
Econometric Theory, 39, 2023, 989–1008.
doi:10.1017/S0266466622000238

ESTIMATION OF A
HIGH-DIMENSIONAL COUNTING

PROCESS WITHOUT PENALTY FOR
HIGH-FREQUENCY EVENTS

LUCA MUCCIANTE

Royal Holloway University of London

ALESSIO SANCETTA

Royal Holloway University of London

This paper introduces a counting process for event arrivals in high-frequency trading,
based on high-dimensional covariates. The novelty is that, under sparsity conditions
on the true model, we do not need to impose any model penalty or parameters
shrinkage, unlike Lasso. The procedure allows us to derive a central limit theorem
to test restrictions in a two-stage estimator. We achieve this by the use of a sign
constraint on the intensity which necessarily needs to be positive. In particular, we
introduce an additive model to extract the nonlinear impact of order book variables
on buy and sell trade arrivals. In the empirical application, we show that the shape and
dynamics of the order book are fundamental in determining the arrival of buy and sell
trades in the crude oil futures market. We establish our empirical results mapping the
covariates into a higher-dimensional space. Consistently with the theoretical results,
the estimated models are sparse in the number of parameters. Using this approach,
we are also able to compare competing model hypotheses on the basis of an out-of-
sample likelihood ratio type of test.

1. INTRODUCTION

Counting processes are continuous time stochastic processes with nondecreasing
trajectories, taking values in the set of positive integers. This paper is concerned
with the estimation of the intensity of a counting process that depends on high-
dimensional covariates. In particular, we are interested in modeling the intensity
of high-frequency trading events using a possibly large number of covariates,
where the impact of each of them can be nonlinear. This further increases the
dimension when the unknown nonlinearity is modeled by a series expansion or
similar procedures. The motivation of this study is to use information from the
order book to model the intensity of buy and sell arrivals. The importance of order

We are very grateful to the Editor (Peter Phillips), the Co-Editor (Eric Renault), the Associate Editor, and the Referees
for their detailed comments that have led to substantial improvements both in content and presentation. Address
correspondence to Alessio Sancetta, Department of Economics, Royal Holloway University of London, Egham TW20
0EX, UK; e-mail: asancetta@gmail.com.

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided
the original work is properly cited.

989

https://doi.org/10.1017/S0266466622000238 Published online by Cambridge University Press

https://www.doi.org/10.1017/S0266466622000238
https://orcid.org/0000-0002-6304-4620
mailto:asancetta@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0266466622000238


990 LUCA MUCCIANTE AND ALESSIO SANCETTA

book variables has already been shown by various authors with varying degrees of
complexity (Hall and Hautsch, 2007; Cont, Kukanov, and Stoikov, 2014; Kercheval
and Zhang, 2015; Sancetta, 2018). The intensity of the counting process can be
used to predict buy or sell trade arrivals at infinitesimal timescales, using relevant
microstructure variables such as order book volume imbalances, order flow, and
spread as covariates.

The use of counting processes in high-frequency financial modeling was pio-
neered by Engle and Russell (1998). Since then, they have acquired an increasing
popularity in the literature (Bauwens and Hautsch, 2009, for a survey). A possible
way to characterize a counting process is via its intensity. Intuitively speaking, the
intensity is the instantaneous rate of occurrence of events conditional on the past
history.

For definiteness, let N := (N (t))t≥0 be a counting process starting at zero, and
λ∗ := (λ∗ (t))t≥0 a predictable process, both adapted to a filtration F = (Ft)t≥0 and
such that M := (M (t))t≥0, where M (t) := (

N (t)− ∫ t
0 λ∗ (r)dr

)
, is anFt-martingale.

The process λ∗ is anFt-intensity of N. We assume that there is a predictable process
X = (X (t))t≥0 that takes values in [0,1]K where K is large relatively to the sample
period and

λ∗(t) = X (t)′ b∗, (1)

where b∗ ∈ [0,∞)K is an unknown sparse parameter. All vector-valued quantities
are column vectors, and the prime symbol ′ stands for transpose. By sparse, we
mean that b∗ has a small number of nonzero coefficients, relatively to K. We
assume that the covariates are positive stochastic processes. Together with the
assumption that the true coefficient vector b∗ is nonnegative, this ensures that the
intensity is a positive stochastic process. We shall show that the nonnegativity
restriction naturally arises in some parameterization. Then, this positivity con-
straint inherits a regularization property similar to Lasso. The goal of the paper
is to find an estimator for b∗ when we observe a single trajectory/sample from
(N (t),X (t))t≥0 over a time interval [0,T] with T → ∞.

The empirical application in Section 3 further motivates the model, and
Section 3.2 provides further discussion on the scope and limitations of the
modeling strategy.

1.1. Remarks on the Model Restrictions

If the covariates are bounded, the restriction to [0,1]K is a mere linear transfor-
mation. Most covariates obtained from the order book satisfy this condition by
construction. Examples include order book volume imbalances (see (10) in Section
3.1). On the other hand, variables such as durations are not bounded. However, we
can always find transformations of the data to map variables into a bounded range.
The type of transformation is a function of the modeling objectives. We provide
more concrete remarks in Section 3.2.
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The assumptions that we shall use essentially imply that the covariates process
X is ergodic. We do not assume any stationarity. This is the weakest possible
assumption for econometric inference. Although we do not do so in the empirical
application, one example of the flexibility of the framework is to consider nonlinear
Hawkes processes as one of the covariates, as long as they satisfy some stability
conditions (Brémaud and Massoulié, 1996). In this case, one covariate could be

set equal to ϕ
(∫

(0,t) h(t − s)dN (s)
)

where ϕ (·) is a Lipschitz function with range

in [0,1], and h(·) is positive and integrable. If h is unknown, we could suppose a
finite set of such functions

{
h(l) : l = 1,2, . . . ,L

}
and generate as many covariates

as L to capture any self-exiting nature of the intensity. Alternatively, the kernel
function h would have to be estimated using a sample antecedent to the one used
in the estimation of the model.

1.2. Contributions and Relation to Other Work

This paper contributes to the characterization of the impact of order book variables
in the intensity of buy and sell trade arrivals. In order to do so in the most robust
and simple to interpret way, it relies on a methodology that is elementary from an
econometric point of view, but powerful.

