BRAIDED MIXED DATUMS AND THEIR APPLICATIONS ON HOM-QUANTUM GROUPS

XIAOHUI ZHANG
School of Mathematical Sciences, Qufu Normal University,
Qufu 273165, P. R. China
e-mail: zxhhhhh@hotmail.com
and LIHONG DONG
College of Mathematics and Information Science, Henan Normal University, Xinxiang Henan 453007, P. R. China
e-mail: lihongdong2010@gmail.com

(Received 9 August 2016; revised 17 January 2017; accepted 18 February 2017; first published online 4 September 2017)

Abstract

In this paper, we mainly provide a categorical view on the braided structures appearing in the Hom-quantum groups. Let \mathcal{C} be a monoidal category on which F is a bimonad, G is a bicomonad, and φ is a distributive law, we discuss the necessary and sufficient conditions for $\mathcal{C}_{F}^{G}(\varphi)$, the category of mixed bimodules to be monoidal and braided. As applications, we discuss the Hom-type (co)quasitriangular structures, the Hom-Yetter-Drinfeld modules, and the Hom-Long dimodules.

2010 Mathematics Subject Classification. 16T25, 15W30.

1. Introduction. In 2006, Hartwig, Larsson, and Silvestrov introduced the HomLie algebras when they concerned about the q-deformations of Witt and Virasoro algebras (see [8]). Hom-associative algebras, the corresponding structure of associative algebras, were introduced by Makhlouf and Silvestrov in [14]. The associativity of a Hom-algebra is twisted by an endomorphism (here we call it the Hom-structure map). The generalized notions, Hom-bialgebras, Hom-Hopf algebras were developed in [$\mathbf{1 3}, \mathbf{1 5}, \mathbf{1 6}]$. Further research on various Hom-Lie structures and Hom-type algebras by many scholars could be found in $[\mathbf{1 0}, \mathbf{1 1}]$. Quasitriangular Hom-bialgebras were considered by Yau [21], which provided a solution of the quantum Hom-Yang-Baxter euqation, a twisted version of the quantum Yang-Baxter equation [22, 23].

An interesting question is to explain Hom-type algebras use the theory of monoidal categories. In 2011, in order to provide a categorical approach to Hom-type algebras, Caenepeel and Goyvaerts [6] introduced the notions of Hom-categories and monoidal Hom-Hopf algebras. In a Hom-category $\widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)$, the associativity and unit constraints are twisted by the Hom-structure maps. A (co)monoid in $\widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)$ is a Hom-(co)algebra, and a bimonoid in $\widetilde{\mathscr{H}}\left(\mathscr{M}_{k}\right)$ is a monoidal Hom-bialgebra (see Section 2, [6]). Note that a monoidal Hom-bialgebra is a Hom-bialgebra if and only if the Hom-structure map α satisfies $\alpha^{2}=i d$. Further, there is no monoidal category such that the Hom-bialgebra is a bimonoid in it. That is the main difference between Hom-bialgebra and monoidal Hom-bialgebra.

The aim of this paper is to provide a categorical view on the braided structures appearing in the Hom-quantum groups.

Let B be a bialgebra, ${ }_{B} \mathcal{M}$ the category of left B-modules. Obviously, the monoidal structure on ${ }_{B} \mathcal{M}$ is determined by the bialgebra structure on B. Furthermore, if ${ }_{B} \mathcal{M}$ is a braided category with the braiding t, then there is an R-matrix $R=t_{B, B}\left(1_{B} \otimes 1_{B}\right)$ on B such that (B, R) is quasitriangular. But in the Hom case, recall from Remark 2.7 [6], if (H, α) is a Hom-bialgebra (the monoidal Hom-bialgebra case can be discussed in the same way), H is not a generator in its representation category. That means, if ${ }_{H} \mathcal{M}$ is the category of left H-Hom-modules, and if we define $f_{m}: H \rightarrow M$ by $f_{m}(h)=h \cdot m$ for any $M \in{ }_{H} \mathcal{M}, m \in M$, then f_{m} is not H-linear. Thus, we cannot prove that $t_{H, H}\left(1_{H} \otimes 1_{H}\right)$ is a quasitriangular structure in H as the same way in the usual bialgebras.

The natural question is to ask how we describe the braided structure on ${ }_{H} \mathcal{M}$? If ${ }_{H} \mathcal{M}$ is braided, is there any relation between the braiding in ${ }_{H} \mathcal{M}$ and the Hombialgebra structure on H ? This is the motivation of the present paper.

In 2015, Zhang and Wang (see [24]) showed that the tensor functor of a Hombialgebra H is a bi(co)monad on a special monoidal category. Hence, we can use the theory of monoidal (co)monads to interpret the braided structures obtained from Hom-quantum groups.

In 2002, Moerdijk [17] used a comonoidal monad to define a bimonad. Although Moerdijk called his bimonad "Hopf monad", the antipode was not involved in his definition. In 2007, Bruguières and Virelizier [4] introduced the notion of Hopf monad with antipode in another direction, which is different from Moderijk. Because of their close connections with the monoidal structures, the theory of Bruguières and Virelizier had developed rapidly and got many fundamental achievements (see $[3,5]$).

Note that Beck [2] gave the notion of mixed distributive law which was the compatible condition for monads and comonads to be an entwining structure. Hobst and Pareigis [9] showed that the category of entwined modules over a field k could be made into a braided monoidal category if and only if there exists a k-linear morphism $\gamma: C \otimes C \rightarrow A \otimes A$ which satisfies some axioms. Since the entwined module can be seen as a mixed bimodule over a monad and a comonad, the braided structure over the mixed structure also could be summarized. Inspired by this conclusion, we introduce the notion of the braided mixed datum, which generalizes both quasitriangular bimonads (Section 8, [4]) and double quantum groups (Section 5, [9]), and give the examples and applications in Hom-quantum groups.

Further, one is prompted to answer several questions:

- Could a mixed sturcture admit the monoidal structure and the braided structure?
- Is it possible to characterize Hom-type braidings by mixed distributive laws?
- Does the mixed bimoduless can be view as the generalization of some Homtype modules such as Hom-(co)modules, Hom-Yetter-Drinfeld modules, Hom-Long dimodules?
- What is the necessary and sufficient condition for the category of the Hom(co)modules becomes a braided category?

The propose of this paper is to investigate these questions. Indeed, we find equivalent conditions to describe the braidings in the category of mixed bimodules. And finally, we use the Hom-type (co)quasitriangular structures, the braided structures in Hom-Yetter-Drinfeld modules and in the Hom-Long dimodules to verify our theory.

The paper is organized as follows. In Section 2, we first review some basic definitions such as bi(co)monads, distributive laws, and Hom-type algebras. In Section 3, we discuss the monoidal structure on $\mathcal{C}_{F}^{G}(\varphi)$, the category of mixed bimodules, and give some necessary and sufficient conditions of the property that $\mathcal{C}_{F}^{G}(\varphi)$ is a monoidal category. In Section 4, we find equivalent conditions to describe the braidings in $\mathcal{C}_{F}^{G}(\varphi)$.

As applications, in section 5, we discuss when the (co)representations category of a Hom-bialgebra is a braided monoidal category, and discuss the Hom-Yetter-Drinfeld modules and Hom-Long dimodules to verify our theory.
2. Preliminaries. Let \mathcal{C} be a category, $F, G: \mathcal{C} \rightarrow \mathcal{C}$ two functors. Recall from [20] that if there exist natural transformations $m: F F \rightarrow F$, and $\eta: i d_{\mathcal{C}} \rightarrow F$, satisfying

$$
m \circ m F=m \circ F m, \quad \text { and } i d_{F}=m \circ \eta F=m \circ F \eta,
$$

then we call the triple (F, m, η) a monad on \mathcal{C}. If there exist natural transformations δ : $G \rightarrow G G$, and $\varepsilon: G \rightarrow i d_{\mathcal{C}}$, such that the following identities hold:

$$
G \delta \circ \delta=\delta G \circ \delta, \text { and } i d_{G}=G \varepsilon \circ \delta=\varepsilon G \circ \delta,
$$

then we call the triple (G, δ, ε) a comonad on \mathcal{C}.
Let \mathcal{C} be a category, $A \in \mathcal{C}$, and (F, m, η) a monad on \mathcal{C}. If there exists a morphism $\theta_{A}: F A \rightarrow A$, such that

$$
\theta_{A} \circ m_{A}=\theta_{A} \circ F\left(\theta_{A}\right), \text { and } \theta_{A} \circ \eta_{A}=i d_{A},
$$

then we call the couple $\left(A, \theta_{A}\right)$ an F-module in \mathcal{C}.
A morphism between F-modules $f: A \rightarrow A^{\prime}$ is called F-linear in \mathcal{C}, if f satisfies: $\theta_{A^{\prime}} \circ F f=f \circ \theta_{A}$. The category of F-modules is denoted by \mathcal{C}_{F}.

Let \mathcal{C} be a category, $B \in \mathcal{C}$, and (G, δ, ε) a comonad on \mathcal{C}. If there exists a morphism $\rho^{B}: B \rightarrow G B$, satisfying

$$
G \rho^{B} \circ \rho^{B}=\delta_{B} \circ \rho^{B}, \text { and } \varepsilon_{B} \circ \rho^{B}=i d_{B},
$$

then we call the couple $\left(B, \rho^{B}\right)$ a G-comodule.
A morphism between G-comodules $g: B \rightarrow B^{\prime}$ is called G-colinear in \mathcal{C}, if g satisfies $G g \circ \rho^{B}=\rho^{B^{\prime}} \circ g$. The category of G-comodules is denoted by \mathcal{C}^{G}.

Let \mathcal{C} be a category on which (F, m, η) is a monad and (G, δ, ε) is a comonad. A natural transformation $\varphi: F G \rightarrow G F$ is called a mixed distributive law or an entwining map, if φ induces the following commutative diagrams:

For simplicity, we call (F, G, φ) a mixed structure on \mathcal{C}.
Example 2.1. Let A be an algebra, C a coalgebra over a commutative ring k. Then it is easy to check that $F=-\otimes A$ is a monad, $G=-\otimes C$ is a comonad on ${ }_{k} \mathcal{M}$. If we
define $\varphi: F G \rightarrow G F$ by

$$
\varphi_{X}: X \otimes C \otimes A \rightarrow X \otimes A \otimes C, x \otimes c \otimes a \mapsto x \otimes \phi(c \otimes a)
$$

where $\phi: C \otimes A \rightarrow A \otimes C$ is a k-linear map, then (F, G, φ) is a mixed structure if and only if (A, C, ϕ) is a right-right entwining structure over k.

Let \mathcal{C} be a category, (F, G, φ) a mixed structure, $M \in \mathcal{C},\left(M, \theta_{M}\right)$ an F-module, and $\left(M, \rho^{M}\right)$ a G-comodule. If the diagram

is commutative, then we call the triple $\left(M, \theta_{M}, \rho^{M}\right)$ a mixed bimodule or an entwined module.

A morphism between two mixed bimodules is called a bimodule morphism if it is both F-linear and G-colinear. The category of mixed bimodules is denoted by $\mathcal{C}_{F}^{G}(\varphi)$.

