=m

N[0,2n](X
β,[m]; a, a + 1)1{ψ(a)>0}.

We also recall the identity

(Q[m]
β )(2n)(x0, x0) = R−2n

β,mPx0

(
Xβ,[m]

2n = x0
)
. (3.4)

To simplify the proof, let us assume that the initial state is Xβ,[m]
0 = x0, since Ix0,�

[m]
max

is a run

of size �[m]
max. Observe that

Px0

(
Xβ,[m]

2n = x0
)=

n∑
t=0

Px0

(
Xβ,[m]

2n = x0,Nout(n, Xβ,[m]) = t
)
. (3.5)

We now fix Nout
(
n, Xβ,[m]

)= t, with t ≥ 0. For any sequence x̃[0, 2n] = (̃x0, x̃1, . . .,
x̃2n−1, x̃2n) ∈�[m][0, 2n], let us define

Tin(̃x[0, 2n]) := {k ∈ [0, 2n) : x̃k and x̃k+1 belong to the same run},
Tout(̃x[0, 2n]) := [0, 2n) \ Tin(̃x[0, 2n]).

We emphasize that only sequences satisfying x̃0 = x̃2n = x0 are considered. For any subset
Ĩ ⊆ [0, 2n), we write x̃[0, 2n] ∼ Ĩ to denote that Tin(̃x[0, 2n]) = Ĩ. From the identity
Card(Ĩ) = 2n − 2Nout(n, Xβ,[m]) = 2n − 2t, we have

Px0

(
Xβ,[m]

2n = x0,Nout(n, Xβ,[m]) = t
)=

∑
Ĩ⊆[0,2n):

Card(Ĩ)=2n−2t

∑
x̃[0,2n]∼Ĩ

Px0

(
Xβ,[m]

k = x̃k; 1 ≤ k ≤ 2n
)
.

(3.6)
Given a fixed Ĩ ⊆ [0, 2n), from either (2.2) or (2.7) we have∑

x̃[0,2n]∼Ĩ
Px0

(
Xβ,[m]

k = x̃k; 1 ≤ k ≤ 2n
)

= R2n
β,m

∑
x̃[0,2n]∼Ĩ

exp

(
−β

2n−1∑
k=0

φ(x̃k, x̃k+1)

)

= R2n
β,m

∑
x̃[0,2n]∼Ĩ

exp

(
−β

∑
k∈Ĩ

φ(x̃k, x̃k+1) − β
∑
k∈Õ

φ(x̃k, x̃k+1)

)
,

where Õ = [0, 2n) \ Ĩ. For every k ∈ Õ we know that x̃k and x̃k+1 are not in the same run. On
the other hand, since Q[m]

β is a nearest-neighbor matrix, the number of visits coincides:

N[0,2n](̃x[0, 2n]; x̃k, x̃k+1) =N[0,2n](̃x[0, 2n]; x̃k+1, x̃k). (3.7)
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Recalling that Card(Õ) = 2t, since φ(x̃k, x̃k+1) + φ(x̃k+1, x̃k) ≥� we have∑
k∈Õ φ(x̃k, x̃k+1) ≥ t�, leading to the inequality

∑
x̃[0,2n]∼Ĩ

Px0 (Xβ,[m]
k = x̃k; 1 ≤ k ≤ 2n) ≤ R2n

β,me−β�t
∑

x̃[0,2n]∼Ĩ
exp

(
−β

∑
k∈Ĩ

φ(x̃k, x̃k+1)

)
.

(3.8)
In the rest of the proof, the runs of Q[m]

β will be labeled as {Ixi,m,�i,m}i≥−nm , with the conven-

tion that xi,m < xi′,m for i< i′ and x0,m = x0, since Ix0,�
[m]
max

is the first run of length �[m]
max (i.e. for

−nm ≤ i< 0 the run Ixi,m,�i,m has size at most �[m]
max − 1). For any x̃[0, 2n] ∼ Ĩ, we now set

Ĩi,m = {k ∈ [0, 2n) : x̃k and x̃k+1 belong to Ixi,m,�i,m}, i ≥ −nm. (3.9)

Observe that Ĩi,m ∩ Ĩi′,m = ∅ when i �= i′. Since Card(Ĩi,m) := 2ti for some ti ≥ 1 if Ĩi,m �= ∅, it
follows that the number of non-empty subsets {Ĩi,m}i≥−nm is bounded by t. Hence, there exists
a finite value, say imax, such that Ĩ = ∪imax

i=−nm
Ĩi,m, so

∑
k∈Ĩ

φ(x̃k, x̃k+1) =
imax∑

i=−nm

∑
k∈Ĩi,m

φ(x̃k, x̃k+1).