The literature on modeling the arrival of high-frequency events using order
book variables is growing (inter alia Hall and Hautsch, 2007; Cont et al., 2014;
Sancetta, 2018; Morariu-Patrichi and Pakkanen, 2022). This is an important
practical problem. Algorithmic traders do track the order book (MacKenzie, 2017).
The order book not only contains information about liquidity, but also helps to
identify informed traders. Nowadays, unlike traditional models of informed trading
(Glosten and Milgrom, 1985; Kyle, 1985), sophisticated informed investors prefer
to rely on passive execution. This means that they would avoid buying at the ask
and paying the spread. Instead, they would break their orders into small ones and
patiently fill most of them joining the bid price. There are two reasons for this.
First, informed traders want to reduce their cost. Second, they want to reduce the
amount of signaling. It turns out that uninformed market participants are smart
and do look at quotes to infer information beyond liquidity. In fact, our empirical
results show that the intensity of buy arrivals is a nonlinear increasing function
of quoted buy orders over quoted sell sizes. The empirical application focuses on
crude oil futures as main instrument together with information from other auxiliary
instruments.

The model in (1) is similar to Aalen (1980) multiplicative intensity model.
There, we observe i.i.d. copies in the presence of censoring. For each copy, the
covariates are determined at time zero, and so they are usually referred to as marks.
Here, we observe a single trajectory of the data. The covariates are continuous-
time stochastic processes and change as new information becomes available during
trading. The absence of censoring leads to a simpler estimation procedure that
does not require the use of U-statistics. U-statistics would be impractical for the
sample sizes considered in this paper. The high-dimensional version of Aalen
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multiplicative intensity model has been considered by several authors (e.g., Gaïffas
and Guilloux, 2012, and the references therein).

From a technical point of view, our results are derived minimizing a least-
squares criterion for count processes. In our problem, we impose a nonnegativity
constraint without a penalty term, unlike what is usually done in the literature
(Gaïffas and Guilloux, 2012; Alaya, Gaïffas, and Guilloux, 2015, and the refer-
ences therein). Then, we can directly estimate the model using standard quadratic
programming with no need to use a link function that ensures positivity. Hence, this
work is related to results for nonnegative least squares. Under a sparsity assumption
on the vector of regression coefficients, the sign constraint imposes restrictions
that lead to a regularization as effective as Lasso with no need to tune a penalty
parameter. We obtain results equivalent to nonnegative least squares with i.i.d.
Gaussian errors (Meinshausen, 2013; Slawsky and Hein, 2013). However, in our
problem, we need to control a dependent continuous-time process.

The use of quadratic programming is important in our context. In practice,
models can be calibrated on months of data and the size of high-frequency data
be so large that cannot be held in ready access memory. However, the problem is
written in terms of sufficient statistics whose dimension does not grow with the
longitude of the sample, and hence they can be held in memory making estimation
very simple.

The plan for the paper is as follows. The next section describes the estimation
procedure and the assumptions for validity of the statistical procedure. Then, we
show that we can obtain consistency for a high-dimensional counting process with
no need to use a penalty or additional tuning parameters. We conclude the section
with a central limit theorem for a two-stage estimator for the parameters. Section 3
applies the results to the estimation of a point process for buy and sell arrivals
where the intensity depends on order book variables in a nonlinear but additive
way. In Section 3.2, we discuss the scope and limitation of the specific model we
choose. Section 4 contains some final remarks. Proofs are in Section A.1 of the
Supplementary Material. Additional details, which we may refer to, can also be
found in the Supplementary Material. This includes a finite-sample study using
simulations.

2. ASSUMPTIONS AND RESULTS

2.1. The Estimation Problem

Given (1), our estimator b̂ for b∗ is the solution of the constrained problem

min
b≥0

{
−2

∫ T

0
X (t)′ bdN (t)+

∫ T

0

(
X (t)′ b

)2
dt

}
. (2)

This is a standard quadratic programming problem. Throughout, all vector inequal-
ities are meant elementwise. Replacing the constraint with a penalty, this objective
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function has been used for high-dimensional problems by several authors (e.g.,
Gaïffas and Guilloux, 2012; Alaya et al., 2015).

Note that the population version of the objective function is proportional to

lim
T→∞E

[
−2

1

T

∫ T

0
X (t)′ bdN (t)+ 1

T

∫ T

0

(
X (t)′ b

)2
dt

]
,

and using the definition of the intensity, this is equal to

lim
T→∞E

[
−2

1

T

∫ T

0
X (t)′ bλ∗ (t)dt + 1

T

∫ T

0

(
X (t)′ b

)2
dt

]
. (3)

When λ∗ (t) = X (t)′ b∗, it is easy to see that the constrained minimizer of the
above display is b = b∗, when the constraint b ≥ 0 holds for b∗ as well. In some
situations, a positivity constraint on b is meaningful. Then, we do not need to use a
penalty to find consistent estimators in high dimensions. We shall give examples in
Section 2.3.

2.2. Assumptions

We introduce some additional notation and terminology. Fix an arbitrary pos-
itive T. We denote the first n = N (T) jump times of N by T0 < T1 < · · · <

Tn ≤ T , where T0 = 0. The integral of (1) is the compensator of N (t) and
M (t) := (

N (t)− ∫ t
0 λ(r)dr

)
is an Ft-martingale (see the discussion around (1)).

Throughout, we use index subscripts to denote the relevant entry in either vectors
or matrices. Let S = {i ≤ K : b∗

i > 0} be the set of nonzero entries of b∗, Sc =
{i ≤ K : b∗

i = 0} be its complement, and s = |S| be the cardinality of S. For an
arbitrary vector a ∈ R

K and U ⊂ {1,2, . . . ,K} we denote by aU ∈ R
|U| the |U|-

dimensional subvector of a obtained by removing all the entries with index not
in the set U. Define �̂ := 1

T

∫ T
0 X (t)X (t)′ dt and �̂S := 1

T

∫ T
0 XS (t)XS (t)′ dt. We

use ‖·‖p to denote the �p norm p ∈ (0,∞]. Finally, we write w.p.1. to mean with
probability going to 1.