Let $(\mathcal{C}, \otimes, I, a, l, r)$ be a monoidal category, (F, m, η) a monad on \mathcal{C}, and F also an opmonoidal functor, which means that there exists a natural transformation F_{2} : $F \otimes \rightarrow F \otimes F$ (here, $F \otimes F$ denotes $\otimes \circ(F \times F)$) and a morphism $F_{0}: F(I) \rightarrow I$ in \mathcal{C}, such that for any $X, Y, Z \in \mathcal{C}$, the following equalities hold:

$$
\begin{aligned}
& \left(i d_{F(X)} \otimes F_{2}(Y, Z)\right) \circ F_{2}(X, Y \otimes Z) \circ F\left(a_{X, Y, Z}\right) \\
& \quad=a_{F X, F Y, F Z} \circ\left(F_{2}(X, Y) \otimes i d_{F(Z)}\right) \circ F_{2}(X \otimes Y, Z), \\
& \quad \begin{aligned}
F X & \circ \\
\quad & \left(d_{F(X)} \otimes F_{0}\right) \circ F_{2}(X, I) \circ F\left(r_{X}^{-1}\right) \\
\quad & =i d_{F(X)}=l_{F X}\left(F_{0} \otimes i d_{F(X)}\right) F_{2}(I, X) \circ F\left(l_{X}^{-1}\right) .
\end{aligned}
\end{aligned}
$$

Then recall from [4] (or "Hopf monad" in [17]) that F is called a bimonad (or an opmonoidal monad) on \mathcal{C} if the following identities hold:
$\left\{\begin{array}{l}(M 1)\left(m_{X} \otimes m_{Y}\right) \circ F_{2}(F X, F Y) \circ F\left(F_{2}(X, Y)\right)=F_{2}(X, Y) \circ m_{X \otimes Y} ; \\ (M 2) F_{2}(X, Y) \circ \eta_{X \otimes Y}=\eta_{X} \otimes \eta_{Y} ; \\ (M 3) F_{0} \circ F\left(F_{0}\right)=F_{0} \circ m_{I} ; \\ (M 4) F_{0} \circ \eta_{I}=i d_{I} .\end{array}\right.$
Note that if F is a bimonad on \mathcal{C}, then \mathcal{C}_{F} is a monoidal category with the monoidal structure

$$
\theta_{M \otimes N}: F(M \otimes N) \xrightarrow{F_{2}(M, N)} F M \otimes F N \xrightarrow{\theta_{M} \otimes \theta_{N}} M \otimes N
$$

for any $\left(M, \theta_{M}\right),\left(N, \theta_{N}\right) \in \mathcal{C}_{F}$, and with monoidal unit $\left(I, F_{0}\right) \in \mathcal{C}_{F}$.
Let $(\mathcal{C}, \otimes, I, a, l, r)$ be a monoidal category, (G, δ, ε) a comonad on \mathcal{C}, and G also a monoidal functor, i.e., there exists a natural transformation $G_{2}: G \otimes G \rightarrow G \otimes$ and a morphism $G_{0}: I \rightarrow G(I)$ in \mathcal{C}, such that for any $X, Y, Z \in \mathcal{C}$, the following equations
hold:

$$
\begin{aligned}
G_{2}(X, Y & \otimes Z) \circ\left(i d_{G(X)} \otimes G_{2}(Y, Z)\right) \circ a_{G X, G Y, G Z} \\
& =G\left(a_{X, Y, Z}\right) \circ G_{2}(X \otimes Y, Z) \circ\left(G_{2}(X, Y) \otimes i d_{G(Z)}\right), \\
G\left(r_{X}\right) & \circ G_{2}(X, I) \circ\left(i d_{G(X)} \otimes G_{0}\right) \circ r_{G X}^{-1} \\
& =i d_{G(X)}=G\left(l_{X}\right) \circ G_{2}(I, X) \circ\left(G_{0} \otimes i d_{G(X)}\right) \circ l_{G X}^{-1} .
\end{aligned}
$$

Then recall from [4] that G is called a bicomonad (or a monoidal comonad) on \mathcal{C} if the following identities hold:
$\left\{\begin{array}{l}(C 1) G\left(G_{2}(X, Y)\right) \circ G_{2}(G X, G Y) \circ\left(\delta_{X} \otimes \delta_{Y}\right)=\delta_{X \otimes Y} \circ G_{2}(X, Y) ; \\ (C 2) \varepsilon_{X \otimes Y} \circ G_{2}(X, Y)=\varepsilon_{X} \otimes \varepsilon_{Y} ; \\ (C 3) G\left(G_{0}\right) \circ G_{0}=\delta_{I} \circ G_{0} ; \\ (C 4) \varepsilon_{I} \circ G_{0}=i d_{I} .\end{array}\right.$
Note that if G is a bicomonad on \mathcal{C}, then \mathcal{C}^{G} is a monoidal category with the monoidal structure

$$
\rho^{M \otimes N}: M \otimes N \xrightarrow{\rho^{M} \otimes \rho^{N}} G M \otimes G N \xrightarrow{G_{2}(M, N)} G(M \otimes N),
$$

for any $\left(M, \rho^{M}\right),\left(N, \rho^{N}\right) \in \mathcal{C}^{G}$, and with monoidal unit $\left(I, G_{0}\right) \in \mathcal{C}^{G}$.
3. The monoidal structure in $\mathcal{C}_{F}^{G}(\varphi)$. Throughout this section, assume that $(\mathcal{C}, \otimes, I, a, l, r)$ is a monoidal category on which (F, m, η) is a bimonad and (G, δ, ε) is a bicomonad such that (F, G, φ) is a mixed structure.

Notice that for any $X \in \mathcal{C}$, if we define

$$
\theta_{F G X}: F F G X \xrightarrow{m_{G X}} F G X
$$

and

$$
\rho^{F G X}: F G X \xrightarrow{F\left(\delta_{X}\right)} \not F G G X \xrightarrow{\varphi_{G X}} G F G X,
$$

then it is easy to check that $\left(F G X, \theta_{F G X}, \rho^{F G X}\right) \in \mathcal{C}_{F}^{G}(\varphi)$.
Lemma 3.1. Let $\left(M, \theta_{M}, \rho^{M}\right)$ and $\left(N, \theta_{N}, \rho^{N}\right)$ be objects in $\mathcal{C}_{F}^{G}(\varphi)$. If the F-action $\theta_{M \otimes N}$ and G-coaction $\rho^{M \otimes N}$ on $M \otimes N$ are given by

$$
\theta_{M \otimes N}: F(M \otimes N) \xrightarrow{F_{2}(M, N)} F M \otimes F N \xrightarrow{\theta_{M} \otimes \theta_{N}} M \otimes N
$$

and

$$
\rho^{M \otimes N}: M \otimes N \xrightarrow{\rho^{M} \otimes \rho^{N}} G M \otimes G N \xrightarrow{G_{2}(M, N)} G(M \otimes N),
$$

then $\left(\mathcal{C}_{F}^{G}(\varphi), \otimes, I, a, l, r\right)$ is a monoidal category if and only if (F, G, φ) satisfies the following equations for any $X, Y \in \mathcal{C}$:
(a) $G F_{2}(X, Y) \circ \varphi_{X \otimes Y} \circ F G_{2}(X, Y)=G_{2}(F X, F Y) \circ\left(\varphi_{X} \otimes \varphi_{Y}\right) \circ F_{2}(G X, G Y)$;
(b) $G\left(F_{0}\right) \circ \varphi_{I} \circ F\left(G_{0}\right)=G_{0} \circ F_{0}$.

Proof. \Rightarrow): By the assumption, we have $\left(F G X \otimes F G Y, \theta_{F G X \otimes F G Y}, \rho^{F G X \otimes F G Y}\right)$ is a mixed bimodule for any $X, Y \in \mathcal{C}$, i.e.

$$
\begin{aligned}
& G_{2}(F G X, F G Y) \circ\left(\varphi_{G X} \otimes \varphi_{G Y}\right) \circ\left(F \delta_{X} \otimes F \delta_{Y}\right) \\
& \quad \circ\left(m_{G X} \otimes m_{G Y}\right) \circ F_{2}(F G M, F G Y) \\
& =G\left(m_{G X} \otimes m_{G Y}\right) \circ G F_{2}(F G X, F G Y) \circ \varphi_{F G X \otimes F G Y} \circ F G_{2}(F G X, F G Y) \\
& \quad \circ F\left(\varphi_{G X} \otimes \varphi_{G Y}\right) \circ F\left(F \delta_{X} \otimes F \delta_{Y}\right) .
\end{aligned}
$$

Multiplied by $G\left(F \varepsilon_{X} \otimes F \varepsilon_{Y}\right)$ left and by $F\left(\eta_{G X}\right) \otimes F\left(\eta_{G Y}\right)$ right on both sides of the above identity, we immediately get the conclusion (a). Since $\left(I, F_{0}, G_{0}\right) \in \mathcal{C}_{F}^{G}(\varphi)$, one can see that (b) holds.
$\Leftarrow)$: First, assume that $\left(M, \theta_{M}, \rho^{M}\right),\left(N, \theta_{N}, \rho^{N}\right) \in \mathcal{C}_{F}^{G}(\varphi)$, it is easy to show that $\left(M \otimes N, \theta_{M \otimes N}\right) \in \mathcal{C}_{F}$ and $\left(M \otimes N, \rho^{M \otimes N}\right) \in \mathcal{C}^{G}$. Then from the following commutative diagram

we get that $\left(M \otimes N, \theta_{M \otimes N}, \rho^{M \otimes N}\right) \in \mathcal{C}_{F}^{G}(\varphi)$ is also a mixed bimodule.
Second, from the assumption (b), one can easily get $\left(I, F_{0}, G_{0}\right) \in \mathcal{C}_{F}^{G}(\varphi)$.
Third, since F is opmonoidal and G is monoidal, we immediately get that the coherence morphisms a, l, r lift to morphisms in $\mathcal{C}_{F}^{G}(\varphi)$. Then, $\left(\mathcal{C}_{F}^{G}(\varphi), \otimes, I, a, l, r\right)$ is a monoidal category.

Recall from [19] and [20], if \mathbb{C} denotes any 2-category, then the following data forms the 2-category of monads, which is denoted by $\operatorname{Mnd}(\mathbb{C})$:

- The 0 -cell contains an object X, a 1-cell $S: X \rightarrow X$ in \mathbb{C}, together with the multiplication $m: S S \rightarrow S$, and the unit $\eta: 1_{X} \rightarrow S$, which satisfy the associative law and the unit law, respectively.
- The 1-cell in $\operatorname{Mnd}(\mathbb{C})$ from (X, S, m, η) to $\left(X^{\prime}, S^{\prime}, m^{\prime}, \eta^{\prime}\right)$ is a 1-cell $J: X \rightarrow X^{\prime}$ in \mathbb{C} together with a 2 -cell $j: S^{\prime} J \Rightarrow J S$ in \mathbb{C}, satisfying the following commutative diagrams:

- The 2-cell in $\operatorname{Mnd}(\mathbb{C})$ from (J, j) to (K, k) is a 2-cell $\varrho: J \Rightarrow K$ in \mathbb{C} which satisfies the equation

$$
\varrho S \circ j=k \circ S^{\prime} \varrho .
$$

Let $\mathbf{S}=(X, S, m, \eta)$ and $\mathbf{S}^{\prime}=\left(X^{\prime}, S^{\prime}, m^{\prime}, \eta^{\prime}\right)$ be 0 -cells in $\operatorname{Mnd}(\mathbb{C})$. We say a 1-cell $J: X \rightarrow X^{\prime}$ lifts to a 1 -cell $\bar{J}: X_{\mathbf{S}} \rightarrow X_{\mathbf{S}^{\prime}}^{\prime}$ if the following diagram commutes:

where U means the underlying functor.
Suppose both 1-cells $J, K: X \rightarrow X^{\prime}$ lifts to J^{\prime}, K^{\prime}, respectively. We say a 2 -cell $\varrho: J \Rightarrow K$ lifts to a 2 -cell $\bar{\varrho}$ if the equation $U^{\mathbf{S}^{\prime}} \bar{\varrho}=\varrho U^{\mathbf{S}}$ holds.

