18005, 18010, 18015

BULL. AUSTRAL. MATH. SOC. VOL. 17 (1977), 177-192.

Linear monads

B.J. Day

A monad $T = (T, \mu, \eta)$ on a category C is said to be *linear* with respect to a dense functor $N : A \rightarrow C$ if the operator T is the epimorphic image of a certain colimit of its values on A. The main aim of the article is to relate the concept of a linear monad to that of a monad with *rank*. A comparison is then made between linear monads and algebraic theories.

Introduction

In Section 1 we commence with a dense functor $N : A \neq C$ and a monad $T = (T, \mu, \eta)$ on C such that the canonical transformation $\int^{A} C(NA, C) \cdot TNA \rightarrow TC$ is an epimorphism. Such a monad is called linear or, more precisely, N-linear. We prove that the free algebras on the values NA form a dense full subcategory of the Eilenberg-Moore category C^{T} . The terminology follows that of Day [3], Section 5.

Once the foregoing result is established it allows a comparison to be made between C^{T} as a full subcategory of a functor category [B, V] and the category C^{t} of algebras in [B, V] derived from the resultant algebraic theory of \top (*cf.* Diers [5]). Conditions on C^{T} to be a Birkhoff subcategory of C^{t} are examined in Section 2.

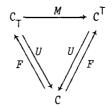
We note here that all categorical algebra is *relative* to a fixed complete and cocomplete symmetric monoidal closed ground category

Received 10 March 1977. The author gratefully acknowledges the support of a Postdoctoral Research Fellowship from the Australian Research Grants Committee.

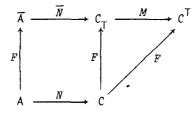
 $V = (V, V, \otimes, I, ...)$ unless otherwise indicated. The terminology and notation are basically derived from Eilenberg and Kelly [6] and Mac Lane [9].

1. Linear monads and rank

Throughout this section we suppose that $T = (T, \mu, \eta)$ is a given monad on a category C and that $N : A \rightarrow C$ is a fully faithful dense functor. The standard resolution of T into a Kleisli category and an Eilenberg-Moore category is denoted by



where M is the dense comparison functor. Furthermore, we let \overline{A} denote the full image of $FN : A \rightarrow C_{T}$ and let $\overline{N} : \overline{A} \rightarrow C_{T}$ denote the induced functor such that $FN = \overline{N}F$:



If we now suppose that A is small and C^{T} is cocomplete then, by Day and Kelly [4], (7.1), we have:

LEMMA 1.1. The composite $M\overline{N} : \overline{A} \to C^{\mathsf{T}}$ is dense iff each natural transformation α_{B} from $C^{\mathsf{T}}(M\overline{NB}, C)$ to $C^{\mathsf{T}}(M\overline{NB}, D)$ is of the form $C^{\mathsf{T}}(1, f)$ for a unique T-homomorphism f from C to D. //

THEOREM 1.2 (The representation theorem for monads). The comparison functor $M: C_{T} \rightarrow C^{T}$ is dense and, for each algebra $(C, \zeta) \in C^{T}$, the natural transformations from $C^{T}(M_{-}, C)$ to a prealgebra $G: C_{T}^{OP} \rightarrow V$ correspond to the elements in the equaliser of

$$VGC \xrightarrow{VG\mu} VGTC ,$$

where μ and Tz are regarded as morphisms in \boldsymbol{C}_{T} .

For the proof see Day [2], Proposition 8.2. //

THEOREM 1.3. The composite $M\overline{N} : \overline{A} \to C^{T}$ is dense if the canonical transformation

$$C(TC, D) \rightarrow \int_{A} [C(NA, C), C(TNA, D)]$$

is a monomorphism for all $C \in C$ and $D \in C^{\mathsf{T}}$.