Assumption 1 (Model assumption). The point process admits the intensity (1)
which is supposed to be uniformly bounded by a constant λ̄ (possibly going to
infinity), X := (X (t))t≥0 is a predictable process with values in [0,1]K for each
t ≥ 0, and b∗ ∈ [0,∞)K .

One main restriction is that the intensity is bounded by a constant λ̄. It
could be relaxed to a moment condition, but at the cost of additional technical
complications. In this case, it would not be possible to obtain an error bound that
is logarithmic in K.

Assumption 2 (Eigenvalues condition). There is a constant φmin > 0 such that
the eigenvalues of �̂S are all greater than φmin, w.p.1.
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Let L > 0 and R(L,S) := {b : ‖bSc‖1 ≤ L‖bS‖1}, where S is the index set of
active variables. The (L,S) restricted �1-eigenvalue of a matrix A is defined as

φ2
comp(A,L,S) := min

{
s

b′Ab

‖b‖2
1

: b ∈ R(L,S)

}
. (4)

A lower bound on (4) is the weakest assumption used to derive oracle inequalities
for Lasso (van de Geer and Bühlmann, 2009). We shall use the following.

Assumption 3 (Compatibility condition). There is a strictly positive constant φ

such that φ2
comp(�̂, 3√

ν
,S) ≥ φ w.p.1, where ν is as in Assumption 4.

The positively constrained minimal �1-eigenvalue of a matrix A is defined as

φ2
pos (A) := min

{
b′Ab

‖b‖2
1

: min
i

bi ≥ 0

}
. (5)

A lower bound on (5) has been used by Meinshausen (2013) in the context of
nonnegative least squares.

Assumption 4 (Positive eigenvalue condition). There is a ν > 0 such that

φ2
pos

(
�̂
)

≥ ν w.p.1.

We shall refer to Assumptions 1–4 simply as the Assumptions.
As we shall discuss next, there are reasons to make λ̄, φmin, φ, and ν depend on T.

Hence, we shall allow λ̄ = λ̄ (T) → ∞, and φmin = φmin (T), φ = φ (T), ν = ν (T)

to go to zero as T → ∞, if needed. For ease of notation, we drop the dependence
on T in what follows.

2.3. Remarks on the Assumptions

2.3.1. Assumption 1. We view the sign constraint as a hypothesis, and esti-
mation is carried out under this hypothesis. Specifically for the problem of high-
frequency trading, we have a priori knowledge whether the marginal impact of a
high-frequency order book covariate is increasing or decreasing. Such information
can be obtained from other studies (e.g., Kercheval and Zhang, 2015; Sancetta,
2018). Hence, given such information on the direction of the impact, we show
how to improve estimation in high-dimensional problems.

For the sake of clarity, we now consider two examples. Consider the inten-
sity λ(Z (t)) = a0 + a1Z1 (t) − a2Z2 (t) that depends on the covariate Z (t) =
[Z1 (t),Z2 (t)]′ with values in [0,1]2, where ai ≥ 0, i = 0,1,2, a0 − a2 ≥ 0. The
parameters’ restriction ensures that this intensity is always nonnegative. Then,
λ can be written as (1) where X1 (t) = 1, X2 (t) = Z1 (t), X3 (t) = 1 − Z2 (t), and
b∗

1 = a0 − a2, b∗
2 = a1, b∗

3 = a2, where b∗ ≥ 0. Hence, in our framework, we are
able to control the direction of the impact by the linear transformation x �→ 1− x.
From a computational point of view, this is equivalent to changing the sign of the
covariate and imposing an additional inequality constraint.
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Furthermore, possible nonlinearity of the impact of a covariate can lead to high-
dimensional problems. For example, suppose that Z (t) takes values in [0,1] and
λ(Z (t)) = g(Z (t)) where g : [0,1] → [0,∞) is an unknown continuous function.
Define

λ(Z (t)) =
K∑

i=0

aiBi,K (Z (t)), (6)

where Bi,K (z) = (K
i

)
zi (1− z)K−i is the ith term in a Kth-order Bernstein poly-

nomial. By linearity, this is in the form of (1) when Xi (t) := Bi−1,K (Z (t)) and
b∗

i = ai−1, i = 1,2, . . . ,K + 1. The coefficients of Bernstein polynomials have a
clear physical interpretation for K → ∞:

sup
z∈[0,1]

∣∣∣∣∣g(z)−
K∑

i=0

aiBi,K (z)

∣∣∣∣∣→ 0

when we define ai = g(i/K) (Lorentz, 1986, Thm. 1.1.1). Hence, the above display
suggests that if g ≥ 0, the assumption that ai ≥ 0 is almost necessary when K is
large. The argument can be extended to a dimension greater than 1. However, we
note that the assumptions on �̂ will fail as K → ∞, unless we allow φ and ν to go
to zero slowly enough. This is allowed in our results (Theorems 1 and 2).

In the empirical section of this paper, we view the sign constraint as a hypothesis
on the direction of the impact of the covariates. Relying on several hypotheses,
we estimate models and compare their performance out of sample (see Section 3
for details). This remark would suggest that impact/sign misspecification would
lead to a zero coefficient. Consider the first example in the above discussion. By
impact misspecification, we mean using X3 (t) = 1−Z2 (t) when in fact the impact
of Z2 (t) on the intensity is positive. Because of the influence from other variables,
the procedure may select a covariate with the wrong impact even when solving the
population objective function (3). We carried out a number of numerical examples
to find the solution to (3). We found that the constraint tends to be binding for a
true negative coefficient when both s and the number of wrongly signed variables
are small. However, as either s or the degree of misspecification increases, the
constrained population estimator may have a positive sign even when the true one
is negative. For the designs we considered in the Supplementary Material, selection
of a misspecified variable when solving (3) was relatively infrequent. Details can
be found in Section A.4 of the Supplementary Material.