Dually, we have the following 2-category $\operatorname{Cmd}(\mathbb{C})$ of comonads:

- The 0 -cell contains an object Y, a 1-cell $T: Y \rightarrow Y$ in \mathbb{C}, together with the comultiplication $\delta: T \rightarrow T T$, and the counit $\epsilon: T \rightarrow 1_{Y}$, which satisfies the coassociative law and the counit law, respectively.
- The 1-cell in $\operatorname{Cmd}(\mathbb{C})$ from (Y, T, δ, ϵ) to $\left(Y^{\prime}, T^{\prime}, \delta^{\prime}, \epsilon^{\prime}\right)$ is a 1-cell $W: Y \rightarrow Y^{\prime}$ in \mathbb{C} together with a 2-cell $w: W T \Rightarrow T^{\prime} W$ in \mathbb{C}, satisfying

$$
\delta^{\prime} W \circ w=T^{\prime} w \circ w T \circ W \delta, \quad \text { and } \quad \epsilon^{\prime} W \circ w=W \epsilon .
$$

- The 2-cell in $\operatorname{Cmd}(\mathbb{C})$ from (W, w) to (V, v) is a 2 -cell $\chi: W \Rightarrow V$ in \mathbb{C} which satisfies

$$
v \circ \chi T=T^{\prime} \chi \circ w
$$

Let $\mathbf{T}=(Y, T, \delta, \epsilon)$ and $\mathbf{T}^{\prime}=\left(Y^{\prime}, T^{\prime}, \delta^{\prime}, \epsilon^{\prime}\right)$ be 0 -cells in $\mathbf{C m d}(\mathbb{C})$. We say a 1-cell $W: Y \rightarrow Y^{\prime}$ lifts to a 1-cell $\bar{W}: Y^{\mathbf{T}} \rightarrow Y^{\prime \mathbf{T}^{\prime}}$ if the following diagram commutes:

where U means the underlying functor.
Suppose both 1-cells $W, V: Y \rightarrow Y^{\prime}$ lifts to W^{\prime}, V^{\prime}, respectively. We say a 2 -cell $\chi: W \Rightarrow V$ lifts to a 2 -cell $\bar{\chi}$ if the equation $U^{\mathbf{T}^{\prime}} \bar{\chi}=\chi U^{\mathbf{T}}$ holds.

Similarly, the following data forms a 2-category $\operatorname{Dist}(\mathbb{C})$ of the distributive laws:

- The 0 -cell (X, T, D, ν) consists of an object X of \mathbb{C}, a monad T on X, a comonad D on X, and a 2-cell $v: T D \Rightarrow D T$ in \mathbb{C} which is a distributive law.
- The 1-cell $\left(J, j_{t}, j_{d}\right):(X, T, D, v) \rightarrow\left(X^{\prime}, T^{\prime}, D^{\prime}, \nu^{\prime}\right)$ consists of a 1-cell $J: X \rightarrow$ X^{\prime} in \mathbb{C}, together with 2-cells $j_{t}: T^{\prime} J \Rightarrow J T$ and $j_{d}: J D \Rightarrow D^{\prime} J$, where j_{t} is a monad law and j_{d} is a comonad law in \mathbb{C}, and satisfies the following diagram:

- The 2-cell $\varpi:\left(J, j_{t}, j_{d}\right) \Rightarrow\left(H, h_{t}, h_{d}\right)$, where $\varpi: J \Rightarrow H$ is a 2 -cell in \mathbb{C}, and satisfies

Use the definition of $\operatorname{Mnd}(\mathbb{C}), \mathbf{C m d}(\mathbb{C})$, and $\operatorname{Dist}(\mathbb{C})$, we get the following theorem.
Theorem 3.2. The following statements are equivalent:
(1) $\left(\mathcal{C}_{F}^{G}(\varphi), \otimes, I, a, l, r\right)$ is a monoidal category.
(2) The equations (a) and (b) in Lemma 3.1 hold.
(3) $G_{2}:\left(G \otimes G,(\varphi \otimes \varphi) \circ F_{2}(G, G)\right) \Rightarrow\left(G \otimes, G F_{2} \circ(\varphi \otimes)\right) \quad$ and $\quad G_{0}:\left(I, F_{0}\right) \Rightarrow$ $\left(G I, G F_{0} \circ \varphi_{I}\right)$ are 2-cells in the 2-category $\operatorname{Mnd}(\mathbb{C})$.
(4) $G_{2}: G \otimes G \Rightarrow G \otimes: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$ lifts to a 2 -cell $\overline{G_{2}}: \overline{G \otimes G} \Rightarrow \overline{G \otimes}$ such that $U_{F \times F} \circ \overline{G_{2}}=G_{2} \circ U_{F}$ and $G_{0}: I \Rightarrow G I: \Im \rightarrow \mathcal{C}$ lifts to a 2 -cell $\overline{G_{0}}: \bar{I} \Rightarrow \overline{G I}$ such that $U_{i d_{J}} \circ \overline{G_{0}}=G_{0} \circ U_{F}$, where U is the forgetful functor.
(5) $F_{2}:\left(F \otimes,(\varphi \otimes) \circ\left(F G_{2}\right)\right) \Rightarrow\left(F \otimes F, G_{2}(F, F) \circ(\varphi \otimes \varphi)\right) \quad$ and $\quad F_{0}:\left(F I, \varphi_{I} \circ\right.$ $\left.\left(F G_{0}\right)\right) \Rightarrow\left(I, G_{0}\right)$ are 2-cells in the 2-category $\mathbf{C m d}(\mathbb{C})$.
(6) $F_{2}: F \otimes \Rightarrow F \otimes F: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$ lifts to a 2 -cell $\overline{F_{2}}: \overline{F \otimes} \Rightarrow \overline{F \otimes F}$ such that $U^{G \times G} \circ \overline{F_{2}}=F_{2} \circ U^{G}$ and $F_{0}: F I \Rightarrow I: \mathfrak{I} \rightarrow \mathcal{C}$ lifts to a 2-cell $\overline{F_{0}}: \overline{F I} \Rightarrow \bar{I}$ such that $U^{i d_{J}} \circ \overline{F_{0}}=F_{0} \circ U^{G}$.
(7) $\left(\otimes, F_{2}, G_{2}\right)$ and $\left(I, F_{0}, G_{0}\right)$ are 1-cells in $\mathbf{D i s t}(\mathbb{C})$.

Proof. From Lemma 3.1, (1) and (2) are equivalent. Further, it is a direct computation to check that the conditions (3) (resp. (5), resp. (7)) hold if and only if (2) holds. Finally, by Corollary 3.11, [19], (3) is equivalent to (4). Similarly, by Corollary 5.11, [19], (5) is equivalent to (6).

Definition 3.3. We call (F, G, φ) a monoidal mixed datum if (F, G, φ) is a mixed structure and the properties in Theorem 3.2 hold.

Example 3.4. In the setting of Example 2.1, if A and C are both bialgebras over k, then (F, G, φ) is a monoidal mixed structure if and only if (A, C, ϕ) is a monoidal entwining structure (see Section 4, [9]).

4. The braided structure in $\mathcal{C}_{F}^{G}(\varphi)$.

4.1. Convolution product. Given a category \mathcal{C} and a positive integer n, we denote $\mathcal{C}^{n}=\mathcal{C} \times \mathcal{C} \times \cdots \times \mathcal{C}$ the n-tuple cartesian product of \mathcal{C}. If F is a monad, G is a comonad on \mathcal{C}, then $F^{\times n}$ (the n-tuple cartesian product of F) is a monad, and $G^{\times n}$ is a comonad on \mathcal{C}^{n}, and we have $\mathcal{C}_{F^{\times n}}^{n}=\left(\mathcal{C}_{F}\right)^{n}, \mathcal{C}^{n G^{\times n}}=\left(\mathcal{C}^{G}\right)^{n}$. Furthermore, if $\varphi: F G \rightarrow$ $G F$ is a mixed distributive law, then $\mathcal{C}^{n} G_{F \times n}^{\times n}\left(\varphi^{\times n}\right)=\mathcal{C}_{F}^{G}(\varphi)^{n}$.

Assume that (F, m, η) is a monad, (G, δ, ε) is a comonad on $\mathcal{C},(F, G, \varphi)$ is a mixed structure, and $U: \mathcal{C}_{F}^{G}(\varphi) \rightarrow \mathcal{C}$ is the forgetful functor. Let $P, Q: \mathcal{C}^{n} \rightarrow \mathcal{D}$ be functors. Then we have the following result which generalizes Lemma 1.3 [4].

Proposition 4.1. There is a canonical bijection:

$$
\operatorname{Nat}\left(P U^{\times n}, Q U^{\times n}\right) \cong \operatorname{Nat}\left(P G^{\times n}, Q F^{\times n}\right)
$$

Proof. Define ? ${ }^{\text {b }}: \operatorname{Nat}\left(P U^{\times n}, Q U^{\times n}\right) \rightarrow \operatorname{Nat}\left(P G^{\times n}, Q F^{\times n}\right), f \mapsto f^{b}$ by

$$
f_{\left(X_{1}, \ldots, X_{n}\right)}^{b}:=Q\left(F \varepsilon_{X_{1}}, \ldots, F \varepsilon_{X_{n}}\right) \circ f_{\left(F G X_{1}, \ldots, F G X_{n}\right)} \circ P\left(\eta_{G X_{1}}, \ldots, \eta_{G X_{n}}\right)
$$

and $?^{\sharp}: \operatorname{Nat}\left(P G^{\times n}, Q F^{\times n}\right) \rightarrow \operatorname{Nat}\left(P U^{\times n}, Q U^{\times n}\right), \alpha \mapsto \alpha^{\sharp}$ by

$$
\alpha_{\left(M_{1}, \ldots, M_{n}\right)}^{\sharp}:=Q\left(\theta_{M_{1}}, \cdots, \theta_{M_{n}}\right) \circ \alpha_{\left(M_{1}, \ldots, M_{n}\right)} \circ P\left(\rho^{M_{1}}, \ldots, \rho^{M_{n}}\right)
$$

for any $f \in \operatorname{Nat}\left(P U^{\times n}, Q U^{\times n}\right), \alpha \in \operatorname{Nat}\left(P G^{\times n}, Q F^{\times n}\right)$, and $X_{i} \in \mathcal{C},\left(M_{i}, \theta_{M_{i}}, \rho^{M_{i}}\right) \in$ $\mathcal{C}_{F}^{G}(\varphi)$. It is easy to check that ? ${ }^{\text {b }}$ and $?^{\sharp}$ are well defined.

Then from the following diagram

we obtain $\alpha_{\left(X_{1}, \ldots, X_{n}\right)}^{\sharp \square}=\alpha_{\left(X_{1}, \ldots, X_{n}\right)}$. Similarly, we also have $f_{\left(M_{1}, \ldots, M_{n}\right)}^{\triangleright \sharp}=f_{\left(M_{1}, \ldots, M_{n}\right)}$. Hence, ? ${ }^{\sharp}$ and ? are inverse to each other.