Proof. The notation U will sometimes be omitted. Suppose $\alpha : C^{\mathsf{T}}(\mathit{FNA}, C) \rightarrow C^{\mathsf{T}}(\mathit{FNA}, D)$ is a transformation which is natural in $\mathit{FNA} \in \overline{\mathsf{A}}$. An extension $\overline{\alpha}$ is defined by commutativity of

First we note that $\overline{\alpha} | \overline{A} = \alpha$: the diagram

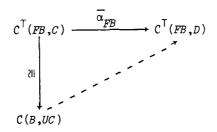
transforms to

which commutes by naturality of α . Secondly, if β is a transformation from $C^{\mathsf{T}}(FB, C)$ to $C^{\mathsf{T}}(FB, D)$ which is natural in $FB \in C_{\mathsf{T}}$ then $\beta = \overline{\beta}$. This follows from the diagram:

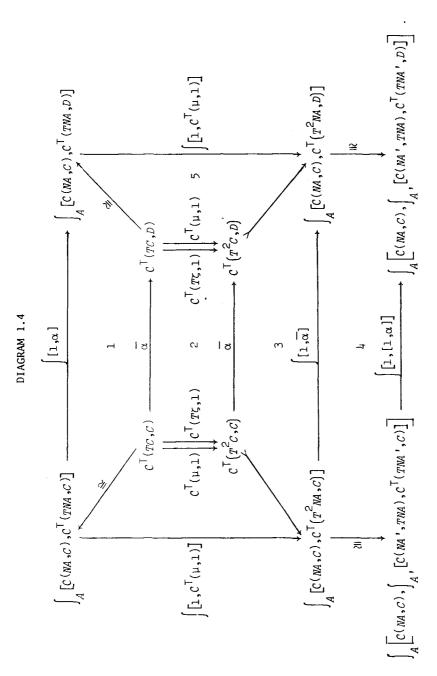
which commutes by naturality of β . By Theorem 1.2 it is now required to show that $\overline{\alpha}$ corresponds to the element $\overline{\alpha}(\zeta) \in VGC = C_0^{\top}(FC, D)$ in the equaliser of:

$$VGC \xrightarrow{VG\mu} VGTC$$

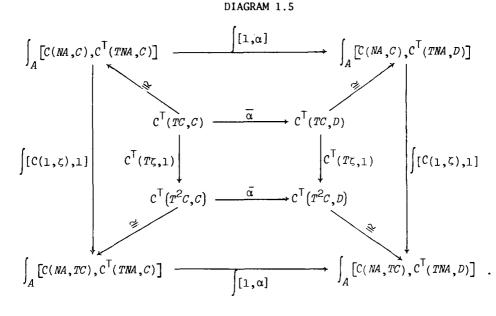
Firstly, because $\overline{\alpha} = \{\overline{\alpha}_{FB}\}$ is natural if $B \in C$, we see that the family $\overline{\alpha}_{FB}$ is derived from $\overline{\alpha}_{FC}(\zeta) : I \to C^{\mathsf{T}}(FC, D)$ by the (ordinary) representation theorem:

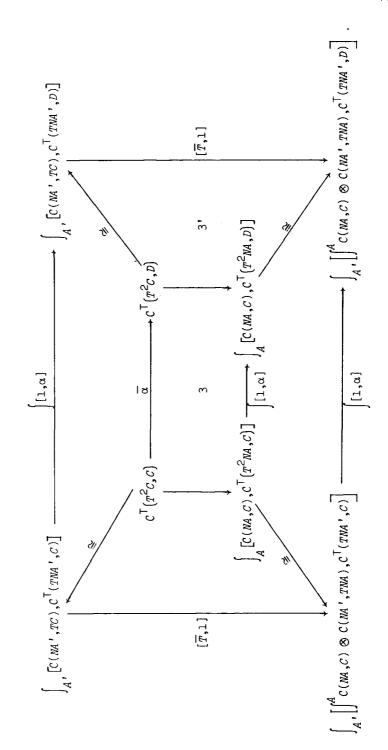


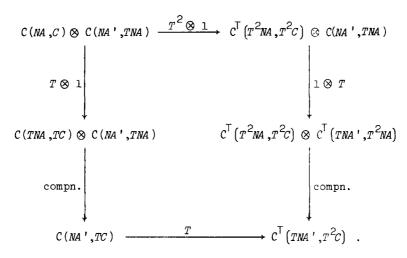
Thus it remains to verify that $\overline{\alpha}(\zeta)$ is in the equaliser of $(VG\mu, VGT\zeta)$. Consider Diagram 1.4; subdiagrams 1 and 4 commute by definition of $\overline{\alpha}$ so