Notice that 2ti = Card(Ĩi,m), i ≥ −nm, is the total time that Xβ,[m] stays in Ixi,m,�i,m up to the
instant 2n. Also, for i ≥ 0, observe that

∑
k∈Ĩi,m

φ(x̃k, x̃k+1) is the contribution of a path of
nearest neighbors with 2ti transitions that starts and ends on xi,m, restricted to not leave Ixi,m,�i,m .
For i< 0, the same argument applies, with the only difference that the path starts and ends in
xi,m + �i,m − 1. Let x̃[Õ] := (̃xk)k∈Õ be the restriction of x̃[0, 2n] onto Õ. For any sequence
x̃[0, 2n] such that x̃[Õ] = xÕ is fixed, the subsets Ĩi,m defined in (3.9) are kept fixed too.
Therefore,∑

x̃[0,2n]∼Ĩ:
x̃[Õ]=xÕ

exp

(
−β

∑
k∈Ĩ

φ(x̃k, x̃k+1)

)

=
∑

x̃[0,2n]∼Ĩ:
x̃[Õ]=xÕ

exp

(
−β

imax∑
i=−nm

∑
k∈Ĩi,m

φ(x̃k, x̃k+1)

)

=
∑

x̃[0,2n]∼Ĩ:
x̃[Õ]=xÕ

imax∏
i=−nm

exp

(
−β

∑
k∈Ĩi,m

φ(x̃k, x̃k+1)

)

≤
imax∏

i=−nm

(
max

x∈Ixi,m,�i,m

∑
x̃[0,2ti]∼[0,2ti]:

x̃0=̃x2ti=x

exp

(
−β

2ti−1∑
k=0

φ(x̃k, x̃k+1)

))
. (3.10)

Now, for each typical path considered on the right-hand side of (3.10), we know that x̃k and
x̃k+1 are in the same run, and from (3.7) we deduce that

∑2ti−1
k=0 φ(x̃k, x̃k+1) = 0. Also, the
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maximum in (3.10) is over the paths with 2ti transitions restricted to not leave Ixi,m,�i,m . This

can be computed by taking the 2ti-power of the truncated and finite matrix Q
[xi,m,xi,m+�i,m−1]
0 .

By using the Perron–Frobenius theorem, it can be shown that

lim
n→∞

(Q
[x0,x0+�i,m−1]
0 )(2n)(x, x)

(2 cos (π/(�i,m + 1)))2n
= C(x, �i,m)> 0,

where the limit only depends on x and �i,m (see [14, p. 65] for a more precise characterization
of C(x, �i,m) in terms of Chebyshev polynomials). Hence, for i ≥ −nm,

max
x∈Ixi,m,�i,m

∑
x̃[0,2ti]∼[0,2ti]:

x̃0=̃x2ti=x

exp

(
−β

2ti−1∑
k=0

φ(x̃k, x̃k+1)

)

= max
x∈Ixi,m,�i,m

(
Q

[x0,x0+�i,m−1]
0

)(2ti)(x, x) ≤ D0(�i,m)

(c∞(�i,m))ti
, (3.11)

where D0(�i,m) is a finite constant depending only on �i,m and c∞(�i,m) ≥ c∞(�[m]
max). Since the

number of different configurations in Õ is bounded by
(2t

t

)≤ 4t, the number of different runs

visited is at most t, and
∑imax

i=−nm
2ti = 2n − 2t, from (3.8), (3.10), and (3.11) it follows that

∑
x̃[0,2n]∼Ĩ

Px0

(
Xβ,[m]

k ∈ x̃k; 1 ≤ k ≤ 2n
)≤ R2n

β,m(4e−β�)t
imax∏

i=−nm

D
(
�

[m]
max
)(

c∞
(
�

[m]
max
))ti

≤ (4e−β�D2
(
�[m]

max

)
R2
β,m

)t( Rβ,m√
c∞
(
�

[m]
max
)
)2n−2t

,

(3.12)

where D
(
�

[m]
max
)= max2≤�i,m≤�[m]

max
D0(�i,m) and D2

(
�

[m]
max
)= max

(
1,D

(
�

[m]
max
))

. For fixed t ≥ 0,

we can find at most
(2n

2t

)
different forms to choose Ĩ. Combining (3.6) with (3.12), and setting

θβ = 2
√

D2
(
�

[m]
max
)
Rβ,m exp(−β�/2), (3.13)

we now get

n∑
t=0

Px0

(
Xβ,[m]

2n = x0,Nout(n, Xβ,[m]) = t
)≤

n∑
t=0

(
2n

2t

)
θ2t
β

(
Rβ,m√

c∞
(
�

[m]
max
)
)2n−2t

≤
2n∑

t=0

(
2n

t

)
θ t
β

(
Rβ,m√

c∞
(
�

[m]
max
)
)2n−t

=
(

Rβ,m√
c∞
(
�

[m]
max
)
)2n(

1 +
θβ

√
c∞
(
�

[m]
max
)

Rβ,m

)2n

.