Let $P, Q, R: \mathcal{C}^{n} \rightarrow \mathcal{D}$ be functors. For any $\alpha \in \operatorname{Nat}\left(P G^{\times n}, Q F^{\times n}\right)$ and $\beta \in$ $\operatorname{Nat}\left(Q G^{\times n}, R F^{\times n}\right)$, define their convolution product $\beta * \alpha \in \operatorname{Nat}\left(P G^{\times n}, R F^{\times n}\right)$ by setting, for any objects X_{1}, \ldots, X_{n} in \mathcal{C},

$$
\begin{aligned}
& (\beta * \alpha)_{\left(X_{1}, \ldots, X_{n}\right)} \\
= & R\left(m_{X_{1}}, \ldots, m_{X_{n}}\right) \circ \beta_{F X_{1}, \ldots, F X_{n}} \circ Q\left(\varphi_{X_{1}}, \ldots, \varphi_{X_{n}}\right) \circ \alpha_{G X_{1}, \ldots, G X_{n}} \circ P\left(\delta_{X_{1}}, \ldots, \delta_{X_{n}}\right) .
\end{aligned}
$$

We say that $\alpha \in \operatorname{Nat}\left(P G^{\times n}, Q F^{\times n}\right)$ is $*$-invertible if there exists $\beta \in \operatorname{Nat}\left(Q G^{\times n}, P F^{\times n}\right)$ such that $\beta * \alpha=P \eta \circ P \varepsilon$ and $\alpha * \beta=Q \eta \circ Q \varepsilon$. We denote β by α^{*-1}.

Proposition 4.2. The $*$-invertible elements in $\operatorname{Nat}\left(P G^{\times n}, Q F^{\times n}\right)$ are in corresponding with the natural isomorphisms in $\operatorname{Nat}\left(P U^{\times n}, G U^{\times n}\right)$.

Proof. Suppose that $f \in \operatorname{Nat}\left(P U^{\times n}, G U^{\times n}\right)$ is a natural isomorphism. Then we immediately get that f^{b} has a $*$-inverse $\left(f^{-1}\right)^{b}$.

Conversely, if $\alpha \in \operatorname{Nat}\left(P G^{\times n}, Q F^{\times n}\right)$ is $*$-invertible, then $\left(\alpha^{*-1}\right)^{\sharp}$ is the inverse element of α^{\sharp}.
4.2. The braidings. Throughout this section, assume that $(\mathcal{C}, \otimes, I, a, l, r)$ is a monoidal category in which (F, G, φ) is a monoidal mixed datum.

Recall that a braiding in \mathcal{C} is a natural isomorphism $t: \otimes \Rightarrow \otimes^{o p}: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$ such that the following diagrams

are commutative for any $U, V, W \in \mathcal{C}$.
We suppose that there is a natural transformation $\sigma: G \otimes G \Rightarrow F \otimes^{o p} F: \mathcal{C}^{\times 2} \rightarrow$ \mathcal{C}. From Proposition 4.1, for any objects M, N in $\mathcal{C}_{F}^{G}(\varphi), \sigma$ can induce a natural transformation

$$
\begin{equation*}
t_{M, N}=\sigma_{M, N}^{\sharp}: M \otimes N \xrightarrow{\rho^{M} \otimes \rho^{N}} G M \otimes G N \xrightarrow{\sigma_{M, N}} F N \otimes F M \xrightarrow{\theta_{N} \otimes \theta_{M}} N \otimes M . \tag{4.1}
\end{equation*}
$$

Conversely, if there is a natural transformation $t: \otimes \Rightarrow \otimes^{o p}: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$, then from Proposition 4.1, for any $X, Y \in \mathcal{C}, t$ can induce a natural transformation

$$
\begin{equation*}
\sigma_{X, Y}=t_{X, Y}^{b}: G X \otimes G Y \xrightarrow{\eta_{G X} \otimes \eta_{G Y}} F G X \otimes F G Y \xrightarrow{t_{F G X, F G Y}} F G Y \otimes F G X \xrightarrow{F \varepsilon_{Y} \otimes F \varepsilon_{X}} F Y \otimes F X . \tag{4.2}
\end{equation*}
$$

Next, we will discuss when t is a braiding in $\mathcal{C}_{F}^{G}(\varphi)$.
Definition 4.3. Let (F, m, η) be a bimonad, (G, δ, ε) a bicomonad on a monoidal category \mathcal{C}, and (F, G, φ) a monoidal mixed datum. If there is a $*$-invertible natural transformation $\sigma \in \operatorname{Nat}\left(G \otimes G, F \otimes^{o p} F\right)$, satisfying the following identities for any $X, Y, Z \in \mathcal{C}$

$$
\left\{\begin{array}{l}
\left(m_{Y} \otimes m_{X}\right) \circ \sigma_{F X, F Y} \circ\left(\varphi_{X} \otimes \varphi_{Y}\right) \circ F_{2}(G X, G Y)=\left(m_{Y} \otimes m_{X}\right) \circ F_{2}(F Y, F X) \\
\quad \circ F\left(\sigma_{X, Y}\right) ; \\
G\left(\sigma_{X, Y}\right) \circ G_{2}(G X, G Y) \circ\left(\delta_{X} \otimes \delta_{Y}\right)=G_{2}(F Y, F X) \circ\left(\varphi_{Y} \otimes \varphi_{X}\right) \circ \sigma_{G X, G Y} \\
\quad \circ\left(\delta_{X} \otimes \delta_{Y}\right) ; \\
\left(i d_{F Y} \otimes i d_{F Z} \otimes m_{X}\right) \circ\left(i d_{F Y} \otimes \sigma_{F X, Z}\right) \circ a_{F Y, G F X, G Z} \circ\left(i d_{F Y} \otimes \varphi_{X} \otimes i d_{G Z}\right) \\
\quad \circ\left(\sigma_{G X, Y} \otimes i d_{G Z}\right) \circ\left(\delta_{X} \otimes i d_{G Y} \otimes i d_{G Z}\right) \\
=a_{F Y, F Z, F X} \circ\left(F_{2}(Y, Z) \otimes i d_{F X}\right) \circ \sigma_{X, Y \otimes Z} \circ\left(i d_{G X} \otimes G_{2}(Y, Z)\right) \circ a_{G X, G Y, G Z} ; \\
\left(m_{Z} \otimes i d_{F X} \otimes i d_{F Y}\right) \circ\left(\sigma_{X, F Z} \otimes i d_{F Y}\right) \circ\left(i d_{G X} \otimes \varphi_{Z} \otimes i d_{F Y}\right) \circ a_{G X, F G Z, F Y}^{-1} \\
\circ\left(i d_{G X} \otimes \sigma_{Y, G Z}\right) \circ\left(i d_{G X} \otimes i d_{G Y} \otimes \delta_{Z}\right) \tag{4.6}\\
\quad=a_{F Z, F X, F Y}^{-1} \circ\left(i d_{F X} \otimes F_{2}(X, Y)\right) \circ \sigma_{X \otimes Y, Z} \circ\left(G_{2}(X, Y) \otimes i d_{G Z}\right) \circ a_{G X, G Y, G Z}^{-1},
\end{array}\right.
$$

then the quadruple (F, G, φ, σ) is called a braided mixed datum.
Theorem 4.4. Let (F, m, η) be a bimonad, (G, δ, ε) a bicomonad on a monoidal category \mathcal{C}, and (F, G, φ) a monoidal mixed datum. Then, $\mathcal{C}_{F}^{G}(\varphi)$ is a braided monoidal category if and only if there exists a natural transformation $\sigma: G \otimes G \rightarrow F \otimes^{o p} F$ such that (F, G, φ, σ) is a braided mixed datum. Moreover, the braiding in $\mathcal{C}_{F}^{G}(\varphi)$ is $t=\sigma^{\sharp}$.

To prove Theorem 4.4, we need the following lemmas.

Lemma 4.5. t is F-linear if and only if σ satisfies equation (4.3) for any $X, Y \in \mathcal{C}$.

Proof. $\Leftarrow)$: Since the following diagram

is commutative for any $M, N \in \mathcal{C}_{F}^{G}(\varphi), t_{M, N}$ is F-linear.
$\Rightarrow)$: Notice that $t_{F G X, F G Y}$ is F-linear for any $X, Y \in \mathcal{C}$, then it follows

$$
\begin{aligned}
& \left(m_{G Y} \otimes m_{G X}\right) \circ F_{2}(F G Y, F G X) \circ F\left(m_{G Y} \otimes m_{G X}\right) \circ F\left(\sigma_{F G X, F G Y}\right) \\
& \quad \circ F\left(\varphi_{G X} \otimes \varphi_{G Y}\right) \circ F\left(F \delta_{X} \otimes F \delta_{Y}\right) \\
& =\left(m_{G Y} \otimes m_{G X}\right) \circ \sigma_{F G X, F G Y} \circ\left(\varphi_{G X} \otimes \varphi_{G Y}\right) \circ\left(F \delta_{X} \otimes F \delta_{Y}\right) \\
& \quad \circ\left(m_{G X} \otimes m_{G Y}\right) \circ F_{2}(F G X, F G Y) .
\end{aligned}
$$

On the one hand, by constructing the suitable commutative diagram, we have

On the other hand, we compute

Comparing the two diagrams, we get the conclusion.
Lemma 4.6. t is G-colinear if and only if σ satisfies equation (4.4) for any $X, Y \in \mathcal{C}$.
Proof. The proof is similar to Lemma 4.5.
Lemma 4.7. With the above notations, Diagram (B1) is commutative in $\mathcal{C}_{F}^{G}(\varphi)$ if and only if σ satisfies equation (4.5) for any $X, Y, Z \in \mathcal{C}$.

Proof. $\Leftarrow)$: Take $X=M, Y=N, Z=K$ for any mixed bimodules M, N, K. Multiplied by $\theta_{K} \otimes \theta_{M} \otimes \theta_{N}$ left and by $\rho^{K} \otimes \rho^{M} \otimes \rho^{N}$ right on both sides of equation (4.5), we immediately get that Diagram (B1) is commutative.
\Rightarrow): Obviously, $F G X, F G Y, F G Z$ satisfy

$$
\begin{aligned}
& a_{F G Y, F G Z, F G X} \circ t_{F G X, F G Y \otimes F G Z} \circ a_{F G X, F G Y, F G Z} \\
& \quad=\left(i d_{F G Y} \otimes t_{F G X, F G Z}\right) \circ a_{F G Y, G X, F G Z} \circ\left(t_{F G X, F G Y} \otimes i d_{F G Z}\right)
\end{aligned}
$$

for any $X, Y, Z \in \mathcal{C}$. Multiplied by $F \varepsilon_{Y} \otimes F \varepsilon_{Z} \otimes F \varepsilon_{X}$ left and by $\eta_{G X} \otimes \eta_{G Y} \otimes \eta_{G Z}$ right on both sides of the above equation, we get equation (4.5).

Lemma 4.8. With the above notations, Diagram (B2) holds if and only if σ satisfies equation (4.6) for any $X, Y, Z \in \mathcal{C}$.

Proof. The proof is similar to Lemma 4.7.
Lemma 4.9. t is a natural isomorphism if and only if σ is $*$-invertible.
Proof. Straightforward from Proposition 4.2.
By Lemmas 4.5-4.9, we immediately get Theorem 4.4.
Example 4.10. If $G=i d_{\mathcal{C}}, \varphi=i d_{F}$, then a braided mixed datum (F, G, φ, σ) is exactly a quasitriangular bimonad defined in Section 8.2 [4], and σ is an R-matrix for F.

Example 4.11. In the setting of Example 2.1, if A and C are both bialgebras over k, then (F, G, φ) is a braided mixed datum in ${ }_{k} \mathcal{M}$ if and only if (A, C, ϕ) is a double quantum group (see Section 5, [9]).

Definition 4.12. If $F=i d_{\mathcal{C}}, \varphi=i d_{G}$, then a braided mixed datum (F, G, φ, σ) on \mathcal{C} is called a coquasitriangular bicomonad (G, σ).
5. Applications in Hom-quantum groups. In this section, we will give some applications on Hom-type algebras to verify our theories. First, let us review several definitions and notations related to Hom-bialgebras. Note that when we say a "Homalgebra" or a "Hom-coalgebra", we mean the unital Hom-algebra and counital Homcoalgebra.