it remains to show that subdiagrams 2, 3, and 5, and the exterior commute. Diagram 2 becomes Diagram 1.5 which clearly commutes. Diagram 3 becomes Diagram 1.6; thus it suffices to show that subdiagram 3' commutes. This follows by applying the representation theorem to $D \in C^{\mathsf{T}}$ because both legs are natural in D; this diagram then becomes Diagram 1.7.







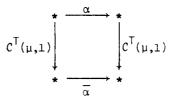
Again, this diagram commutes by the representation theorem applied to $C \in C$. Next consider Diagram 5, which transforms to

$$C(NA,C) \xrightarrow{C^{\mathsf{T}}(T-,D)} \int_{A} [C(TC,D),C(TNA,D)]$$

$$\downarrow C^{\mathsf{T}}(T^{2}-,D) \qquad [C^{\mathsf{T}}(\mu,1),1] \downarrow$$

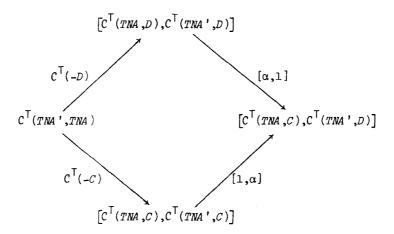
$$\int_{A} [C^{\mathsf{T}}(T^{2}C,D),C(T^{2}NA,D)] \xrightarrow{\int [1,C^{\mathsf{T}}(\mu,1)]} \int_{A} [C^{\mathsf{T}}(T^{2}C,D),C^{\mathsf{T}}(TNA,D)]$$

This diagram commutes by naturality of $\,\mu\,:\,T^2\,\rightarrow\,T$. It remains to check that the diagram



commutes.

This diagram transforms to



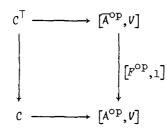
composed with

 $C(NA', TNA) \xrightarrow{T} C^{\mathsf{T}}(TNA', T^2NA) \xrightarrow{C^{\mathsf{T}}(1,\mu)} C^{\mathsf{T}}(TNA', TNA);$ thus it commutes by naturality of α . //

In view of this result we make the following definition with respect to a fully faithful dense functor N : $A \rightarrow C$.

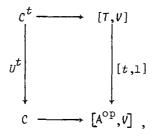
DEFINITION 1.8. A monad $T = (T, \mu, \eta)$ on C is called *linear* (or *N*-linear) if $C(NA, C) \circ TNA$ exists for all $C \in C$ and $C(NA, C) \circ TNA \rightarrow TC$ is an epimorphism. The monad is called *strictly linear* if this transformation is an isomorphism.

COROLLARY 1.9. If T on C is N-linear then the canonical diagram



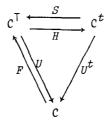
commutes (to within a natural isomorphism) where the horizontal functors are fully faithful. \cdot //

2. Comparison with algebraic theories Let $N : A \neq C$ and $T = (T, \mu, \eta)$ be as in Section 1. Then $t = F^{\text{op}} : A^{\text{op}} \neq \overline{A}^{\text{op}} = T$ is an *N*-algebraic theory in the sense of Diers [5]. Thus we form the category C^t of *t*-algebras by means of the pullback



where the horizontal functors are fully faithful.

By Corollary 1.9, C^{T} is a full reflective subcategory of $[\mathsf{T}, \mathsf{V}]$ and it lies in C^{t} . This gives a reflection $S : C^{\mathsf{t}} \to C^{\mathsf{T}}$:



THEOREM 2.1. If T is strictly linear then C^T is category equivalent to C^t .

Proof. Because $C(NA, C) \circ TNA \cong TC$ we have that T preserves N-absolute colimits. Thus the hypotheses of Diers [5], Theorem 5.1, are satisfied by $F \rightarrow U$. //

Now suppose that C has canonical factorisations for the system {strong epimorphisms and monomorphisms} (*cf.* Freyd and Kelly [7]).