(3.14)
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From (3.4), (3.5), and (3.14),

R−1
β,m = lim sup

n→∞
((

Q[m]
β

)(2n)(x0, x0)
)1/2n = lim sup

n→∞
R−1
β,mPx0

(
Xβ,[m]

2n = x0
)1/2n

≤ 1√
c∞
(
�

[m]
max
)
(

1 +
θβ

√
c∞
(
�

[m]
max
)

Rβ,m

)
. (3.15)

Finally, seeing that c∞
(
�

[m]
max
)≤ 1, from (3.13) we get

0 ≤ lim
β→∞

θβ

√
c∞
(
�

[m]
max
)

Rβ,m
≤ 2

√
D
(
�

[m]
max
)

lim
β→∞ exp(−β�/2) = 0,

and the proof finishes by letting β → ∞ in (3.15). �

We now provide an analog result under the hypotheses (C0) and (C1).

Proposition 3.2. Assume that (C0) and (C1) hold with α(φ) = 0. Then limβ→∞ R2
β =

c∞(�max).

Proof. As mentioned in the proof of Proposition 3.1, the limit exists and satisfies
limβ→∞ R2

β ≤ c∞(�max). Now, if (C0) and (C1) hold with α(φ) = 0, there exist N0 ≥ 0 and�>
0 such that ψ(N0) = 0 and ψ(x) ≥� for all x ≥ N0 + 1. Given fixed M ≥ 10, we now consider
a matrix Q′

β such that ψ ′(x) = 0 if x = N0 + kM for some k ≥ 1, and ψ ′(x) =ψ(x) in all the
other cases. Observe that Q′

β fulfills (C0) and (C2) with �max(Q′
β ) = �max(Qβ ) = �max <∞ and

α(φ) = 0. By applying Proposition 3.1 to the matrix Q′
β for m = 0 we have limβ→∞ R2(Q′

β ) =
c∞(�max(Q′

β )) = c∞(�max). Since 0 ≤ψ ′(x) ≤ψ(x) for all x ≥ 0, it follows that R2(Qβ ) ≥
R2(Q′

β ) for all β ≥ 0, therefore c∞(�max) ≥ limβ→∞ R2(Qβ ) ≥ limβ→∞ R2(Q′
β ) = c∞(�max),

and the proof is done. �

3.1. Proofs of the main theorems

We can assume α(φ) = 0 without loss of generality. In fact, if Q̃β is a matrix such that
ψ̃(x) =ψ(x) − α(φ) for all x ≥ 0, from the definition of the convergence radius we have

R2
β,m = exp (βα(φ))̃R2

β,m, β ≥ 0,m ≥ 0, (3.16)

where R2
β,m = R2

(
Q[m]
β

)
, R̃2

β,m = R2
(
Q̃[m]
β

)
. Note that R̃2

β,m is the value obtained by letting
α(φ) = 0. Since the multiplicative term exp (βα(φ)) has no influence in the Rβ -classification,
for every fixed β ≥ 0, the matrices Qβ and Q̃β have the same recurrence properties. Moreover,
for every m ≥ 0, the value of the quotient

Rβ,m
Rβ,m+1

= R̃β,m
R̃β,m+1

is independent of α(φ), and therefore the use of Theorem 2.1 does not depend on its value.

Proof of Theorem 3.1. Assume α(φ) = 0 for simplicity. From Theorem 2.1, we only need to
prove that, for some m ≥ 0, we have Rβ,m < Rβ,m+1 for each β > βc. From assumption (C1),
there exists N0 and ε≥� such that ψ(x) ≥ α(φ) + ε when x ≥ m>N0.
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Since R0,m = 1
2 , from (2.10) we obtain Rβ,m ≥ 1

2 exp (βε/2). On the other hand, if (C0) and
(C1) apply, the function ψ has a run of size at most �max ≤ N0 + 2 and therefore

√
c∞(�max) is

an upper bound for Rβ . A sufficient condition to get Rβ < Rβ,m for some m>N0 is

Rβ ≤ 1

2 cos (π/(�max + 1))
<

1

2
exp(βε/2) ≤ Rβ,m.

By choosing βc = −(2/ε) ln ( cos (π/(�max + 1)))> 0, we have

exp

(
βε

2

)
>

1

cos (π/(�max + 1))

for all β > βc, finishing the proof. �

Remark 3.2. Corollary 3.1 follows by using the same argument as in the proof of Theorem 3.1,
using the fact that, for all L> 0 large enough, we can find NL <∞ such that infx>NL ψ(x)> L.
This implies that, for all β >−(2/L) ln ( cos (π/(�max + 1)))> 0, the matrix Qβ is geometri-
cally ergodic. The proof finishes by letting L → ∞.

