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Linear monads

B.J. Day

A monad T = (T, \i, r\) on a category C is said to be linear

with respect to a dense functor N : A -*• C if the operator T

is the epimorphic image of a certain colimit of its values on

A . The main aim of the article is to relate the concept of a

linear monad to that of a monad with rank. A comparison is then

made between linear monads and algebraic theories.

Introducti on

In Section 1 we commence with a dense functor N : A •* C and a monad

T = (T, \i, n) on C such that the canonical transformation

C(NA, C)'TNA -*• TC is an epimorphism. Such a monad is called linear

or, more precisely, /V-linear. We prove that the free algebras on the

values NA form a dense full subcategory of the Eilenberg-Moore category

C . The terminology follows that of Day [3], Section 5.

Once the foregoing result is established it allows a comparison to be

made between C as a full subcategory of a functor category [8, I/] and

the category C of algebras in [B, f] derived from the resultant

algebraic theory of T (of. Diers [5]). Conditions on C to be a

Birkhoff subcategory of C are examined in Section 2.

We note here that all categorical algebra is relative to a fixed

complete and cocomplete symmetric monoidal closed ground category
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78 B.J. Day

1/ = (I/, V, ®, J, ...) unless otherwise indicated. The terminology and

notation are basically derived from Ei lenberg and Kel ly [6] and Mac Lane

[9].

1. Linear monads and rank

Throughout this section we suppose that T = [T, \i, r\) is a given

monad on a category C and that N : A •+ C is a fully faithful dense

functor. The standard resolution of T into a Kleisli category and an

Ei lenberg-Moore category is denoted by

M

where M i s the dense comparison functor. Furthermore, we le t A denote

the full image of FN : A -»• C and le t ~N : A" •+• C denote the induced

functor such that FN = NF :

If we now suppose t h a t A i s small and C i s cocomplete then , by

Day and Kelly [ 4 ] , ( 7 . 1 ) , we have:

LEMMA 1.1. The composite MN : A ->• C i s dense iff eaoh natural

transformation ctD from C (MB, C) to C [MB, D) is of the form
D

C (l> / ) for a unique J-homomorphism f from C to D . / /

THEOREM 1.2 (The representation theorem for monads). The aomparisa

functor M : CT + C is dense and, for each algebra (C, 5) d C , the

natural transformations from C [M-, C) to a prealgebra G : C°p •+ 1/
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L inea r monads I 79

correspond to the elements in the equaliser of

VGC VGTC ,

where \i and Tt, are regarded as morphisms in C_ .

For the proof see Day [2], Proposition 8 .2 . / /

THEOREM 1.3. The composite MN : X -»• C is dense if the canonical

transform! tion

C ( T C , D) -»• [ [C(NA, C ) , C(THA, D)]

is a monomorphism for all C d C and D € C .

Proof. The notation U will sometimes be omitted. Suppose

a : C (FNA, C) •> C (MM, Z>) is a transformation which is natural in

FM f A . An extension a is defined by commutativity of

C' (FB,C)

IK

\C(NA,B),CT(FNA,C)] —7 •
A [l,a]

CJ(FB,D)

li?

f [C{NA,B) ,CJ(FNA,D)]
>A

F i r s t we note t h a t a|A = a : the diagram

C (ffl'.C) C (TilM'.ZJ)

[C(NA,NA'),CJ(TNA,D)1

transforms to
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180 B . J . Day

C(NA,NA') ® CT{TNA ' ,C) 1 ® a ' C(M4,iB4') ® CJ {TNA',D)

C{TNA,C) •+ C (TNA,D) ,

which commutes by naturality of a . Secondly, if 6 is a transformation

from CT(i?B, C) to C (FB, D) which is natural in FB € (L. then S = F .