PROPOSITION 2.2. If the transformation

(2.1)
$$\int_{-\infty}^{A} C(NA, C) \otimes C(NA', TNA) \rightarrow C(NA', TC)$$

is a strong epimorphism in V and $C(NA, C) \circ TNA$ exists in C and C(NA, -): $C \rightarrow V$ preserves strong epimorphisms for all $A \in A$, then the

unit n of the reflection $S \rightarrow H$ is a strong epimorphism.

Proof. On applying $- \circ NA'$ to both sides of (2.1) we see that $C(NA, C) \circ TNA \rightarrow TC$ is a strong epimorphism. Thus Theorem 1.3 applies and also T preserves strong epimorphisms since, if $e: C \rightarrow D$ is a strong epimorphism in C, we have that

$$C(NA,C)\circ TNA \rightarrow TC$$

$$C(1,e)\circ 1 \qquad \qquad \downarrow Te$$

$$C(NA,D)\circ TNA \rightarrow TD$$

commutes. Thus the diagonal is a strong epimorphism so Te is a strong epimorphism. Now consider the factorisation $\eta_C : C \rightarrow D \rightarrow SC$ in C. It is required to show that D has a T-algebra structure. This structure is derived from the following diagram:

$$A = C(NA,C) \otimes C(NA',TNA) \xrightarrow{\zeta_C} C(NA',C)$$

$$a = C(NA',TC)$$

$$b = C(NA',TC)$$

$$C(NA',TD) = --- \rightarrow C(NA',D)$$

$$C(NA',TSC) \xrightarrow{Y} C(NA',SC)$$

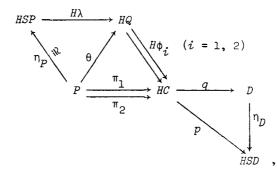
where a and b are both strong epimorphisms and the top morphism ζ_{C} is derived from the C^{t} -structure on C in the following manner. An algebra $(C, \zeta) \in C^{t}$ comprises $C \in C$ together with

$$\zeta_{C} : \int^{A} C(NA', TNA) \otimes C(NA, C) \rightarrow C(NA', C) ;$$

that is, a structure for the monad $[t, 1]\overline{t}$ on $[A^{op}, V]$ where $\overline{t} \rightarrow [t, 1]$. Then, by factorisation, the dashed arrow provides a T-algebra structure on D, using the density of N. //

PROPOSITION 2.3. Suppose the unit η of the reflection $S \rightarrow H$ is a strong epimorphism and C has kernel pairs. If $U : C^{\top} \rightarrow C$ reflects kernel pairs then C^{\top} is closed in C^{\dagger} under coequalisers.

Proof. Both U and U^{t} create kernel pairs and we omit them from the notation. Let $q : HC \to D$ be a coequaliser in C^{t} and let $p = n_{D} \cdot q$. Let (π_{1}, π_{2}) be the kernel pair of q in C^{t} and let (ϕ_{1}, ϕ_{2}) be the kernel pair of p in C^{T} . This gives



where θ is monic, so η_p is monic and thus is an isomorphism. This implies that p is the coequaliser of $(H\phi_1.H\lambda, H\phi_2.H\lambda)$ in C^T and that this latter pair is a kernel pair in C^t . Thus $(\phi_1\lambda, \phi_2\lambda)$ is a kernel pair in C^T , so λ is an isomorphism, so θ is an isomorphism, so η_p is an isomorphism, as required to show that D lies in C^T . //

COROLLARY 2.4. If $\int_{-\infty}^{A} C(NA, C) \otimes C(NA', TNA) \rightarrow C(NA', TC)$ is a strong epimorphism in V and $C(NA, C) \circ TNA$ exists in C and C(NA, -) preserves strong epimorphisms for all $A \in A$ and C has kernel pairs reflected by $U : C^{\top} \rightarrow C$, then C^{\top} is a Birkhoff reflective subcategory of C^{\dagger} . //

PROPOSITION 2.5. If C^t is cocomplete and C(NA, -) preserves coequalisers of reflective pairs, then C^t is monadic over C iff

- (a) f is a coequaliser in C^t iff $U^t f$ is a coequaliser in C , and
- (b) U^t reflects kernel pairs.