We allow λ̄, the constant upper bound on the intensity λ∗, to possibly grow to
infinity. This is relevant in practice, as we may only have a crude upper bound
for λ∗ that depends on s, the number of active variables. To see this, note that by
assumption, λ∗ = X′b∗ ≤ ‖bS‖1 = O(s). Even if crude, with no further information
on either the covariates or the coefficients, this is the best possible upper bound on
λ∗. Hence, it is relevant to allow λ̄ = O(s) and s to diverge to infinity with T.
To see how information can be used to find a tighter bound on λ̄, consider the
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intensity in (6). Then, we know that the intensity is bounded by maxi≤K ai, which
is the largest of the coefficients to be estimated.

2.3.2. Assumption 2. Unlike Meinshausen (2013) to make the proofs simpler,
we use Assumption 2. This is just slightly stronger than the Compatibility Condi-
tion φ2

comp(�̂,0,S) ≥ ρ for some ρ > 0 w.p.1, which is needed in the proofs. To see
this, note that, by the nonnegativity of the coefficients, the latter implies that

s
∑
i,j∈S

bibj�̂i,j ≥ ρ

(∑
i∈S

|bi|
)2

w.p.1, where �̂i,j is the i,j entry in �̂. Suppose that ρ is a lower bound on the
smallest eigenvalue of �̂S w.p.1. Then,

s
∑
i,j∈S

bibj�̂i,j ≥ ρs
∑
i∈S

b2
i

w.p.1. Using the fact that the �1 norm of an s-dimensional vector is bounded by√
s times its �2 norm, this means that φ2

comp(�̂,0,S) ≥ ρ holds w.p.1. In practice,
this means that the covariates with index in the active set S need to be linearly
independent w.p.1, when T → ∞. This is plausible, as s should be relatively small,
i.e., b∗ is sparse.

It is instructive to consider conditions on X that imply this assumption. Recall
that �̂i,j := T−1

∫ T
0 Xi (t)Xj (t). Suppose that

(
Xi (t)Xj (t)

)
t≥0 is ergodic, for all

i,j ∈ S, in the sense that �̂i,j → �i,j a.s., where �i,j is a constant, i,j ∈ S. By
boundedness of the covariates, the convergence must also hold in L2. Therefore, if
S has bounded cardinality, �̂S −�S converges to zero in expected Frobenius norm.
This implies convergence of the eigenvalues of �̂S to the ones of �S (Bosq, 2000,
Thm. 4.4). Incidentally, boundedness implies that all the moments of �̂i,j converge
to �i,j, i,j ∈ S.

The above definition of ergodic is closely linked to the existence of an asymp-
totic mean stationary measure such that �S is the expectation of �̂S with respect to
that measure (see Gray and Kieffer, 1980, Thm. 1, and Gray, 2009, Chap. 6, for an
extensive treatment). The argument does not require stationarity of

(
Xi (t)Xj (t)

)
t≥0.

As a simple example of why this can be relevant, consider EX2
i (t) = σ 2

i (t). It is
common in high-frequency data to have time-varying (unconditional) volatility
of certain quantities, due to intraday nonstationarity. However, by ergodicity
and boundedness, there is a constant σ 2

i = limT
1
T

∫ T
0 σ 2

i (t)dt. In practice, this is
plausible when T spans multiple days.

Finally, we note that if s increases, the dependence among the active variables
may increase, making a lower bound φmin on the smallest eigenvalue smaller. For
this reason, we allow the bounds in our results to explicitly depend on φmin.
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2.3.3. Assumption 3. We use the same Compatibility Condition as in Mein-
shausen (2013). Meinshausen (2013) also uses φ2

comp(�̂,0,S). As discussed above,
by Assumption 2, we do not need this additional condition. To verify the Compati-
bility Condition using population quantities, we can use approximations. Suppose

that there is a sequence εT → 0 such that maxi,j

∣∣∣�̂i,j −�i,j

∣∣∣ = OP (εT), where

�i,j is understood to be the limit (in probability) of �̂i,j, i,j ∈ {1,2, . . . ,K}. If
the number of active variables satisfies s = oP

(
νε−1

T

)
with ν as in Assumption

3, then we can deduce that the Compatibility Condition is satisfied if ν > 0 and
the smallest eigenvalue of � is strictly positive (van de Geer and Bühlmann, 2009,
Cor. 10.1 and discussion). A bound on the minimal eigenvalue of � requires that
the covariates are not asymptotically dependent. To establish such a bound, we will
need rates of convergence. Ergodicity alone, as discussed in the previous remark,
is not sufficient even when S has finite cardinality. To see this, note that when s

is bounded we still need maxi,j

∣∣∣�̂i,j −�i,j

∣∣∣ = oP (1) for i,j ∈ {1,2, . . . ,K} and not

just for i,j ∈ S. Given that K is not necessarily bounded, this requires convergence
rates.

We also note that as K increases, the smallest eigenvalue of � may tend to zero.
For this reason, our bounds are in terms of φ to show how quickly the convergence
rate may deteriorate if φ → 0.

2.3.4. Assumption 4. This assumption is the same as in Meinshausen (2013).
For Assumption 4 to hold, it is sufficient that mini,j �̂i,j > 0 a.s., i,j ∈ {1,2, . . . ,K}.
This is satisfied if the covariates Xi (t) do not have a disjoint support for all t ≥ 0.
Then, the average of Xi (t)Xj (t) is greater than zero because Xi (t) ∈ [0,1], t ≥ 0,
unless some of the covariate are exactly zero. This condition is satisfied in our
empirical study. However, there are parameterizations that lead to disjoint subsets.
Notable examples are splines and one-hot encoding (Alaya et al., 2019). One-hot
encoding essentially builds mutually disjoint bins for each covariate and constructs
dummy variables for each bin. This leads to mutually disjoint covariates. As
discussed in Meinshausen (2013, Exam. III), the following setup covers splines
and one-hot encoding, and satisfies Assumption 4. Fix a positive integer L, and
suppose that {Pl : l = 1, . . . ,L} is a partition of {1,2, . . . ,K} such that �̂i,j > νL
a.s., if i,j ∈ Pl for some l and zero if i ∈ Pl,j ∈ Pk when k = l. This means that
covariates that have an index in different partitions have disjoint support. In this
case,

b′�̂b =
L∑

l=1

∑
i,j∈Pl

bibj�̂i,j ≥ νL
L∑

l=1

∑
i,j∈Pl

bibj = νL
L∑

l=1

⎛
⎝∑

i∈Pl

bi

⎞
⎠

2

.