This follows from the diagram:

2 * CT(IB,O)CJ{TB,C)

\ic

f [C(NA,B),CJ(TNA,C)~\ -, •• [ [C(NA,B),CT(FNA,D)] ,
>A j [ l ,6] U

which commutes by naturality of 3 . By Theorem 1.2 i t is now required to
T

show t h a t a corresponds t o the element a ( ? ) € VGC = CQ(FC, D) in the

equa l i se r of:

VGV ,VGC VGTC .

First ly, because o = {a™} is natural iif B € C , we see that the family

o_, is derived from «_-(?) : J •+ C1(FC, D) by the (ordinary)
FB C\J

representation theorem:

CJ(FB,C) • CJ(FB,D)

C(B,UC)

Thus it remains to verify that a(c) is in the equaliser of {VG\i, VGTc.) .

Consider Diagram l.k; subdlagrams 1 and h commute by definition of a so
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182 B. J. Day

it remains to show that subdiagrams 2, 3, and 5 , and the exterior commute.

Diagram 2 becomes Diagram 1.5 which clearly commutes. Diagram 3 becomes

Diagram 1.6; thus it suffices to show that subdiagram 3' commutes. This

follows by applying the representation theorem to D € C because both

legs are natural in D ; this diagram then becomes Diagram 1.7.

DIAGRAM 1.5

f [C(NA,C),C1(TNA,C)']

,1]

f [C(NA,TC),CT(TNA,C)~\
>A

,?),!]

[C(NA,TC) ,CJ(TNA,D)~\ .
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184 B . J. Day

DIAGRAM 1.7

C(NA,O® C (NA • ,TNA

C (TNA ,TC) ® C (AM ' ,TNA

compn.

C(AM ' ,TC)

@ C(NA ' ,TM

,T2C] ® CT (rAM ' ,T2NA)' T2N

compn.

CT [TM ' ,T2C) .

Again, this diagram commutes by the representation theorem applied to

C € C . Next consider Diagram 5,which transforms to

C(M,C)
CJ(T-,D) •+ I [C(TC,D),C(TNA,D)]

CJ{T2-,D)

f [cT(r2c,o),c {T2NA,D)]—7 = r— f ^{T2c,D),cJ{Tm,D)1 .
'A [l,C'(y,l)] >A

This diagram commutes by naturality of y : T -*• T .

that the diagram

It remains to check

commutes.

This diagram

CJ(\i

transforms

,D

i

to

t >• *

a
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L i nea r monads 185

{CT(TNA,D),CJ{TM ' ,

C (TNA ' ,TNA ) [CT(TNA,C),CJ(TNA',D)]

cJ(-c)

[CT(I7IM,C),CT(2'ilM\C1)]

composed with

C(NA', TNA) - ^ C1'{TNA' , T2NA) SJl^iU C
T(TNA <, TNA) ;

thus it commutes by naturality of a . / /

In view of this result we make the following definition with respect

to a fully faithful dense functor N : A •*• C .

DEFINITION 1.8. A monad T = (T, u, n) on C is called linear (or

tf-linear) if C(NA, C) o TNA exists for a l l C t C and

CtiiA, C) ° TNA •* TC is an epimorphism. The monad is called strictly

linear if this transformation is an isomorphism.

COROLLARY 1 .9 . If T on C is N-linear then the canonical diagram

CT • [ A ° p l / ]

commutes (to within a natural isomorphism) where the horizontal functors

are fully faithful. • II

2 . C o m p a r i s o n w i t h a l g e b r a i c t h e o r i e s

Let N : A •*• C and T = (T, u , n) be as i n Sect ion 1 . Then
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186 B . J . Day

t = F : A p -»• A°p = T is an tf-algebraic theory in the sense of Diers

[5] . Thus we form the category C of t-algebras by means of the

pullback

C* • [T,V]

where the horizontal functors are fully faithful.