Let k be a commutative ring. Recall from [1] that a Hom-algebra over k is a quadruple $\left(A, \mu, 1_{A}, \alpha\right)$, in which A is a k-module, $\alpha: A \rightarrow A, \mu: A \otimes A \rightarrow A$ are k-linear maps, with notation $a b=\mu(a \otimes b)$, and $1_{A} \in A$, satisfying the following conditions, for all $a, b, c \in A$:

$$
\alpha(a)(b c)=(a b) \alpha(c), \quad \alpha\left(1_{A}\right)=1_{A}, \quad 1_{A} a=a 1_{A}=\alpha(a)
$$

Let $\left(A, \alpha, \mu, 1_{A}\right)$ and $\left(A^{\prime}, \alpha^{\prime}, \mu^{\prime}, 1_{A^{\prime}}\right)$ be two Hom-algebras. A linear map $f: A \rightarrow$ A^{\prime} is said to be a morphism of Hom-algebras if

$$
f \circ \mu=\mu^{\prime} \circ(f \otimes f), \quad f\left(1_{A}\right)=1_{A^{\prime}}, \quad \text { and } f \circ \alpha=\alpha^{\prime} \circ f .
$$

Recall from [1] that a Hom-coalgebra over k is a quadruple ($C, \alpha, \Delta, \epsilon$), in which C is a k-module, $\alpha: C \rightarrow C, \Delta: C \rightarrow C \otimes C$ and $\epsilon: C \rightarrow k$ are linear maps, with notation $\Delta(c)=c_{1} \otimes c_{2}$, satisfying the following conditions for all $c \in C$:

$$
\epsilon \circ \alpha=\epsilon, \quad \alpha\left(c_{1}\right) \otimes \Delta\left(c_{2}\right)=\Delta\left(c_{1}\right) \otimes \alpha\left(c_{2}\right), \quad \epsilon\left(c_{1}\right) c_{2}=c_{1} \epsilon\left(c_{2}\right)=\alpha(c)
$$

Let $(C, \alpha, \Delta, \epsilon)$ and $\left(C^{\prime}, \alpha^{\prime}, \Delta^{\prime}, \epsilon^{\prime}\right)$ be two Hom-coalgebras. A linear map $f: C \rightarrow$ C^{\prime} is said to be a morphism of Hom-coalgebras if

$$
(f \otimes f) \circ \Delta=\Delta^{\prime} \circ f, \quad \epsilon^{\prime} \circ f=\epsilon, \quad \text { and } f \circ \alpha=\alpha^{\prime} \circ f .
$$

Note that in the earlier definition of Hom-(co)algebras by Makhlouf and Silvestrov (see [13] or [14]), an axiom was redundant as shown in [1]. The reader will easily check that the definition above is equivalent to the one in those papers.

Recall from [14] that a Hom-bialgebra H over k is a sextuple $H=$ $\left(H, \alpha, \mu, 1_{H}, \Delta, \epsilon\right)$, in which $\left(H, \alpha, \mu, 1_{H}\right)$ is a Hom-algebra, $(H, \alpha, \Delta, \epsilon)$ is a Homcoalgebra, and Δ, ϵ are morphisms of Hom-algebras preserving unit.

Example 5.1. Let k be a commutative ring. Suppose $(B, m, \eta, \Delta, \epsilon)$ is a k-bialgebra endowed with a bialgebra isomorphism $\alpha: B \rightarrow B$. Then, $(B, \alpha, \alpha \circ m, \eta, \Delta \circ \alpha, \epsilon)$ is a Hom-bialgebra over k. We denote this Hom-bialgebra by B^{α}.

Conversely, if $(H, \alpha, m, \eta, \Delta, \epsilon)$ is a Hom-bialgebra and α is invertible, then ($H, \alpha^{-1} \circ m, \eta, \Delta \circ \alpha^{-1}, \epsilon$) is a bialgebra over k. We denote this bialgebra by H_{α}.

Thus, we immediately get a bijective map $B \rightarrow B^{\alpha}$ between the collection of all bialgebras over k endowed with an invertible endomorphism on it, and the collection of all Hom-bialgebras with invertible Hom-structure maps.

Let (H, α) be a Hom-algebra. A left (H, α)-Hom-module is a triple $\left(M, \alpha_{M}, \theta_{M}\right)$, where M is a k-module, $\theta_{M}: H \otimes M \rightarrow M$ is a k-linear map with notation $\theta_{M}(h \otimes m)=$ $h \cdot m$, and $\alpha_{M}: M \rightarrow M$ is also a k-linear map defined by $1_{H} \cdot m=\alpha_{M}(m)$, satisfying the following condition:

$$
\alpha(h) \cdot\left(h^{\prime} \cdot m\right)=\left(h h^{\prime}\right) \cdot \alpha_{M}(m), \quad \text { for all } h, h^{\prime} \in H, m \in M
$$

A morphismf : $M \rightarrow N$ of H-Hom-modules is a k-linear map such that $\theta_{N} \circ\left(i d_{H} \otimes\right.$ $f)=f \circ \theta_{M}$.

Let C be a Hom-coalgebra. Recall that a right C-comodule is a triple $\left(M, \alpha_{M}, \rho^{M}\right)$, where M is a k-module, $\rho^{M}: M \rightarrow M \otimes C$ is a k-linear map with notation $\rho^{M}(m)=$ $m_{0} \otimes m_{1}$, and $\alpha_{M}: M \rightarrow M$ is also a k-linear map defined by $\epsilon\left(m_{1}\right) m_{0}=\alpha_{M}(m)$, satisfying the following conditions:

$$
\alpha_{M}\left(m_{0}\right) \otimes \Delta\left(m_{1}\right)=\rho^{M}\left(m_{0}\right) \otimes \alpha\left(m_{1}\right), \quad \text { for all } m \in M
$$

A morphism $f: M \rightarrow N$ of C-Hom-comodules is a k-linear map such that $\rho^{N} \circ f=$ $\left(i d_{C} \otimes f\right) \circ \rho^{M}$.

Recall that in the earlier definition of Hom-(co)modules by Makhlouf and Silvestrov, there is also a redundant axiom (see [1] for details).

Let (H, α) be a Hom-bialgebra over k. Recall from [24] that if there exists an invertible element $R \in H \otimes H$, satisfying
$\int(q 1)(\alpha \otimes \alpha) R=R$;
(q2) $R \Delta(x)=\Delta^{o p}(x) R$;
$\left\{\right.$ (q3) $\sum R_{1}^{(1)} \otimes R_{2}^{(1)} \otimes \alpha\left(R^{(2)}\right)=\alpha\left(r^{(1)}\right) \otimes \alpha\left(R^{(1)}\right) \otimes r^{(2)} R^{(2)}$;
(q4) $\sum \alpha\left(R^{(1)}\right) \otimes R_{1}^{(2)} \otimes R_{2}^{(2)}=r^{(1)} R^{(1)} \otimes \alpha\left(R^{(2)}\right) \otimes \alpha\left(r^{(2)}\right)$,
for any $x \in H$, where $R=\sum R^{(1)} \otimes R^{(2)}=\sum r^{(1)} \otimes r^{(2)}$, then R is called an R-matrix of $H,(H, \alpha, R)$ is called a quasitriangular Hom-bialgebra.

Under the condition of Example 5.1, the following theorem can be seen as the corollary of Proposition 1.14 [6] and Example 2.3 [21].

THEOREM 5.2. Suppose that $(B, m, \eta, \Delta, \varepsilon)$ is a k-bialgebra endowed with a bialgebra isomorphism $\alpha: B \rightarrow B$. Then there exists an element $R \in B \otimes B$, such that (B^{α}, α, R) is a quasitriangular Hom-bialgebra if and only if $R \in B \otimes B$ is an R-matrix of B and satisfies $(\alpha \otimes \alpha) R=R$.

Proof. Straightforward.
5.1. Quasitriangular Hom-bialgebras. Let k be a commutative ring, ${ }_{k} \mathcal{M}=$ $\left({ }_{k} \mathcal{M}, \otimes, k\right)$ be the category of k-modules. Now from this category, we can construct a new monoidal category $\widetilde{\mathcal{H}}^{i, j}\left({ }_{k} \mathcal{M}\right)$ for any $i, j \in \mathbb{Z}$ as follows:

- The objects of $\widetilde{\mathcal{H}}^{i, j}\left({ }_{k} \mathcal{M}\right)$ are pairs $\left(U, \alpha_{U}\right)$, where $U \in{ }_{k} \mathcal{M}$ and $\alpha_{U} \in \operatorname{Aut}_{k}(U)$.
- The morphism $f:\left(U, \alpha_{U}\right) \rightarrow\left(V, \alpha_{V}\right)$ in $\widetilde{\mathcal{H}}^{i, j}\left({ }_{k} \mathcal{M}\right)$ is a k-linear map from U to V such that $\alpha_{V} \circ f=f \circ \alpha_{U}$.
- The monoidal structure is given by

$$
\left(U, \alpha_{U}\right) \otimes\left(V, \alpha_{V}\right)=\left(U \otimes V, \alpha_{U} \otimes \alpha_{V}\right)
$$

and the unit is $\left(k, i d_{k}\right)$.

- The associativity constraint a is given by

$$
a_{U, V, P}:(U \otimes V) \otimes W \rightarrow U \otimes(V \otimes W), \quad(u \otimes v) \otimes w \mapsto \alpha_{U}^{-i-1}(u) \otimes\left(v \otimes \alpha_{W}^{j+1}(w)\right) .
$$

- For any $M \in{ }_{k} \mathcal{M}, m \in M$ and $\lambda \in k$, the unit constraints l and r are given by

$$
l_{U}(\lambda \otimes u)=\lambda \alpha_{U}^{-j-1}(u), \quad r_{U}(u \otimes \lambda)=\lambda \alpha_{U}^{-i-1}(u) .
$$

It is a direct computation to check that $\widetilde{\mathcal{H}}^{i, j}\left({ }_{k} \mathcal{M}\right)=\left(\widetilde{\mathcal{H}}^{i, j}\left({ }_{k} \mathcal{M}\right), \otimes, k, a, l, r\right)$ is a monoidal category.

Proposition 5.3 [24, Corollary 4.2]. If $\left(H, \mu, 1_{H}, \Delta, \epsilon, \alpha\right)$ is a Hom-bialgebra over k, then $F=\left(H \otimes_{-}, m, \eta, F_{2}, F_{0}\right)$ is a bimonad on $\tilde{\mathcal{H}}^{i, j}\left({ }_{k} \mathcal{M}\right)$ with the following structures:

- $m: F F \rightarrow F$ is given by

$$
m_{X}: H \otimes(H \otimes X) \rightarrow H \otimes X, \quad h \otimes(g \otimes x) \mapsto \alpha^{-1}(h) g \otimes \alpha_{X}(x)
$$

- $\eta:$ id $_{\widetilde{\mathcal{H}}^{i j(}{ }_{(k \mathcal{M})}} \rightarrow F$ is given by $\eta_{X}: X \rightarrow H \otimes X, x \mapsto 1_{H} \otimes \alpha_{X}^{-1}(x)$.
- $F_{2}: F \otimes \rightarrow F \otimes F$ is given by

$$
\begin{aligned}
F_{2}(X, Y): H \otimes(X \otimes Y) & \rightarrow(H \otimes X) \otimes(H \otimes Y), \\
h \otimes(x \otimes y) & \mapsto\left(\alpha^{i}\left(h_{1}\right) \otimes x\right) \otimes\left(\alpha^{j}\left(h_{2}\right) \otimes y\right),
\end{aligned}
$$

for any $\left.X, Y \in \widetilde{\mathcal{H}}^{i, j}{ }_{k} \mathcal{M}\right)$.