Then, using the fact that, by Jensen’s inequality, for any constants a1,a2, . . . ,aL,

we know that
(∑L

l=1 al

)2 ≤ L
∑L

l=1 a2
l , we deduce that
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b′�̂b ≥ ν

⎡
⎣ L∑

l=1

⎛
⎝∑

i∈Pl

bi

⎞
⎠
⎤
⎦

2

= ν ‖b‖2
1

when mini bi ≥ 0. Then, Assumption 4 is satisfied.
As mentioned above, we require �̂i,j > νL. Given that �̂i,j ∈ [0,1], we need

ν → 0 if the number of partitions L diverges to infinity. This is of interest for certain
nonparametric estimators like one-hot encoding and splines with an increasing
number of knots.

We conclude this section giving an intuition on why Assumption 4 leads to
results comparable to �1 penalization. By Assumption 4, b′�̂b ≥ ν ‖b‖2

1 w.p.1 as
long as b ≥ 0. Hence, bounds on b′�̂b will translate into bounds for ‖b‖2

1. However,
as soon as ν → 0, the control of ‖b‖2

1 using b′�̂b becomes loose and the procedure
will underperform standard estimation with an �1 penalty. Similar remarks, but in
the context of regression analysis, are made in Meinshausen (2013).

2.4. Asymptotic Results

2.4.1. Consistency. We shall keep track of all the constants to see how the
bound is affected. This is useful, for example, if φmin → 0 slowly enough.
Similarly, we can allow λ̄ → ∞. This is important, because T/λ̄ is one of the

main quantities affecting the convergence rate. Define c(s) := max
{

s2

φ2 ,
1
ν

}
and

μT := 1
T

∫ T
0 Eλ∗ (t)dt. Note that μT ≤ λ̄. We have consistency of the estimator b̂

for b∗, under the �1 norm. Throughout, to simplify the notation, we assume that
K ≥ 2 in all the results that follow.

THEOREM 1. Under the Assumptions, if logK = O
(
Tλ̄
)
, then

∥∥∥b̂−b∗
∥∥∥

1
= OP

⎛
⎝
√

c(s)
(
s2μTφ−2

min + λ̄ logK
)

T

⎞
⎠ .

The second result is an estimation of the prediction error.

THEOREM 2. Under the Assumptions, if logK = O
(
Tλ̄
)
, then

1

T

∫ T

0

(
X (t)′ b̂−X (t)′ b∗

)2
dt = OP

(
c1/2 (s)

(
s2μTφ−2

min + λ̄ logK
)

T

)
.

Theorems 1 and 2 make explicit the dependence on the parameters φ, φmin, ν,
and λ̄ defined in the Assumptions. Hence, we can have consistency even when
φmin,φ,ν → 0 and λ̄ → ∞ at suitable rates as T → ∞. When ν,φ,φmin are fixed,
c(s) = O

(
s2
)
. Then, we have the following corollary.
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COROLLARY 1. Under the Assumptions, if λ̄ is fixed and bounded away from
infinity, φmin,φ,ν are fixed and bounded away from zero, and logK = O

(
Tλ̄
)
, then

∥∥∥b̂−b∗
∥∥∥

1
= OP

(√
s4 + s2 logK

T

)
(7)

and

1

T

∫ T

0

(
X (t)′ b̂−X (t)′ b∗

)2
dt = OP

(
s3 + s logK

T

)
(8)

hold true.

The convergence rate derived here is typical of high-dimensional estimation
problems under some form of regularization. For example, the convergence rate
in our error bounds is similar to the one derived for the nonnegative least-squares
regression problem with i.i.d. Gaussian errors (Meinshausen, 2013, Thms. 1 and 2,
and Slawsky and Hein, 2013, Thm. 2). We can relate to those results, assuming that
the conditions of Corollary 1 hold. Then, we have �1 consistency of the estimator
if T−1

(
s4 + s2 lnK

) → 0 (see (7)). On the other hand, Meinshausen (2013, first
part of his Thm. 1) says that, in the regression case, we have �1 consistency if
n−1s4 lnK → 0, where n is the sample size.

Suppose that the regressors are bounded. Under a lower bound on the smallest
nonzero elements in the regressor coefficients, results in Meinshausen (2013, Thm.
2) imply (empirical) L2 consistency of the regression function when n−1s lnK → 0.
With no such condition on the regression coefficients, in the present context, we
can obtain L2 consistency of the intensity estimator when T−1

(
s3 + s lnK

) → 0
(see (8)). We can also consider the L2 consistency of the estimated intensity in
Gaïffas and Guilloux (2012) for the Aalen intensity model, using a data-driven
Lasso penalty. Using a restricted eigenvalue condition, Gaïffas and Guilloux (2012,
Thm. 2) achieve consistency if n−1s lnK → 0, where, again, n is the sample size.
Given that the model setup differs, and we cannot rely on a penalty, the method
of proof in Gaïffas and Guilloux (2012) is different. It can be difficult to discuss
convergence rates beyond the aforementioned remarks.

The next result is about set identification.

COROLLARY 2. Using the notation in Theorem 1, define ρ :=√
c(s) λ̄

(
s2φ−2

min + logK
)
/T. Suppose that the conditions of Theorem 1 hold.

Furthermore, suppose that mini∈S b∗
i > κ for some κ such that κ/ρ → ∞. Let

Ŝ =
{

i ≤ K : b̂i > 0
}

. Then, Pr
(

Ŝ ⊂ S
)

→ 0.

Let Ŝε =
{

i ≤ K : b̂i > ε
}

. Then, under the above conditions, for any ε such that

ε/ρ → ∞ and κ/ε → c > 1, Pr
(

Ŝε = S
)

→ 0.
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Corollary 2 says that Ŝ, the estimated support of b∗, is a superset of S, the
true support, w.p.1. Using a threshold on the coefficients, we can achieve set
identification, w.p.1. Note that we can have κ → 0 slowly enough and similarly
for ε.