By Corollary 1.9, C is a full reflective subcategory of [T, V]

and i t l ies in C This gives a reflection S : C -> C

THEOREM 2.1. If T is strictly linear then C is category

equivalent to C

Proof. Because C(NA , C) ° 2WA 3< K7 we have that T preserves

^/-absolute co l imi t s . Thus the hypotheses of Diers [ 5 ] , Theorem 5 .1 , are

sa t i s f ied by H I / . / /

Now suppose tha t C has canonical fac tor isa t ions for the system

{strong epimorphisms and monomorphisms} (cf. Freyd and Kelly [ 7 ] ) .

PROPOSITION 2 .2 . If the transformation

rA
(2.1) r

C(NA, C) ®C{NA', TNA) ->• C{NA', TC)

is a strong epimorphism in V and C{NA, C) ° TNA exists in C and

C(NA, -) : C -*• V preserves strong epimorphisms for all A € A , then the
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unit T\ of the reflection S —i H is a strong epimorphism.

Proof. On applying - o NA' t o both s ides of (2 .1) we see t h a t

C{NA, C) o TNA •* TC i s a strong epimorphism. Thus Theorem 1.3 a p p l i e s and

also T preserves strong epimorphisms s i nce , i f e : C •* D i s a s t rong

epimorphism in C , we have t h a t

C{NA,C)oTM •+ TC

Te

C{NA,D)oTNA + TD

commutes. Thus the diagonal is a strong epimorphism so Te is a strong

epimorphism. Now consider the factorisation ri- : C •*->• D >—>• SC in C .

It is required to show that D has a T-algebra structure. This structure

is derived from the following diagram:

•A Kr

C(M,C) ®C{NA',TNA) - ^ C(NA',C)

C(NA' ,TC)

b

C(NA',TD) •*• C{NA',D)

I I
C{NA' ,TSC) <-C{M',SC) ,

where a and b are both strong epimorphisms and the top morphism C,

is derived from the C -structure on C in the following manner. An

algebra (C, C) € C comprises C € C together with

t.r : C{NA', TNA) ®C(M, C) -> C(ffl ' , C) ;

that i s , a structure for the monad [ t , l ] i on [A , I/] where

t -I [t, l] . Then, by factorisation, the dashed arrow provides a

T-algebra structure on D , using the density of N . II
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188 B . J . Day

PROPOSITION 2.3 . Suppose the unit n of the reflection S -t B is a

strong epimorphism and C has kernel pairs. If U : C -*• C reflects

kernel pairs then C is closed in C under coequalisers.

Proof. Both U and U create kernel pairs and we omit them from

the notation. Let q : BC •*• D be a coequaliser in C and le t

p = r\n • q • Let (IT , ir ] be the kernel pair of q in C and le t

(<J> , $p) t>e t n e kernel pair of p in C . This gives

BSP

where 8 is monic, so r)p is monic and thus is an isomorphism. This

implies that p is the coequaliser of (#<}> .B\, B$ .H\) in C and that

th is l a t t e r pair is a kernel pair in C . Thus a kernel

pair in C , so X is an isomorphism, so 6 is an isomorphism, so ri is

an isomorphism, as required to show that D lies in C //

COROLLARY 2.4. If C(NA, C) ® C{NA', TNA) •+ C{NA', TC) is a

strong epimorphism in 1/ and C(NA, C) ° TNA exists in C and C(NA, -)

preserves strong epimorphisms for all A (. A and C has kernel pairs

reflected by U : C -»• C , then C is a Birkhoff reflective subaategory of

C * .

PROPOSITION 2.5. If C* is cocomplete and C{NA, -) preserves

coequalisers of reflective pairs, then C is monadic over C iff
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(a) f is a coequaliser in C iff U f is a eoequaliser in

C , and

(b) U reflects kernel pairs.