Proof of Theorem 3.2. We follow a similar approach to Theorem 3.1 with α(φ) = 0.
Under the main assumptions, there exists N0 ≥ 1 such that the function ψ(·) restricted to
[N0 + 1,∞) has a run of size at most �max − 1. By applying Proposition 3.1 to the matri-
ces Q[N0+1]

β and Qβ we get c∞
(
�

[N0+1]
max

)= limβ→∞ R2
β,N0+1 and c∞(�max) = limβ→∞ R2

β .

Clearly, c∞(�max)< c∞
(
�

[N0+1]
max

)
and thus, for all β large enough, R2

β ≤ c∞(�max)< R2
β,N0+1 ≤

c∞
(
�

[N0+1]
max

)
because Rβ and Rβ,N0+1 are non-decreasing on β. �

4. The existence of zero-temperature limits

This section is devoted to studying the existence of a weak limit for the family of equi-
librium measures (μβ (·))β>βc as β → ∞, which is equivalent to the convergence of the
finite-dimensional distributions. In the countable case, this is reduced to the existence of a
measure, say μ∞(·), such that μ∞(x̃) = limβ→∞ μβ (x̃) for each x̃ ∈�[i, j], i< j (more details
related to the convergence on probability measures can be found in [3]). Since pβ (x, y) = 0 if
|x − y| �= 1, we only need to show the existence of a limit for the stationary measure πβ (·) and
the transition probabilities given the recursive formula (2.3). The following proposition shows
the convergence of uβ (x) = pβ (x, x + 1), x ≥ 0.

Proposition 4.1. Assume that (C0) and (C1) hold, or that (C0) and (C1) hold with �max <∞.
For all x ≥ 1,

lim
β→∞ uβ (x)(1 − uβ (x + 1)) =

⎧⎨⎩0 ψ(x)>α(φ),

c∞(�max) ψ(x) = α(φ).

Proof. From (3.16) we know that R̃2
β = R2

β exp(−βα(φ)), where R̃2
β is the convergence

radius obtained with α(φ) = 0. By using Proposition 3.1 or 3.2 respectively, limβ→∞ R2
β

exp(−βα(φ)) = limβ→∞ R̃2
β = c∞(�max). If ψ(x) = α(φ), from (2.4) we deduce that

lim
β→∞ uβ (x)(1 − uβ (x + 1)) = lim

β→∞ R2
β exp(−βα(φ)) = c∞(�max).
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Similarly, if ψ(x) ≥ α(φ) +�,

0 ≤ lim sup
β→∞

uβ (x)(1 − uβ (x + 1)) ≤ lim
β→∞ R2

β exp(−βα(φ)) lim
β→∞ exp(−β�) = 0,

concluding the proof. �

Remark 4.1. If (C0) and (C1) hold, then

lim
β→∞

(
sup

x≥N0+1
uβ (x)

)
= 0. (4.1)

Since ψ(x) ≥ α(φ) +�, from (3.16) and Lemma 3.1 we have

R2
β exp(−ψ(x)) ≤ R̃2

β exp(−β�) ≤ c∞(�max) exp(−β�).

Combining this with (2.4) we get

0 ≤ uβ (x) = R2
β exp(−βψ(x))

1 − uβ (x + 1)
≤ c∞(�max) exp (−β�)

1 − uβ (x + 1)
, x ≥ N0 + 1. (4.2)

We now choose β ≥ β̃, with β̃ = −(1/�) ln (1/4c∞(�max))> 0, so that c∞(�max) exp(−β�) ≤
1
4 . By using the above inequality iteratively we have, for x ≥ N0 + 1, β ≥ β̃,

0 ≤ uβ (x) ≤ c∞(�max) exp(−β�)

1 − c∞(�max) exp(−β�)

1 − c∞(�max) exp(−β�)

1 − c∞(�max) exp(−β�)

· · ·

≤ 1/4

1 − 1/4

1 − 1/4

1 − 1/4

· · ·

= 1

2
.

In particular, 0 ≤ uβ (x + 1) ≤ 1
2 for all x ≥ N0 + 1. From (4.2), it follows that 0 ≤ uβ (x) ≤

2c∞(�max) exp(−β�) uniformly on x ≥ N0 + 1, β ≥ β̃. By letting β → ∞, we get (4.1) as
desired.

From (2.7), when α(φ) = 0 we see that, for each x̃ ∈�[0, 2n], n ≥ 1, such that x0 = x2n, the
equilibrium measure has the upper bound

μβ (x̃) ≤ πβ (x0)Rβ exp
(
−β max

0≤k≤2n
ψ(xk)

)
,

so that limβ→∞ μβ (x̃) = 0 if ψ(xk)> 0 for some 0 ≤ k ≤ 2n. Observe that when the conditions
of Proposition 3.1 or 3.2 are satisfied, if xk ∈ Ix0,� for all 1 ≤ k ≤ 2n, since Ix0,� is a run of size
� we have μβ (x̃) = πβ (x0)R2n

β , so that limβ→∞ μβ (x̃) = π∞(x0)(c∞(�max))n provided that the
limit π∞(·) exists. This means that the candidates to have strictly positive probability mass are
those trajectories restricted to R. The following theorem proves the tightness of the family of
stationary measures (πβ (·))β>βc under our main assumptions.