2.4.2. Convergence in Distribution. We obtain a central limit theorem for the
ordinary least squares estimator for b∗. At first, we estimate b̂ in (2) and obtain Ŝε

as in Corollary 2. Then, we compute bOLS
ε , which is the K-dimensional vector such

that its entries with index in Ŝε are equal to

(∫ T

0
XŜε

(t)XŜε
(t)′ dt

)−1(∫ T

0
XŜε

(t)dN (t)

)
,

while all the other entries are zero. Note that the cardinality of Ŝε can still grow
with T. Given a fixed K-dimensional vector α satisfying α′α = 1 and α′

Ŝε
αŜε

> 0,

we are interested in the asymptotic distribution of
√

Tα′ (bOLS
ε −b∗) to conduct

inference. Define �̂N := 1
T

∫ T
0 X (t)X (t)′ dN (t) and �̂N

S to be the submatrix that
includes only the entries with row and columns indices in S. We state an additional
assumption.

Assumption 5. We have that limT
∑

i,j∈S

[
Var

(
�̂i,j

)
+Var

(
�̂N

i,j

)]
= o(φmin),

where φmin is as in Assumption 2, and E�̂S and E�̂N
S both converge to full-rank

constant matrices.

Note that Var
(
�̂i,j

)
= o(1) under ergodicity assumptions on XiXj. As already

mentioned, ergodicity and boundedness imply that �̂i,j converges in L2 to a
constant �i,j. By boundedness, we also know that E�̂i,j converges to a constant
limit �i,j. However, we need the rate of convergence to be fast enough to ensure
convergence of all the entries in �̂S. For example, this is trivially satisfied if s is

bounded or if we assume that maxi,j∈S Var
(
�̂i,j

)
= O

(
ε2

T

)
such that s = oP

(
ε−1

T

)
.

The same argument applies to �̂N
S . In this case, write

�̂N
i,j = 1

T

∫ T

0
Xi (t)Xj (t)

′ (X (t)′ b∗)dt + 1

T

∫ T

0
Xi (t)Xj (t)

′ dM (t)

using the definition of M and intensity (see the discussion around (1)). Being a
martingale, the second term on the right-hand side converges to zero in probability
i,j ∈ S. Under ergodicity assumptions on

(
Xi (t)Xj (t)Xk (t)

)
t≥0 for i,j,k ∈ S, we

also have that the first term on the right-hand side converges to a constant and the
same applies to its moments because of dominated convergence. We can now state
a central limit theorem for our estimator.
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THEOREM 3. Suppose that the assumptions of Corollary 2, Assumption 5,

inft>0 λ∗ (t) > 0, and limT α′
S

(
E�̂S

)−1
αS > 0 hold. If s2 = o

(
Tφ2

min/λ̄
)
, then√

T/σ 2
αα′

(
b̂OLS

ε −b∗
)

→ N (0,1) in distribution, where N (0,1) is the standard

normal distribution and

σ 2
α = lim

T
α′

S

(
E�̂S

)−1(
E�̂N

S

)(
E�̂S

)−1
αS.

Moreover, σ̂ 2
α = α′

Ŝε
�̂−1

Ŝε
�̂N

Ŝε
�̂−1

Ŝε
αŜε

is a consistent estimator for σ 2
α .

Note that the conditions are for S rather than Ŝε . By Corollary 2, the two sets
are the same, w.p.1. By assumption, mini∈S b∗

i > κ for κ as in Corollary 2. When
κ is fixed, the post-selection asymptotics in Theorem 3 are valid as they are
uniform in b∗ (Leeb and Pötscher, 2005). When κ is allowed to go to zero as
in Corollary 2, post-selection asymptotics are still valid, but the convergence to
a normal can be arbitrarily slow (mutatis mutandis; see Leeb and Pötscher, 2005,
p. 29ff). Intuitively, this follows from the fact that as κ → 0, it becomes harder to
distinguish very small coefficients from zero coefficients.

Next, we shall define a nonlinear additive model for buy and sell trades based
on order book and trade variables.

3. EMPIRICAL APPLICATION: ORDER BOOK DETERMINANTS
OF CRUDE OIL BUY AND SELL TRADE ARRIVALS

We estimate the intensity of buy and sell trade arrivals separately. We investigate
the impact of features constructed from quote and trade data on these buy and
sell events. The features include order book imbalance, trade imbalance, spread,
and durations. Information from quote data appears to contain much information
(Hall and Hautsch, 2007; Cont et al., 2014; Kercheval and Zhang, 2015; Sancetta,
2018). For example, order book imbalances are a quantity that has been used by
practitioners for more than two decades (MacKenzie, 2017). However, most of the
attention in the econometric literature has been on trade data.

We use data from the front month of crude oil futures traded on the Chicago
Mercantile Exchange (CME). The CME ticker is CL, and the sample period is
May 1, 2013 to June 5, 2013, each day from 13:30 to 18:00 GMT. As auxiliary
instruments, we use information from heating oil (HG), natural gas (NG) and the
S&P500 (ES) futures, where the CME ticker is in parenthesis. The data were
collected by a high-frequency proprietary trading firm collocated in the Aurora
data center in Chicago. The data are at the highest level of granularity, comprising
all quotes and trades, time stamped at nanosecond resolution.

3.1. The Model

We use different model specifications to capture the nonlinearities in the impact of
the covariates on the intensity. We separately consider buy and sell trade arrivals.
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Table 1. Covariates used for estimation

Variables Short name Smoothing

Volume imbalance level j VolImbj, j = 1,2, . . . ,5

Spread Spread

Trade imbalance TrdImb98 α = 0.98

Durations Dur98 Dur90 α = 0.98 and 0.90

Note: The column “Smoothing” reports the smoothing parameter used if an EWMA had been applied
to the original variable.

We want to assess the extent to which these variables impact the intensity in a
nonlinear way. We consider different hypotheses. To evaluate the hypotheses, we
carry out a test for model performance. The results for the estimated models show
that the impact is nonlinear as expected and allow us to characterize the shape of
the impact. In order to formulate our hypotheses, we first define the covariates.