- $F_{0}: F(k) \rightarrow k$ is given by $F_{0}: H \otimes k \rightarrow k, h \otimes \lambda \mapsto \varepsilon(h) \lambda$.

Note that ${ }_{H} \mathcal{M}=\widetilde{\mathcal{H}}^{i, j}\left({ }_{k} \mathcal{M}\right)_{F}$ as monoidal categories, where $F=H \otimes$. Thus, monoidal structure in ${ }_{H} \mathcal{M}$ is given by

$$
h \cdot(u \otimes v)=\alpha^{i}\left(h_{1}\right) \cdot u \otimes \alpha^{j}\left(h_{2}\right) \cdot v, \quad \forall u \in U, \quad v \in V, \quad h \in H,
$$

where $\left(U, \alpha_{U}\right)$ and $\left(V, \alpha_{V}\right)$ are all H-Hom-modules.
Theorem 5.4. If (H, α) is a Hom-bialgebra, then the category of H-Hom-modules ${ }_{\sim} \mathcal{M}$ is a braided monoidal category if and only if F is a quasitriangular bimonad on $\widetilde{\mathcal{H}}^{i, j}\left({ }_{k} \mathcal{M}\right)$.

Proof. Directly induced by Theorem 4.4.
Proposition 5.5. For the fixed elements $R, R^{\prime} \in H \otimes H$, define $\sigma: \otimes \Rightarrow F \otimes^{o p} F$: $\widetilde{\mathcal{H}}^{i, j}\left({ }_{k} \mathcal{M}\right){ }^{\times 2} \rightarrow \widetilde{\mathcal{H}}^{i, j}\left({ }_{k} \mathcal{M}\right) b y$

$$
\sigma_{X, Y}(x \otimes y)=\left(\alpha^{i}\left(R^{(2)}\right) \otimes \alpha_{Y}^{i-j-1}(y)\right) \otimes\left(\alpha^{j}\left(R^{(1)}\right) \otimes \alpha_{X}^{j-i-1}(x)\right),
$$

and define $\sigma^{\prime}: \otimes^{o p} \Rightarrow F \otimes F: \widetilde{\mathcal{H}}^{i, j}\left({ }_{k} \mathcal{M}\right)^{\times 2} \rightarrow \widetilde{\mathcal{H}}^{i, j}\left({ }_{k} \mathcal{M}\right)$ by

$$
\sigma_{X, Y}^{\prime}(y \otimes x)=\left(\alpha^{i}\left(R^{(2)}\right) \otimes \alpha_{X}^{i-j-1}(x)\right) \otimes\left(\alpha^{j}\left(R^{\prime(1)}\right) \otimes \alpha_{Y}^{j-i-1}(y)\right)
$$

for any $\left(X, \alpha_{X}\right),\left(Y, \alpha_{Y}\right) \in \widetilde{\mathcal{H}}^{i, j}\left({ }_{k} \mathcal{M}\right), x \in X, y \in Y$. Then, (F, σ) is a quasitriangular bimonad with the $*$-inverse σ^{\prime} if and only if R is the R-matrix of H with the inverse R^{\prime} such that (H, α, R) is a quasitriangular Hom-bialgebra. Moreover, the braiding in ${ }_{H} \mathcal{M}$ is given by $t_{U, V}(u \otimes v)=\alpha^{i}\left(R^{(2)}\right) \cdot \alpha_{V}^{i-j-1}(v) \otimes \alpha^{j}\left(R^{(1)}\right) \cdot \alpha_{U}^{j-i-1}(u)$, for any $U, V \in{ }_{H} \mathcal{M}$.

Proof. \Rightarrow : Suppose (F, σ) is a quasitriangular bimonad. First, since $\sigma_{k, k}$ is a morphism in $\widetilde{\mathcal{H}}^{i, j}\left({ }_{k} \mathcal{M}\right)$, we have $\sigma_{k, k} \circ\left(i d_{k} \otimes i d_{k}\right)=\left(\left(\alpha \otimes i d_{k}\right) \otimes\left(\alpha \otimes i d_{k}\right)\right) \circ \sigma_{k, k}$, which implies $(\alpha \otimes \alpha) R=R$.

Second, since σ satisfies equation (4.3), we have

$$
\left(m_{k} \otimes m_{k}\right) \circ \sigma_{F k, F k} \circ F_{2}(k, k)=\left(m_{k} \otimes m_{k}\right) \circ F_{2}(F k, F k) \circ F\left(\sigma_{k, k}\right) .
$$

For one thing, we compute

$$
\begin{aligned}
& \left(\left(m_{k} \otimes m_{k}\right) \circ \sigma_{F k, F k} \circ F_{2}(k, k)\right)\left(x \otimes\left(1_{k} \otimes 1_{k}\right)\right) \\
= & \left(m_{k} \otimes m_{k}\right)\left(\left(\alpha^{i}\left(R^{(2)}\right) \otimes\left(\alpha^{j+i-j-1}\left(x_{2}\right) \otimes 1_{k}\right)\right) \otimes\left(\alpha^{j}\left(R^{(1)}\right) \otimes\left(\alpha^{i+j-i-1}\left(x_{1}\right) \otimes 1_{k}\right)\right)\right) \\
= & \left(\alpha^{i-1}\left(R^{(2)}\right) \alpha^{i-1}\left(x_{2}\right) \otimes 1_{k}\right) \otimes\left(\alpha^{j-1}\left(R^{(1)}\right) \alpha^{j-1}\left(x_{1}\right) \otimes 1_{k}\right) .
\end{aligned}
$$

For another thing, we have

$$
\begin{aligned}
& \left(\left(m_{k} \otimes m_{k}\right) \circ F_{2}(F k, F k) \circ F\left(\sigma_{k, k}\right)\right)\left(x \otimes\left(1_{k} \otimes 1_{k}\right)\right) \\
= & \left(m_{k} \otimes m_{k}\right)\left(\left(\alpha^{i}\left(x_{1}\right) \otimes\left(\alpha^{i}\left(R^{(2)}\right) \otimes 1_{k}\right)\right) \otimes\left(\alpha^{j}\left(x_{2}\right) \otimes\left(\alpha^{j}\left(R^{(1)}\right) \otimes 1_{k}\right)\right)\right) \\
= & \left(\alpha^{i-1}\left(x_{1}\right) \alpha^{i}\left(R^{(2)}\right) \otimes 1_{k}\right) \otimes\left(\alpha^{j-1}\left(x_{2}\right) \alpha^{j}\left(R^{(2)}\right) \otimes 1_{k}\right) .
\end{aligned}
$$

Comparing the above two equations, since $(\alpha \otimes \alpha) R=R$, we immediately get equation (q2).

Third, take $X=Y=Z=k$ in equations (4.5) and (4.6), it is a direct computation to prove equations (q3) and (q4).

At last, since σ^{\prime} is the $*$-inverse of σ, we have $\sigma_{k, k} * \sigma_{k, k}^{\prime}=\eta_{k} \otimes^{o p} \eta_{k}$ and $\sigma_{k, k}^{\prime} *$ $\sigma_{k, k}=\eta_{k} \otimes \eta_{k}$, which implies R and R^{\prime} are inverse to each other.
\Rightarrow : Straightforward.
Example 5.6 (the Sweedler's 4-dimensional Hom-bialgebra). Let k be a field and H_{4} the Sweedler's 4-dimensional bialgebra $H_{4}=k\left\{1_{H}, g, x, y \mid g^{2}=1_{H}, x^{2}=0, y=\right.$ $g x=-x g\}$ with the following structures:

$$
\begin{gathered}
\Delta(g)=g \otimes g, \Delta(x)=x \otimes 1_{H}+g \otimes x, \Delta(y)=y \otimes g+1_{H} \otimes y, \\
\epsilon(g)=1, \epsilon(x)=\epsilon(y)=0 .
\end{gathered}
$$

Note that H_{4} is a quasitriangular Hopf algebra with the R-matrix

$$
R_{\lambda}=\frac{1}{2}\left(1_{H} \otimes 1_{H}+1_{H} \otimes g+g \otimes 1_{H}-g \otimes g\right)+\frac{\lambda}{2}(x \otimes x-x \otimes y+y \otimes x+y \otimes y),
$$

where $\lambda \in k$ (see Example 10.1.17 [18]).
By (Example 3.5 [7]), any bialgebra isomorphism $\alpha: H_{4} \rightarrow H_{4}$ takes the form

$$
A=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & c & d \\
0 & 0 & d & c
\end{array}\right)
$$

where $c, d \in k$ satisfying $c^{2} \neq d^{2}$. Thus, we immediately get a Hom-bialgebra $H_{4}{ }^{\alpha}=$ ($H_{4}, \alpha, \alpha \circ \mu, 1_{H}, \Delta \circ \alpha, \epsilon$) (usually called Sweedler's 4-dimensional Hom-bialgebra).

Moreover, from Theorem 5.2, through a direct computation, we obtain that $H_{4}{ }^{\alpha}$ is a quasitriangular Hom-bialgebra, and the R-matrix of $H_{4}{ }^{\alpha}$ is given by

$$
R=\left\{\begin{aligned}
& \frac{1}{2}\left(1_{H} \otimes 1_{H}+1_{H} \otimes g+g \otimes 1_{H}-g \otimes g\right) \\
&+\frac{\lambda}{2}(x \otimes x-x \otimes y+y \otimes x+y \otimes y), \text { when } c^{2}=1, d=0, \lambda \neq 0, \\
& \text { or } c=0, d^{2}=1, \lambda \neq 0 \\
& \frac{1}{2}\left(1_{H} \otimes 1_{H}+1_{H} \otimes g+g \otimes 1_{H}-g \otimes g\right), \text { otherwise, }
\end{aligned}\right.
$$

where $\lambda \in k$.
5.2. Coquasitriangular Hom-bialgebras. Dual to the above property, we have the following results.

Assume that k is a commutative ring. For any $i^{\prime}, j^{\prime} \in \mathbb{Z}$, a monoidal category $\overline{\mathcal{H}}^{i^{\prime}, j^{\prime}}\left({ }_{k} \mathcal{M}\right)$ is defined as follows:

- The objects, morphisms, and tensor products are the same as in $\widetilde{\mathcal{H}}^{i^{\prime}, j^{\prime}}\left({ }_{k} \mathcal{M}\right)$.
- The associativity constraint a is given by $a_{U, V, W}:(U \otimes V) \otimes W \rightarrow U \otimes(V \otimes W), \quad(u \otimes v) \otimes w \mapsto \alpha_{U}^{i^{\prime}+1}(u) \otimes\left(v \otimes \alpha_{W}^{-j^{\prime}-1}(w)\right)$.
- For any $U \in{ }_{k} \mathcal{M}, u \in U$, and $\lambda \in k$, the unit constraints l and r are given by

$$
l_{U}(\lambda \otimes u)=\lambda \alpha_{U}^{i^{\prime}+1}(u), \quad r_{U}(u \otimes \lambda)=\lambda \alpha_{U}^{i^{\prime}+1}(u)
$$

Note that if $i^{\prime}=j^{\prime}=0$, then $\overline{\mathcal{H}}^{i^{\prime}, j^{\prime}}\left({ }_{k} \mathcal{M}\right)$ is the monoidal Hom-category defined in [6].