Theorem 4.1. Assume that the number of runs of size �max <∞ is finite. Let πβ (·) be the
stationary measure associated to Xβ , β > βc. Then, there exists a limiting probability measure
π∞(·) satisfying limβ→∞

∑∞
x=N0+2 πβ (x) = 0 for some N0 ≥ 0. In particular, π∞(x) = 0 for

all x ≥ N0 + 2.
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Proof. Let us recall first that, up to a constant (see, for instance, [1, Theorem 3.2]), the
stationary measure πβ (·) can be represented in the form

πβ (b) =Ea

( τa−1∑
k=0

1{Xβk =b}

)
=

∞∑
k=0

Pa(Xβk = b, τa > k). (4.3)

We denote by N0 + 1 the largest non-negative integer belonging to a run of size �max, which
is well defined since ψ has a finite number of runs with size �max <∞. We necessarily have
ψ(N0) = 0 and ψ(N0 + 1)> 0. From (4.3), by using a = N0 + 1 and by taking the sum over
b ≥ N0 + 2 it follows that

πβ ([N0 + 2,∞)) =EN0+1

( τN0+1−1∑
k=0

1{Xβk ≥N0+2}

)
.

Clearly, πβ (N0 + 1) = 1 for all β > βc. We remark that τN0+1 can take only even values. Now,
if τN0+1 = 2n for some n ≥ 1, in order to get at least one visit to the interval [N0 + 2,∞) we

need Xβ0 = Xβ2n = N0 + 1 and Xβk ≥ N0 + 2 for all 1 ≤ k ≤ 2n − 1, so that, for each fixed n ≥ 1,

EN0+1

(
2n−1∑
k=0

1{Xβk ≥N0+2,τN0+1=2n}

)
= exp(−βψ(N0 + 1))R2n

β Z [N0+2]
2n−2,β ,

where Z [N0+2]
2n−2,β was defined in (2.8). Therefore,

πβ ([N0 + 2,∞)) = R2
β exp(−βψ(N0 + 1))

∞∑
n=0

R2n
β Z [N0+2]

2n,β .

By noticing that Z [N0+2]
2n,β = R−2n

β,N0+2PN0+2
(
Xβ,[N0+2]

2n = N0 + 2
)
, where Xβ,[N0+2] is the Markov

chain associated to Q[N0+2]
β , we now get the inequality

πβ ([N0 + 2,∞)) ≤ R2
β exp(−βψ(N0 + 1))

∞∑
n=0

(
Rβ

Rβ,N0+2

)2n

. (4.4)

We claim that Rβ/Rβ,N0+2 ≤ κ for some κ < 1 and β large enough. If (C2) holds, from
Proposition 3.1 we have

lim
β→∞

R2
β

R2
β,N0+2

= c∞(�max)

c∞
(
�

[N0+2]
max

) < 1. (4.5)

If (C1) holds, we use the inequality Rβ,N0+2 ≥ 1
2 exp(β�/2) and Lemma 3.1 to deduce that

R2
β/R

2
β,N0+2 ≤ 4c∞(�max) exp(−β�). In both cases, there exists β̃ <∞ such that

κ2 := sup
β>β̃

R2
β

R2
β,N0+2

< 1.

By taking the limit β → ∞ in (4.4) we get
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lim
β→∞ πβ ([N0 + 2,∞)) ≤ 1

1 − κ2
lim
β→∞ R2

β exp(−βψ(N0 + 1)) = 0, (4.6)

concluding the proof. �

From Prokhorov’s theorem the existence of accumulation points for the sequence
(πβ (·))β>βc is guaranteed. On the other hand, our theorem implies that π∞(Ix0,�) = 0 for
each run of size � < �max. In fact, if we consider the finite and strictly sub-stochastic matrix
P̃β = (pβ (x, y) : x, y ∈ Ix0,�) with coefficients as in (2.2) and the stopping time τx0,x0+� =
min{τx0−1, τx0+�}, we have, for y ∈ Ix0,�, Px0

(
Xβn = y, τx0,x0+� > n

)= P̃(n)
β (x0, y). From the

Perron–Frobenius theorem, there exists an eigenvector h̃β > 0 and an eigenmeasure ν̃β > 0

such that, for each y ∈ Ix0,�, we get limn→∞ θ̃2n
β P̃(2n+�(x0,y))

β (x0, y) = h̃β (x0)ν̃β (y) for some

θ̃β < 1 (we recall that �(x0, y) = x0 − y (mod 2)). If we choose ν̃β satisfying
∑

y ν̃β (y) = 1
we also get

lim
n→∞ Px0

(
Xβ2n+�(x0,y) = y | τx0,x0+� > 2n +�(x0, y)

)= ν̃β (y).