3.1.1. The covariates. The covariates are reported in Table 1. We apply expo-
nential moving average (EWMA) filters to some of the covariates. The EWMA of
a variable X (ti) with smoothing parameter α is

EWMA(X (ti)) = αEWMA(X (ti−1))+ (1−α)X (ti), (9)

where EWMA(X (t1)) = X (t1). Here, t1 is the time of the first update in the variable
X at the start of each day, whereas ti is the time of the ith update. EWMA’s are
computed for each day. Note that the covariates are updated at discrete times for
each instrument and the update times are different from the trade update times Tj.
We then sample the data at times that are the union of each covariate update and
the times Tj for the traded instrument only, i.e., CL. This reduces the total number
of updates within each day. Finally, to ensure that the covariates are predictable,
we make them left continuous by lagging them after sampling.

Variables are mapped, by linear transformation, into [0,1]. However, spread and
durations are first capped and then scaled by the cap so that they take values in
[0,1]. The book volume imbalance at level j ∈ {1,2, . . . ,5}, VolImbj, is defined as

VolImbj = BidSizej −AskSizej

BidSizej +AskSizej
, (10)

where BidSizej is the bid size (quantity) of the jth level bid, and similarly for
AskSizej. This variable takes values in [−1,1]. We map it to [0,1] by standard
linear transformation: multiply by 2 and subtract by 1. Hence, a value of 0.5
corresponds to a book volume imbalance equal to zero. The trade imbalance is
computed from the EWMA of the signed traded volume every time there is a
trade. We then divide it by the EWMA of the unsigned volumes. The EWMA’s
parameter is α = 0.98 for both denominator and numerator. Durations are in
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seconds with nanosecond decimals, capped to 1 second. They are then passed
to EWMA filters with parameter α = 0.98 and 0.90. The spread is capped to
four ticks and standardized by 4. Hence, the minimum value it can take is 0.25.
Additional details regarding the data and the calculations are in Section A.2 of the
Supplementary Material.

All variables are assumed to be mapped to [0,1] as described above. Then, if we
hypothesize that the impact of a covariate is negative, we apply the transformation
x �→ 1 − x as discussed in Section 2.3. For example, we would apply this
transformation to durations: it is natural to assume that longer past durations are
associated with a lower current intensity. We then apply a set of transformations
x �→ gl (x), l = 1,2,3, where g1 (x) = x, g2 (x) = (x−0.5)2, and g3 (x) = x3. The
functional forms can account for different types of impacts: g1 (x) has constant
marginal impact as opposed to g3 (x) which is close to zero for most values of x not
in the proximity of one. The latter transform seems more appropriate for volume
imbalances and most covariates. The function g2 (x) is just convex with a minimum
at x = 0.5. Combining these functions, we can approximate different types of
impacts and still be able to interpret the results. We now state the hypotheses for
model restriction.

3.1.2. Model Hypothesis 1. The impact of all volume imbalances and trade
imbalance is positive for buy trade intensity and negative for sell intensity. The
impact of the spread and durations is always negative. Finally, we apply, separately,
the following two transformations: g1 and g3, i.e., linear and cubic. Hence, this
doubles the final number of covariates to estimate.

3.1.3. Model Hypothesis 2. The impact of all covariates is as in model hypoth-
esis 1. However, we finally apply, separately, the following two transformations: g2

and g3, i.e., quadratic and cubic. Again, this doubles the final number of covariates
to estimate.

3.1.4. Model Hypothesis 3. The impact of all covariates is as in model
hypothesis 1, except for spread, for which we now suppose a positive impact.
Finally, we apply, separately, the same transformations as in model hypothesis 2.

3.1.5. Remarks on the Model Hypotheses. We briefly comment on the
hypotheses. First, the direction of the impact is a maintained hypothesis when
estimating the model. If this is wrong, it is likely that the estimated coefficient
will be zero. Second, regarding the transformations, we allow for the possibility of
combining two functions (out of three) in order to derive a more flexible model. At
the same time, we also rely on the estimation procedure to select the best submodel
in an automated fashion. For example, assume that the direction of the impact of
the covariates is as in model hypothesis 1 and that the impact is linear. Then, model
hypothesis 1 is true, whereas model hypotheses 2 is false. We have included model
hypothesis 3 to illustrate the point that using the wrong direction of the impact for
the spread can lead to a zero coefficient.
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For this problem, we have high confidence in the direction of the impact based
on the existing literature (recall the discussion in Section 2.3).

After the application of EWMA’s filters and the transformations, each hypothe-
sis has 18 covariates for each of the four instruments, which means 72 parameters.
Rather than making this a pure exercise in data mining, we prefer to keep the
number of covariates relatively small to simplify our discussion and focus on the
significance of the results.

3.2. Scope and Limitations

The goal is to present a model in the same vein as the ones used by high-
frequency trading firms. The focus is on the order book as the main source of
information. The EWMA’s of trade durations attempt to capture the well-known
autocorrelation of durations (Engle and Russell, 1998). The model is geared toward
high-frequency predictions in live trading. It is then customary to restrict variables
to finite ranges to avoid consuming corrupted/invalid messages from the exchange.
This may sound problematic for some fat-tailed variables like durations. However,
as durations increase, the intensity should shrink. Capping durations to a relatively
high value is equivalent to saying that the decreasing marginal effect of durations
beyond the cap value is zero. Given that for crude oil we can have hundreds of
trade arrivals within a second, capping durations to 1 second seemed reasonable.

The model does not include an intraday seasonal component. However, part of
this seasonality is implicitly captured by a slow moving EWMA of durations, so
we did not further increase the number of variables as we want to showcase the
importance of the order book.

A final comment pertains to the separate estimation of buy and sell intensities.
Suppose the following feedback loop effect:

λbuy = X′bbuy +ρbuyλsell,

λsell = X′bsell +ρsellλbuy,

where ρbuy and ρsell are constants in [0,1). This system has the reduced form

λbuy = X′ (bbuy +ρbuybsell
)(

1−ρbuyρsell
)−1

,

λsell = X′ (bsell +ρsellbbuy
)(

1−ρbuyρsell
)−1

.

In consequence, separate estimation of the buy and sell intensities is equivalent to
estimation of the above reduced form model.