Proof. If C* is coeomplete then Ft -H Ut exists and UtFt

preserves coequalisers of reflective pairs since U : C ->• C creates

coequalisers because C{NA', -) preserves them {af. Diers [5], Proposition

1.1). Thus the result follows from Borceux and Day [/], Corollary 6.2. //

PROPOSITION 2.6. Suppose C and C* are aocomplete and let

K : [T, V] •* C denote the canonical reflection. If V preserves

epimorphisms and those unit components of the form T(tA, -) •* KT(tA, -)

are epimorphisms, then U F generates a linear monad.

Proof. We have

UtFtNA
1

CM', NA) ®T(tA', -)J ̂ , -))

by the representation theorem because N is fully faithful. Also

(A
UtFtC C(NA, C) ® T(tA, -

Thus, to show that

(2.2) C(M, C) • UtFtNA •* UtFtC

is an epimorphism consider the following diagram

C{M,C).UtT(U,-)

£/*[[ C(NA,C).T(tA,-

C(M,C).U KTitA,-)

(2.2)

tA
tK.\\ C(M,CC) ® T(tA,-)
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The 'bottom arrow is an epimorphism by hypothesis, so (2.2) is an

epimorphism, as required. //

3. Example

Suppose the ground category 1/ has canonical E - M factorisations

for the system E - M = {strong epimorphisms and monomorphisms} (see Freyd

and Kel ly [7] ) . Suppose also that 1/ has arbitrary cointersections of

E-quotients and that f ini te powers preserve strong epimorphisms.

DEFINITION 3.1 . A functor G : A •+ 1/ from a category A with

finite products to 1/ is said to E-preserve finite products if the

canonical morphism G(A X A') •* GA x GA ' is a strong epimorphism for al l

A, A' € A .

DEFINITION 3.2. Let M : A •* 8 be a functor between categories with

finite products. Then (/ is said to satisfy axiom E(ir) if the left Kan

extension of a functor G : A -*• 1/ which E-preserves finite products along

M again E-preserves finite products.

One then obtains results precisely analogous to those obtained for

axiom TT in Borceux and Day [7] » Sections 1 and 2.

DEFINITION 3.3. If T is a finitary algebraic theory (see Borceux

and Day [ / ] , Definition 3.1) then a functor G : T •+ 1/ which E-preserves

finite products is called an E-algebva (of T ).

Now let T* denote the category of *E-algebras for T , regarded as a

full subcategory of [T, V] . Let I denote the ordinary category of

algebras of T ; namely, the full subcategory of [T, f] defined by the

finite-product-preserving functors. Then there are inclusions

r c T̂  e [T, V] . The second embedding is oovefiective and the

coreflection maps G to the union of the E-algebras which are

M-subfunctors of G ; the coreflection counit l ies in M . The first

embedding is reflective and the reflection maps J ( 1^ to the largest r

E-quotient of A ; the reflection unit is in E . Thus we have
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7 2 — fl *— [T,l

ji it it

where I/- is the initial finitary theory and where the centre adjunction

is a strictly linear monadic situation.

THEOREM 3.4. If V satisfies the hypotheses of this seotion (and

satisfies axiom E(TT) ) then a monad T on V generates a Birkhoff sub-

category of an algebraic category r iff

(a) 1/ has coequalisers,

tm
(b)

f
[m, X] ® [n, Tm] •*• [n, TX] is a strong epimorphism, and

(a) V : V •* V reflects kernel pairs.

Proof. Because V has coequalisers iff V is cocomplete (see

Linton [S]) the conditions are sufficient by Corollary 2.1+. Necessity of

(a) is clear since i is always cocomplete. Moreover, if V is a

Birkhoff subcategory of r then the unit of the composite reflection

V* •+ i -*• V is a strong epimorphism. This implies that (b) is necessary.

Finally, the functor V : r •* V reflects kernel pairs and the Birkhoff

property implies that the embedding V c r reflects kernel pairs, so (a)

is necessary. / /

An example of a monad which satisfies (a) and (b) but not (a) is the

reflection to Hausdorff fe-spaces from non-Hausdorff fc-spaees.
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