Here, the parameter θ̃β = Rβ/
√

c∞(�) is the survival rate of the killed process X̃β =(
Xβn∧τx0,x0+� : n ≥ 0

)
. This means that, for large of values of β, the killed process X̃β has

a quasi-stationary distribution ν̃β with survival rate θ̃β . We know that if the assump-
tions of Proposition 3.1 or 3.2 are fulfilled, then limβ→∞ R2

β = c∞(�max) and consequently

limβ→∞ θ̃β = √
c∞(�max)/c∞(�)< 1 when � < �max. From the same analysis, we obtain, for

a run of size �max, that its survival rate satisfies limβ→∞ θ̃ �β = 1. Intuitively, for large values
of β, once the Markov chain is attracted for a run of �max, it will remain trapped there for a
long time. The same occurs for each run of size �max and this explains why π∞(·) gives strictly
positive mass to each of these runs of size �max.

5. Examples

In this section we review in more detail some particular examples that can be analyzed more
explicitly. Let us introduce first, for all x ≥ 0,

Fx(r) =Ex

((
r

Rβ

)τ0

1{τ0<∞}
)

=
∞∑

n=0

(
r

Rβ

)n

Px(τ0 = n), 0 ≤ r< Rβ .

For each fixed 0 ≤ r< Rβ , the sequence (Fx(r))x≥0 satisfies the recurrence formula

Fx(r) = re−βφ(x,x−1)Fx−1(r) + re−βφ(x,x+1)Fx+1(r), x ≥ 2, (5.1)

F1(r) = re−βφ(1,0) + re−βφ(1,2)F2(r), (5.2)

F0(r) = re−βφ(0,1)F1(r). (5.3)

Defining

Gx(r) = rFx(r)

Fx−1(r)
e−βφ(x−1,x),

from (5.2) and (5.3) we get

G1(r) = 1, F0(r) = r2e−βψ(0)

1 − G2(r)
. (5.4)
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From (5.1) we have

Gx+1(r) = 1 − r2e−βψ(x−1)

Gx(r)
, x ≥ 2. (5.5)

5.1. Example 1: Ultimately constant potential, case 1

We first consider the case ψ(0) = α, ψ(x) = α+�, x ≥ 1, for a pair of real values α, � ∈R.
This is a particular example of an ultimately constant potential, previously introduced in [8].
Note that, for x ≥ 2, we get the continued fraction

Gx(r) = r2e−β(α+�)

1 − Gx+1(r)
⇒ Gx(r) = r2e−β(α+�)

1 − r2e−β(α+�)

1 − r2e−β(α+�)

1 − r2e−β(α+�)

· · ·

. (5.6)

In particular, Gx(r) = G(r) is constant for all x ≥ 2, and this can be deduced by solving the
equation

G(r)(1 − G(r)) = r2e−β(α+�) ⇒ G(r) = 1 − √
1 − 4r2e−β(α+�)

2
, (5.7)

because from (5.6) we know that limr→0+ G(r) = 0. Recalling that ψ(0) = α, from (5.4) we
now deduce that

F0(r) = r2e−βα

1 − 1 − √
1 − 4r2e−β(α+�)

2

= eβ�
(

1 − √
1 − 4r2e−β(α+�)

2

)
.

Clearly, if �≤ 0, then F0(r) ≤ 1
2 eβ� ≤ 1

2 for all 0 ≤ r ≤ Rβ . Therefore, the matrix Qβ is
Rβ -transient for all β ≥ 0. When �> 0, the critical value βc = ln (2)/� is such that

Qβ is

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Rβ -transient if β < βc,

geometrically ergodic if β > βc,

Rβ -null recurrent if β = βc.

To prove this, we first remark that the convergence radius of Q[m]
β is Rβ,m = 1

2 e(β/2)(α+�) for

all m ≥ 1. Since Rβ ≤ Rβ,1, we automatically have F0(Rβ ) ≤F0(Rβ,1) = 1
2 eβ� < 1 for 0 ≤ β <

βc, so that Qβ is Rβ -transient. Similarly, for β = βc, we have F0(Rβ,1) = 1 and thus Rβ = Rβ,1,
giving F0(Rβ ) = 1 and consequently that Qβ is Rβ -recurrent. Recalling that limr→R−

β
F ′

0(r) =
E0(τ0), the null recurrence is deduced by taking the derivative

lim
r→R−

β

F ′
0(r) = lim

r→R−
β

eβ�

2

4re−β(α+�)

√
1 − 4r2e−β(α+�)

= lim
r→R−

β

2re−βα
√

1 − 4r2e−β(α+�)
= ∞.