3.3. Results

To carry out a test of performance measurement, we split the data in two halves.
We use the data until May 18, 2013 for estimation and the subsequent sample for
testing. We shall only report results for buy trades. The ones for sell trades are
essentially identical.
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Table 2. Estimation results for buy trades

Hypothesis 1 Hypothesis 2 Hypothesis 3

Active cov. b̂ Active cov. b̂ Active cov. b̂

CL_VolImb1_3 2.50 CL_VolImb1_2 1.25 CL_VolImb1_2 1.28

CL_TrdImb98_3 0.04 CL_VolImb1_3 2.04 CL_VolImb1_3 2.05

CL_Dur98_3 0.44 CL_VolImb2_2 4.61 CL_VolImb2_2 4.65

CL_Dur90_3 3.51 CL_VolImb3_2 1.48 CL_VolImb3_2 1.51

HO_Spread_3 2.48 CL_TrdImb98_2 8.08 CL_TrdImb98_2 8.16

HO_Dur98_1 0.16 CL_Dur98_3 0.29 CL_Dur98_3 0.29

HO_Dur98_3 0.52 CL_Dur90_3 3.12 CL_Dur90_3 3.12

HO_Dur90_3 1.87 HO_Spread_3 1.96 HO_Dur98_1 0.29

HO_Dur98_1 0.28 HO_Dur98_3 0.35

HO_Dur98_3 0.38 HO_Dur90_3 1.95

HO_Dur90_3 1.91

K ŝ/K K ŝ/K K ŝ/K

73 0.11 73 0.15 73 0.14

Notes: For each of the three hypotheses, the active covariate and the estimated coefficient are reported.
The superfix and suffix in each covariate name are separated by an underscore. The superfix represents
the ticker and the suffix the index in the transform gl l = 1,2,3, defined at the end of the paragraph “the
covariates” in Section 3.1. The total number of estimated parameters is denoted by K and the estimated
number of nonzero elements by ŝ.

The estimator for all models is sparse, as only 10%–15% of the coefficients are
nonzero (Table 2). An interesting finding is that the estimation based on hypothesis
2 leads to an impact of order book volume imbalances that is not monotonic.
Moreover, all hypotheses suggest that order book volume imbalances beyond the
third level are not important.

We then test the performance of the models out of sample. As already men-
tioned, we split the sample into estimation and test samples of roughly the same
size each. Let λ̂(k) be the intensity estimator from (2) using the estimation sample
for model hypothesis k ∈ {1,2,3}. The log-likelihood on the test sample is

L(k)
T =

∫ T

0
ln λ̂(k) (t)dN (t)−

∫ T

0
λ̂(k) (t)dt.

Its predictable part is

H(k)
T :=

∫ T

0
ln λ̂(k) (t)λ∗ (t)dt −

∫ T

0
λ̂(k) (t)dt.

Under the null hypothesis that model hypothesis 1 and hypothesis 2 perform the
same, we have that H(1)

T − H(2)
T = 0, against the one-sided alternative that model

2 is worse, i.e., H(1)
T − H(2)

T > 0. The standardized likelihood ratio test statistic
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Table 3. Test of model performance for buy trades

H2–H1 H3–H1 H2–H3

t-stat 38.59 37.92 2.65

p-value 0 0 0

Notes: The standardized out of sample likelihood ratio statistic LR(1,2)
T between

different model combinations is reported. The columns identify the null
hypothesis. For example, H2–H1 is the null that the model implied by Hypoth-
esis 1 performs as well as the one from Hypothesis 2. A large value rejects
the null in favor of the alternative that the model from Hypothesis 2 performs
better.

LR(1,2)
T :=

(
L(1)

T −L(2)
T

)
/

√
Tσ̂ 2

T is asymptotically standard normal, where

σ̂ 2
T = 1

T

n∑
j=1

[
ln
(
λ̂(1)(Tj)/λ̂

(2)(Tj))
]2

(Sancetta, 2018, Prop. 1). When carrying out the test, we standardize each intensity
by λ̂0 := ∫ T

0 λ̂(k) (t)dt/N (T) to ensure that the model comparisons are not affected

by the value of the expected intensity. Recall that λ̂(k) is unbiased if λ̂0 = 1.
The test is performed for different pairs of model hypotheses. We find that

hypothesis 2 is favored out of sample (Table 3). From the results in Tables 2 and 3,
we infer that information from auxiliary instruments is relevant and instruments
are interlinked. Moreover, we find that the impact of volume imbalances is not
monotonic. It is also worth mentioning that the results for the sell intensity led
to similar conclusions except for one case. We did not reject the hypothesis that
model hypothesis 2 (H2) is not better than model hypothesis 3 (H3). Recall that
the difference in these two model hypotheses is that the impact of the spread is in
the wrong expected direction for H3. In this case, the spread is not selected when
estimation is carried out under H3. The spread does not seem to be an important
variable in this problem because all products are very liquid. Hence, their spread
tends to be very tight most of the time. The only exception is heating oil (HO). In
this case, inspection of the data did show some variation for the spread. However,
overall, its importance is not as crucial as the other covariates. It is reassuring that
under H3, the spread for heating oil, having the wrong sign is not selected.

4. CONCLUSION

This paper studies the estimation of a point process where the intensity is a function
of high-dimensional variables. We rely on a nonnegativity constraint for the
intensity to show that the estimation problem can be solved by standard quadratic
programming with no need to include a penalty and tune additional parameters.
The resulting estimator is consistent and the error only grows logarithmically in
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the number of estimated parameters, as long as the true parameter is sparse. Our
motivation is the estimation of a possibly nonlinear additive model for the intensity
of buy and sell trades of crude oil futures prices. The covariates that affect the
intensity are order book and trade variables on crude oil together with information
from auxiliary instruments such as natural gas, heating oil, and the S&P500 futures.
The results show that the impact of variables constructed from the order book and
trades is nonlinear and that the instruments are interconnected. A test for model
performance is used, and it shows that we can compare competing hypotheses for
the direction of the impact of the covariates and the functional form of the intensity.

SUPPLEMENTARY MATERIAL

To view the supplementary material for this article, please visit: https://doi.org/
10.1017/S0266466622000238.
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