Proposition 5.7 [24, Theorem 4.3]. Let i^{\prime}, j^{\prime} be two integers. If $\left(H, \mu, 1_{H}, \Delta, \epsilon, \alpha\right)$ is a Hom-bialgebra over k, then $G=\left(-\otimes H, \delta, \epsilon, G_{2}, G_{0}\right)$ is a bicomonad on $\overline{\mathcal{H}}^{i^{\prime}, j^{\prime}}\left({ }_{k} \mathcal{M}\right)$ with the following structures:

- $\delta: G \rightarrow G G$ is given by

$$
\delta_{X}: X \otimes H \rightarrow(X \otimes H) \otimes H, \quad x \otimes h \mapsto\left(\alpha_{X}(x) \otimes h_{1}\right) \otimes \alpha^{-1}\left(h_{2}\right)
$$

$\bullet \epsilon: G \rightarrow i d_{\left.\mathcal{H}^{\prime j^{\prime}}{ }_{k} \mathcal{M}\right)}$ is given by $\epsilon_{X}: X \otimes H \rightarrow X, x \otimes h \mapsto \epsilon(h) \alpha_{X}^{-1}(x)$.

- $G_{2}: G \otimes G \rightarrow G \otimes$ is given by

$$
\begin{aligned}
G_{2}(X, Y):(X \otimes H) \otimes(Y \otimes H) & \rightarrow(X \otimes Y) \otimes H, \\
(x \otimes a) \otimes(y \otimes b) & \mapsto(x \otimes y) \otimes \alpha^{i^{\prime}}(a) \alpha^{j^{\prime}}(b),
\end{aligned}
$$

for any $X, Y \in \overline{\mathcal{H}}^{i^{\prime}, j^{\prime}}\left({ }_{k} \mathcal{M}\right)$.

- $G_{0}: k \rightarrow G(k)$ is given by $G_{0}: k \rightarrow k \otimes H, \lambda \mapsto \lambda \otimes 1_{H}$.

Notice that $\mathcal{M}^{H}=\overline{\mathcal{H}}^{i}, j^{\prime}\left({ }_{k} \mathcal{M}\right){ }^{G}$ as monoidal categories, where $G={ }_{-} \otimes H$. Thus, monoidal structure in \mathcal{M}^{H} is given by

$$
(u \otimes v)_{(0)} \otimes(u \otimes v)_{(1)}=u_{(0)} \otimes v_{(0)} \otimes \alpha^{i^{\prime}}\left(u_{(1)}\right) \alpha^{j^{\prime}}\left(v_{(1)}\right), \quad \forall u \in U, \quad v \in V,
$$

where $\left(U, \alpha_{U}\right)$ and $\left(V, \alpha_{V}\right)$ are all H-Hom-comodules.
Theorem 5.8. The category of Hom-comodules of a Hom-bialgebra (H, α) is a braided monoidal category if and only if $-\otimes H$ is a coquasitriangular bicomonad on $\overline{\mathcal{H}}^{i^{\prime}, j^{\prime}}\left({ }_{k} \mathcal{M}\right)$.

Recall from Definition 6.5 [24] that a Hom-bialgebra (H, α) is called coquasitriangular if there exists a convolution invertible bilinear form $\xi: H \otimes H \rightarrow k$, such that the following conditions hold:
$\left\{\begin{array}{l}(c q 1) \xi(\alpha(a), \alpha(b))=\xi(a, b) ; \\ (c q 2) \xi\left(a_{1}, b_{1}\right) a_{2} b_{2}=b_{1} a_{1} \xi\left(a_{2}, b_{2}\right) ; \\ (c q 3) \xi(\alpha(a), b c)=\xi\left(a_{1}, \alpha(c)\right) \xi\left(a_{2}, \alpha(b)\right) ; \\ (c q 4) \xi(a b, \alpha(c))=\xi\left(\alpha(a), c_{1}\right) \xi\left(\alpha(b), c_{2}\right),\end{array}\right.$
for any $a, b, c \in H$.

Proposition 5.9. For the fixed linear forms $\xi, \xi^{\prime} \in(H \otimes H)^{*}$, define $\sigma: G \otimes G \Rightarrow$ $\otimes^{o p}: \overline{\mathcal{H}}^{i^{\prime}, j^{\prime}}\left({ }_{k} \mathcal{M}\right)^{\times 2} \rightarrow \overline{\mathcal{H}}^{i, j}\left({ }_{k} \mathcal{M}\right) b y$

$$
\sigma_{X, Y}((x \otimes a) \otimes(y \otimes b))=\alpha_{Y}^{i^{\prime}-i^{\prime}-1}(y) \otimes \alpha_{X}^{i^{\prime}-j^{\prime}-1}(x) \xi\left(\alpha^{i^{\prime}}(a), \alpha^{j^{\prime}}(b)\right)
$$

and $\sigma^{\prime}: G \otimes$ op $G \Rightarrow \otimes: \overline{\mathcal{H}}^{i^{\prime}, j^{\prime}}\left({ }_{k} \mathcal{M}\right)^{\times 2} \rightarrow \overline{\mathcal{H}}^{i}, j^{\prime}\left({ }_{k} \mathcal{M}\right)$ by

$$
\sigma_{X, Y}^{\prime}((y \otimes b) \otimes(x \otimes a))=\alpha_{X}^{i^{\prime}-i^{\prime}-1}(x) \otimes \alpha_{Y}^{i^{\prime}-j^{\prime}-1}(y) \xi^{\prime}\left(\alpha^{i^{\prime}}(b), \alpha^{j^{\prime}}(a)\right)
$$

for any $\left.\left(X, \alpha_{X}\right),\left(Y, \alpha_{Y}\right) \in \overline{\mathcal{H}}^{i^{\prime}, j^{\prime}}{ }_{k} \mathcal{M}\right), x \in X, y \in Y, a, b \in H$. Then, (G, σ) is a coquasitriangular bicomonad with the *-inverse σ^{\prime} if and only if (H, α, ξ) is a coquasitriangular Hom-bialgebra and ξ^{\prime} is the convolution inverse of ξ. Moreover, the braiding in \mathcal{M}^{H} is given by $t_{U, V}(u \otimes v)=\alpha_{V}^{i^{\prime}-i^{\prime}-1}\left(v_{(0)}\right) \otimes \alpha_{U}^{i^{\prime}-j^{\prime}-1}\left(u_{(0)}\right) \xi\left(\alpha^{i^{\prime}}\left(u_{(1)}\right) \alpha^{j^{\prime}}\left(v_{(1)}\right)\right)$, where $U, V \in \mathcal{M}^{H}, u \in U, v \in V$.
5.3. Hom-Yetter-Drinfeld modules. Note that for any $i, j \in \mathbb{Z}$, we immediately get $\widetilde{\mathcal{H}}^{i, j}\left({ }_{k} \mathcal{M}\right)=\overline{\mathcal{H}}^{-i-2,-j-2}\left({ }_{k} \mathcal{M}\right)$. Suppose that $H=\left(H, \alpha, \mu, 1_{H}, \Delta, \epsilon, S\right)$ is a HomHopf algebra over k.

Let $F=H \otimes_{-}$be the bimonad in $\widetilde{\mathcal{H}}^{i, j}\left({ }_{k} \mathcal{M}\right)$, and $G={ }_{-} \otimes H$ be the bicomonad in $\overline{\mathcal{H}}^{-i-2,-j-2}\left({ }_{k} \mathcal{M}\right)$. For any $p \in \mathbb{Z}$ and $\left(X, \alpha_{X}\right) \in \widetilde{\mathcal{H}}^{i, j}\left({ }_{k} \mathcal{M}\right)$, define $\varphi: F G \rightarrow G F$ by

$$
\begin{aligned}
\varphi_{X}: F G X=H \otimes(X \otimes H) & \rightarrow(H \otimes X) \otimes H=G F X, \\
h \otimes(x \otimes g) & \mapsto\left(\alpha^{-1}\left(h_{21}\right) \otimes x\right) \otimes\left(\alpha^{p-4}\left(h_{22}\right) \alpha^{-1}(g)\right) S^{-1}\left(\alpha^{p-2}\left(h_{1}\right)\right),
\end{aligned}
$$

it is a direct computation to check that (F, G, φ) is a monoidal mixed datum on $\widetilde{\mathcal{H}}^{i, j}\left({ }_{k} \mathcal{M}\right)$. Moreover, $\widetilde{\mathcal{H}}^{i, j}\left({ }_{k} \mathcal{M}\right)_{G}^{F}(\varphi)$, the category of mixed bimodules is a monoidal category satisfying

- the tensor product, the associativity constraint, and the unity constraints are the same as in $\widetilde{\mathcal{H}}^{i, j}\left({ }_{k} \mathcal{M}\right)$;
- the objects in $\tilde{\mathcal{H}}^{i, j}\left({ }_{k} \mathcal{M}\right)_{G}^{F}(\varphi)$ are pairs $\left(U, \alpha_{U}\right)$, where $\left(U, \alpha_{U}\right)$ is both a left H -Hom-module and a right H-Hom-comodule, satisfying

$$
\rho(h \cdot u)=\alpha^{-1}\left(h_{21}\right) \cdot u_{(0)} \otimes\left(\alpha^{p-4}\left(h_{22}\right) \alpha^{-1}\left(u_{(1)}\right)\right) S^{-1}\left(\alpha^{p-2}\left(h_{1}\right)\right), \quad u \in U, \quad h \in H .
$$

We call such a mixed bimodule a pth Hom-Yetter-Drinfeld module, and we write ${ }_{H} \mathcal{H} \mathcal{Y} \mathcal{D}^{H}(p)$ for $\widetilde{\mathcal{H}}^{i, j}\left({ }_{k} \mathcal{M}\right)_{G}^{F}(\varphi)$.

For example, if we take $i=j=0$ and $p=2$, then the mixed bimodule becomes the Makhlouf's left-right Yetter-Drinfeld module which is defined in [12] (see Remark 5.4, [12]).

Furthermore, ${ }_{H} \mathcal{H} \mathcal{Y D}^{H}(p)$ is a braided category with the following braiding:

$$
\tau_{U, V}: U \otimes V \rightarrow V \otimes U, \quad u \otimes v \mapsto \alpha_{V}^{i-j-1}\left(v_{(0)}\right) \otimes \alpha^{-p}\left(v_{(1)}\right) \cdot \alpha_{U}^{j-i-1}(u)
$$

Thus, from Theorem 4.4, there is a natural transformation $\sigma: G \otimes G \rightarrow F \otimes^{o p} F$ such that (F, G, φ, σ) is a braided mixed datum on $\widetilde{\mathcal{H}}^{i, j}\left({ }_{k} \mathcal{M}\right)$. Actually, σ is defined as follows:

$$
\begin{aligned}
\sigma_{U, V}:(U \otimes H) \otimes(V \otimes H) & \longrightarrow(H \otimes V) \otimes(H \otimes U) \\
\quad(u \otimes h) \otimes(v \otimes g) & \longmapsto\left(1_{H} \otimes \alpha_{V}^{i-j-2}\left(v_{(0)}\right)\right) \otimes\left(\alpha^{-p}(g) \otimes \alpha_{U}^{j-i-2}(u) \epsilon(h)\right) .
\end{aligned}
$$

5.4. Generalized Hom-Long dimodules. Suppose that $H=\left(H, \alpha_{H}, \mu_{H}\right.$, $\left.1_{H}, \Delta_{H}, \epsilon_{H}\right)$ and $B=\left(B, \alpha_{B}, \mu_{B}, 1_{B}, \Delta_{B}, \epsilon_{B}\right)$ are two Hom-bialgebras over k. Since $F=H \otimes_{-}$is a bimonad in $\widetilde{\mathcal{H}}^{i, j}\left({ }_{k} \mathcal{M}\right)$, and $G={ }_{-} \otimes B$ a bicomonad in $\widetilde{\mathcal{H}}^{-i-2,-j-2}{ }_{(k \mathcal{M})}$, for any $\left(X, \alpha_{X}\right) \in \widetilde{\mathcal{H}}^{i, j}\left({ }_{k} \mathcal{M}\right)$, one can define $\varphi: F G \rightarrow G F$ by

$$
\begin{aligned}
\varphi_{X}: F G X=H \otimes(X \otimes B) & \rightarrow(H \otimes X) \otimes B=G F X, \\
h \otimes(x \otimes a) & \mapsto\left(\alpha_{H}(h) \otimes x\right) \otimes \alpha_{B}(a) .
\end{aligned}
$$