Finally, for β > βc, we have F0(Rβ,1)> 1. The only option is Rβ < Rβ,1, therefore Qβ is
geometrically ergodic. The value of Rβ is the solution to the equation

eβ�
(

1 −
√

1 − 4R2
βe−β(α+�)

2

)
= 1, (5.8)
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giving R2
β = eβα(1 − e−β�). Since Qβ is Rβ -positive recurrent, for β > βc the main eigenvalue

is λβ = R−1
β =√

e−βα/(1 − e−β�).

Let us compute now the transition probabilities and the stationary measure of Xβ when
�> 0 and β > βc. Since Xβ is reflected at the origin, pβ (0, 1) = 1 for all β ≥ 0. To compute
uβ (x) for x ≥ 1 we use the recurrence formula (2.5):

uβ (x) = R2
βe−β(α+�)

1 − uβ (x + 1)
= R2

βe−β(α+�)

1 − R2
βe−β(α+�)

1 − R2
βe−β(α+�)

1 − R2
βe−β(α+�)

· · ·

, x ≥ 1. (5.9)

From (5.9), we observe that pβ <
1
2 is a solution to the equation pβ (1 − pβ ) = R2

βe−β(α+�), so

pβ =
1 −

√
1 − 4R2

βe−β(α+�)

2
= e−β�.

The last equality is deduced directly from (5.8). Obviously, pβ (x, x − 1) = 1 − e−β�. The
stationary measure πβ (x) is the solution to the recurrence formula

πβ (0) = (1 − e−β�)πβ (1),

πβ (1) = πβ (0) + (1 − e−β�)πβ (2),

πβ (x) = e−β�πβ (x − 1) + (1 − e−β�)πβ (x + 1), x ≥ 2.

A direct computation shows that

πβ (0) = 1

2

(
1 − e−β�

1 − e−β�

)
,

πβ (1) = 1

2(1 − e−β�)

(
1 − e−β�

1 − e−β�

)
,

πβ (x) = 1 − 2e−β�

2e−β�(1 − e−β�)

(
e−β�

1 − e−β�

)x

, x ≥ 2.

By taking the limit β → ∞ we notice that

lim
β→∞ πβ (0) = lim

β→∞ πβ (1) = 1

2
, lim

β→∞

∞∑
x=2

πβ (x) = lim
β→∞

e−β�

2(1 − e−β�)2
= 0.

In the limit β → ∞, the transition probabilities are p∞(0, 1) = 1 and p∞(x, x − 1) = 1, x ≥ 1.
This means that the limiting behavior of Xβ , denoted by X∞, is deterministic as β → ∞. If
the initial state is x ≥ 2, X∞ attains the value 1 after x − 1 steps and then oscillates between 0
and 1. This explains why the limiting stationary measure is π∞(0) = π∞(1) = 1

2 .

https://doi.org/10.1017/jpr.2023.59 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.59


Zero-temperature limits on nearest-neighbor matrices 575

5.2. Example 2: Ultimately constant potential, case 2

Related to the previous case, we now consider a potential such that ψ(x) = α, 0 ≤ x ≤ N0,
and α(x) = α +� for x ≥ N0 + 1 for some N0 ≥ 1 (case 1 is recovered by letting N0 = 0). From
similar arguments, for x ≥ N0 + 2 we find that Gx(r) = G(r) is constant and takes the same form
as (5.7).

Since ψ(N0) = α, from (5.5) we also get

GN0+1(r) = r2e−βα

1 − GN0+2(r)
.

From (5.7) we know that GN0+2(r) ≤ 1
2 , so GN0+1(r) ≤ 2r2e−βα ≤ 1

2 eβ�, because
4r2e−β(α+�) ≤ 1. When �≤ 0, from (5.5) it follows that Gx(r) ≤ 1

2 for all x ≥ 2 and
consequently, from (5.4), we deduce that F0(r) ≤ 1

2 for all 0 ≤ r ≤ Rβ . This implies that Qβ is
Rβ -transient for all β > 0. If �> 0, from Theorem 3.1 we know that there exists 0<βc <∞
such that Qβ is geometrically ergodic for all β > βc. In fact, by introducing the function

gβ (r, z) = r2e−βα/(1 − z) and g(n)
β (r, z) = gβ (r, g(n−1)

β (r, z)) for n ≥ 1, with the convention

g(0)
β (r, z) = z, we have, for β ≥ 0,

F0(Rβ ) = g(N0+1)
β (Rβ, G(Rβ )). (5.10)

Given β > 0, note that R2
β,x = 1

4 eβ(α+�) for x ≥ N0 + 1 and G( 1
2 eβ(α+�)/2

)= 1
2 . The critical

value βc can be specified through the equation

g(N0+1)
βc

(
1

2
eβc(α+�)/2,

1

2

)
= 1. (5.11)

For 0 ≤ β < βc we have

F0

(
1

2
eβ(α+�)/2

)
<F0

(
1

2
eβc(α+�)/2

)
= g(N0+1)

βc

(
1

2
eβc(α+�)/2,

1

2

)
= 1.

This means that R2
β = 1

4 eβ(α+�) for β ≤ βc, and hence Qβ cannot be geometrically ergodic.
More precisely, Qβ is Rβ -transient for 0 ≤ β < βc and Rβc -null recurrent for β = βc because
uβc (x) = 1

2 for x ≥ N0 + 1 (see (5.12)). For β > βc, Qβ is geometrically ergodic. This can veri-
fied assuming that R2

β,1 = 1
4 eβ(α+�) (otherwise is deduced in an obvious manner); from (5.11)

we have g(N0+1)
β

( 1
2 eβ(α+�)/2, 1

2

)
> 1 and (5.10) implies Rβ < Rβ,1 because F0(Rβ ) ≤ 1.

To analyze the asymptotic behavior as β → ∞, note that (5.9) applies for x ≥ N0 + 1 and
β > 0, and thus uβ (x) is a solution to the equation

uβ (x)(1 − uβ (x)) = R2
βe−β(α+�), x ≥ N0 + 1. (5.12)

Since Xβ is geometrically ergodic for β > βc, we get

uβ (x) =
1 −

√
1 − 4R2

βe−β(α+�)

2
:= pβ, x ≥ N0 + 1. (5.13)
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In addition,

uβ (x) = R2
βe−βα

1 − uβ (x + 1)
, 1 ≤ x ≤ N0, (5.14)

and uβ (0) = 1. The stationary distribution πβ (·) can be computed from the well-known formula
for x ≥ 1 (see [12, p. 78]):

πβ (x) =
(

x∏
k=1

pβ (k − 1, k)

pβ (k, k − 1)

)
πβ (0) =

(
x∏

k=1

uβ (k − 1)

1 − uβ (k)

)
πβ (0), (5.15)

where πβ (0) = 1 −∑∞
x=1 πβ (x). We now set u∞(x) = limβ→∞ uβ (x). If Q̃β is the matrix

obtained for α= 0, then R2(Qβ ) = eβαR2(Q̃β ) (see (3.16)). From Proposition 3.2 we have
limβ→∞ R2(Q̃β ) = c∞(N0 + 2), so

lim
β→∞ R2

βe−βα = c∞(N0 + 2). (5.16)

From (5.13) and (5.16) we get u∞(x) = 0 for x ≥ N0 + 1 (this was also shown in a more general
context in Remark 4.1). On the other hand, when 1 ≤ x ≤ N0, by letting β → ∞ in (5.14) we
deduce the recurrence formula

u∞(x) = c∞(N0 + 2)

1 − u∞(x + 1)
, 1 ≤ x ≤ N0, (5.17)

with u∞(N0 + 1) = 0. Finally, from (5.15) note that

πβ (N0 + j) =
( N0+j∏

k=N0+2

uβ (k − 1)

1 − uβ (k)

)
πβ (N0 + 1), j ≥ 2,

but uβ (N0 + j) = pβ for all j ≥ 1, hence

πβ (N0 + j) = πβ (N0 + 1)

(
pβ

1 − pβ

)j−1

, j ≥ 2.

Thus,

πβ ([N0 + 2,∞)) = πβ (N0 + 1)
∞∑

j=2

(
pβ

1 − pβ

)j−1

= πβ (N0 + 1)
pβ

1 − 2pβ
.

Since πβ (N0 + 1) ≤ 1 and limβ→∞ pβ = 0, we conclude that limβ→∞ πβ ([N0 + 2,∞)) = 0
(this is guaranteed by Theorem 4.1). For 0 ≤ x ≤ N0 + 1 the value of π∞(x) can be obtained
by direct computation combining (5.15) and (5.17) with the additional conditions u∞(0) = 1,
u∞(N0 + 1) = 0, and

∑N0+1
x=0 π∞(x) = 1.

5.3. Example 3: The periodical case

We assume ψ(x) =ψ(x + L), x ∈Z+, for some L ≥ 2, i.e. the function ψ(x) is periodic with
period L ≥ 2. Here, the interesting case is �max < L, because �max = L implies that ψ(x) is con-
stant. Since Q[x]

β = Q[x+L]
β for all x ≥ 0, from the definition of the convergence radius we have
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Rβ,x = Rβ,x+L for all x ∈Z
+. Recalling that the sequence Rβ,x is non-decreasing in x, we have

deduced that Rβ,x = Rβ is constant for all x ≥ 0. This means that the sequence of matrices Q[x]
β

is Rβ -transient for all x ≥ 1. Since Q[L]
β = Qβ , Qβ is Rβ -transient for all β ≥ 0. Note that in the

periodical case, if �max < L, we automatically get an infinite number of runs with size �max. The
existence of an equilibrium measure is discarded for all β > 0 and hence π∞(·) cannot exist.
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