It is a direct computation to check that (F, G, φ) is a monoidal mixed datum on $\widetilde{\mathcal{H}}^{i, j}\left({ }_{k} \mathcal{M}\right)$. Moreover, $\widetilde{\mathcal{H}}^{i, j}\left({ }_{k} \mathcal{M}\right)_{G}^{F}(\varphi)$, the category of mixed bimodules is a monoidal category satisfying

- the tensor product, the associativity constraint, and the unity constraints are the same as in $\widetilde{\mathcal{H}}^{i, j}\left({ }_{k} \mathcal{M}\right)$;
- the objects in $\tilde{\mathcal{H}}^{i, j}\left({ }_{k} \mathcal{M}\right)_{G}^{F}(\varphi)$ are pairs $\left(U, \alpha_{U}\right)$, where $\left(U, \alpha_{U}\right)$ is both a left H -Hom-module and a right B-Hom-comodule, satisfying

$$
\rho(h \cdot u)=\alpha_{H}(h) \cdot u_{(0)} \otimes \alpha_{B}\left(u_{(1)}\right), \quad u \in U, \quad h \in H, \quad a \in B .
$$

We call such a mixed bimodule a generalized Hom-Long dimodule, and we write ${ }_{H} \mathcal{H} \mathcal{L}^{B}$ for $\widetilde{\mathcal{H}}^{i, j}\left({ }_{k} \mathcal{M}\right){ }_{G}^{F}(\varphi)$.

Now suppose that (H, R) is a quasitriangular Hom-bialgebra where $R=\sum R^{(1)} \otimes$ $R^{(2)}$ is the R-matrix, and (B, ξ) is a coquasitriangular Hom-bialgebra, ${ }_{H} \mathcal{H} \mathcal{L}^{B}$ denotes the category of generalized Hom-Long dimodules. Define the following maps τ by

$$
\begin{aligned}
\tau_{U, V}: U \otimes V & \longrightarrow V \otimes U \\
\quad u \otimes v & \longmapsto \beta\left(\alpha_{B}^{i}\left(u_{(1)}\right), \alpha_{B}^{j}\left(v_{(1)}\right)\right) \alpha_{H}^{i}\left(R^{(2)}\right) \cdot \alpha_{V}^{i-j-2}\left(v_{(0)}\right) \otimes \alpha_{H}^{j}\left(R^{(1)}\right) \cdot \alpha_{U}^{j-i-2}\left(u_{(0)}\right),
\end{aligned}
$$

then it is straightforward to show that τ is a braiding in ${ }_{H} \mathcal{H} \mathcal{L}^{B}$. Indeed, τ is induced by the following natural transformation in $\widetilde{\mathcal{H}}^{i, j}\left({ }_{k} \mathcal{M}\right)_{G}^{F}(\varphi)$ through Theorem 4.4:

$$
\begin{aligned}
& \sigma_{U, V}:(U \otimes B) \otimes(V \otimes B) \longrightarrow(H \otimes V) \otimes(H \otimes U) \\
& \quad(u \otimes a) \otimes(v \otimes b) \longmapsto \beta\left(\alpha_{B}^{i}(a), \alpha_{B}^{j}(b)\right)\left(\alpha_{H}^{i}\left(R^{(2)}\right) \otimes \alpha_{V}^{i-j-2}(v)\right) \otimes\left(\alpha_{H}^{j}\left(R^{(1)}\right)\right. \\
& \left.\quad \otimes \alpha_{U}^{j-i-2}(u)\right) .
\end{aligned}
$$

It is easy to check that (F, G, φ, σ) is a braided mixed datum on $\tilde{\mathcal{H}}^{i, j}\left({ }_{k} \mathcal{M}\right)$.
Definition 5.10. Let U be a vector space over k and $R \in \operatorname{End}_{k}(U \otimes U)$. We say that R is a solution of the \mathcal{D}-equation if

$$
R^{12} R^{23}=R^{23} R^{12}
$$

in $E n d_{\mathbb{k}}(U \otimes U \otimes U)$.
If we set $B=H$, then we have the following property.
Proposition 5.11. Let $\left(H, \alpha_{H}\right)$ be a Hom-bialgebra over $k,{ }_{H} \mathcal{H} \mathcal{L}^{H}$ denote the category of Hom-Long dimodules of H. For any integer $n \in \mathbb{Z}$, if we define the following k-linear map

$$
\begin{aligned}
\beta_{U, V}: U \otimes V & \longrightarrow U \otimes V \\
u \otimes v & \longmapsto \alpha_{H}^{n}\left(v_{(1)}\right) \cdot \alpha_{U}^{-1}(u) \otimes \alpha_{V}^{-1}\left(v_{(0)}\right),
\end{aligned}
$$

where $\left(U, \alpha_{U}\right),\left(V, \alpha_{V}\right) \in{ }_{H} \mathcal{H} \mathcal{L}^{H}$, then β satisfies the following generalized Hom-type \mathcal{D}-equation in $\widetilde{\mathcal{H}}^{i, j}\left({ }_{k} \mathcal{M}\right)$:

Proof. For any $u \in U, v \in V, w \in W$, since the following identities

$$
\begin{aligned}
& \left(\left(\beta_{U, V} \otimes i d_{W}\right) \circ a_{U, W, V}^{-1} \circ\left(i d_{U} \otimes \beta_{V, W}\right) \circ a_{U, V, W}\right)((u \otimes u) \otimes w) \\
& \quad=\left(\left(\beta_{U, V} \otimes i d_{W}\right) \circ a_{U, W, V}^{-1}\right)\left(\alpha_{U}^{-i-1}(u) \otimes\left(\alpha_{H}^{n+j+1}\left(w_{(1)}\right) \cdot \alpha_{V}^{-1}(v) \otimes \alpha_{W}^{j}\left(w_{(0)}\right)\right)\right) \\
& \quad=\left(\alpha_{H}^{n}\left(v_{(1)}\right) \cdot \alpha_{U}^{-1}(u) \otimes \alpha_{H}^{n+j+1}\left(w_{(1)}\right) \cdot \alpha_{V}^{-2}\left(v_{(0)}\right)\right) \otimes \alpha_{W}^{-1}\left(w_{(0)}\right) \\
& \quad=\left(a_{U, V, W}^{-1} \circ\left(i d_{U} \otimes \beta_{V, W}\right)\right)\left(\alpha_{H}^{n-i-1}\left(v_{(1)}\right) \cdot \alpha_{U}^{-i-2}(u) \otimes\left(\alpha_{V}^{-1}\left(v_{(0)}\right) \otimes \alpha_{W}^{j+1}(w)\right)\right) \\
& \quad=\left(a_{U, V, W}^{-1} \circ\left(i d_{U} \otimes \beta_{V, W}\right) \circ a_{U, W, V} \circ\left(\beta_{U, V} \otimes i d_{W}\right)\right)((u \otimes u) \otimes w),
\end{aligned}
$$

the conclusion holds.
Acknowledgements. The work was partially supported by the NSF of China (No. 11371088), the TianYuan Special Funds of the National Natural Science Foundation of China (No. 11626138), the NSF of Shandong Province (No. ZR2016AQ03), the NSF of Qufu Normal University (xkj201514), the Natural Science Foundation of Henan Province (No. 152300410086), and the Research Fund of PhD of Henan Normal University (No. qd14151).

REFERENCES

1. J. N. Alonso Álvarez, J. M. Fernández Vilaboa and R. González Rodríguez, Cleft extensions and Galois extensions for Hom-associative algebras, Int. J. Math. 27(3) (2016), 1650025.
2. J. Beck, Distributive laws, Lect. Notes Math. 80 (1969), 119-140.
3. G. Böhm, S. Lack and R. Street, Weak bimonads and weak Hopf monads, J. Algebra 328(1) (2011), 1-30.
4. A. Bruguières and A. Virelizier, Hopf monads, Adv. Math. 215(2) (2007), 679-733.
5. A. Bruguières, S. Lack and A. Virelizier, Hopf monads on monoidal categories, $A d v$. Math. 227(2) (2011), 745-800.
6. S. Caenepeel and I. Goyvaerts, Monoidal Hom-Hopf algebras, Comm. Algebra 39(6) (2011), 2216-2240.
7. Y. Y. Chen, Z. W. Wang and L. Y. Zhang, Integrals for monoidal Hom-Hopf algebras and their applications, J. Math. Phys. 54(7) (2013), 073515.
8. J. T. Hartwig, D. Larsson and S. D. Silvestrov, Deformation of Lie algebras using σ-derivations, J. Algebra 295(2) (2006), 314-361.
9. D. Hobst and B. Pareigis, Double quantum groups, J. Algebra 242(2) (2001), 460-494.
10. N. H. Hu, q-Witt algebras, q-Lie algebras, q-holomorph structure and representations, Algebra Colloq. 6 (1999), 51-70.
11. A. Makhlouf and F. Panaite, Yetter-Drinfeld modules for Hom-bialgebras, J. Math. Phys. 55(1) (2014), 013501.
12. A. Makhlouf and F. Panaite, Hom-L-R-smash products, Hom-diagonal crossed products and the Drinfeld double of a Hom-Hopf algebra, J. Algebra 441(1) (2015), 313-343.
13. A. Makhlouf and S. D. Silvestrov, Hom-algebras and Hom-coalgebras, J. Algebra Appl. 9(4) (2010), 553-589.
14. A. Makhlouf and S. D. Silvestrov, Hom-algebras structures, J. Gen. Lie Theory Appl. 2 (2008), 51-64.
15. A. Makhlouf and S. D. Silvestrov, Hom-Lie admissible Hom-coalgebras and HomHopf algebras, in Generalized lie theory in mathematics, physics and beyond (Silvestrov S., Paal E., Abramov V. and Stolin A., Editors) (Springer-Verlag, Berlin, 2008), Chp 17, 189-206.
16. A. Makhlouf and S. D. Silvestrov, Notes on formal deformations of Hom-associative and Hom-Lie algebras, Forum Math. 22 (2010), 715-759.
17. I. Moerdijk, Monads on tensor categories, J. Pure Appl. Algebra 168(2) (2002), 189-208.
18. S. Montgomery, Hopf algebras and their actions on rings, in CMBS Reg. Conf. Ser. in Math., vol. 82, Am. Math. Soc., Providence, 1993.
19. J. Power and H. Watanabe, Combining a monad and a comonad, Theor. Comput. Sci. 280(1-2) (2002), 137-162.
20. R. Street, The formal theory of monads, J. Pure Appl. Algebra 2(2) (1972), 149-168.
21. D. Yau, Hom-quantum groups I: Quasitriangular Hom-bialgebras, J. Phys. A 45(6) (2012), 065203.
22. D. Yau, Hom-Yang-Baxter equation, Hom-Lie algebras and quasitriangular bialgebras, J. Phys. A 42(16) (2009), 165202.
23. D. Yau, The Hom-Yang-Baxter equation and Hom-Lie algebras, J. Math. Phys. 52(5) (2011), 053502.
24. X. H. Zhang and S. H. Wang, Weak Hom-Hopf algebras and their (co)representations, J. Geom. Phys. 94 (2015), 50-71.