Proof. If C^t is cocomplete then $F^t \to U^t$ exists and $U^t F^t$ preserves coequalisers of reflective pairs since $U^t : C^t \to C$ creates coequalisers because C(MA', -) preserves them (*cf.* Diers [5], Proposition 1.1). Thus the result follows from Borceux and Day [1], Corollary 6.2. //

PROPOSITION 2.6. Suppose C and C^t are cocomplete and let $K : [T, V] \rightarrow C^{t}$ denote the canonical reflection. If U^t preserves epimorphisms and those unit components of the form $T(tA, -) \rightarrow KT(tA, -)$ are epimorphisms, then U^tF^t generates a linear monad.

Proof. We have

$$U^{t}F^{t}NA = U^{t}K\left(\int^{A'} C(NA', NA) \otimes T(tA', -)\right) \cong U^{t}K(T(tA, -))$$

by the representation theorem because N is fully faithful. Also

$$U^{t}F^{t}C = U^{t}K\left(\int^{A} C(NA, C) \otimes T(tA, -)\right)$$

Thus, to show that

(2.2)
$$\int^{A} C(NA, C) \cdot U^{t} F^{t} NA \rightarrow U^{t} F^{t} C$$

is an epimorphism consider the following diagram

$$\int^{A} C(NA,C) \cdot U^{t}T(tA,-) \longrightarrow \int^{A} C(NA,C) \cdot U^{t}KT(tA,-)$$

$$\downarrow (2.2)$$

$$\downarrow U^{t}K\left[\int^{A} C(NA,C) \cdot T(tA,-)\right] \longrightarrow U^{t}\left[\int^{A} C(NA,C) \cdot KT(tA,-)\right]$$

The bottom arrow is an epimorphism by hypothesis, so (2.2) is an epimorphism, as required. //

3. Example

Suppose the ground category V has canonical E - M factorisations for the system $E - M = \{\text{strong epimorphisms and monomorphisms}\}$ (see Freyd and Kelly [7]). Suppose also that V has arbitrary cointersections of E-quotients and that finite powers preserve strong epimorphisms.

DEFINITION 3.1. A functor $G : A \rightarrow V$ from a category A with finite products to V is said to *E-preserve* finite products if the canonical morphism $G(A \times A') \rightarrow GA \times GA'$ is a strong epimorphism for all $A, A' \in A$.

DEFINITION 3.2. Let $M : A \rightarrow B$ be a functor between categories with finite products. Then V is said to satisfy *axiom* $E(\pi)$ if the left Kan extension of a functor $G : A \rightarrow V$ which E-preserves finite products along M again E-preserves finite products.

One then obtains results precisely analogous to those obtained for axiom π in Borceux and Day [1], Sections 1 and 2.

DEFINITION 3.3. If T is a finitary algebraic theory (see Borceux and Day [1], Definition 3.1) then a functor $G : T \rightarrow V$ which E-preserves finite products is called an E-algebra (of T).

Now let T^q denote the category of 'E-algebras for T, regarded as a full subcategory of [T, V]. Let T^b denote the ordinary category of algebras of T; namely, the full subcategory of [T, V] defined by the finite-product-preserving functors. Then there are inclusions $T^b \subset T^q \subset [T, V]$. The second embedding is *coreflective* and the coreflection maps G to the union of the E-algebras which are M-subfunctors of G; the coreflection counit lies in M. The first embedding is reflective and the reflection maps $A \in T^q$ to the largest T^b E-quotient of A; the reflection unit is in E. Thus we have

190

where V_f is the initial finitary theory and where the centre adjunction is a strictly linear monadic situation.

THEOREM 3.4. If V satisfies the hypotheses of this section (and satisfies axiom $E(\pi)$) then a monad T on V generates a Birkhoff subcategory of an algebraic category T^b iff

- (a) V^{T} has coequalisers,
- (b) $\int_{0}^{m} [m, X] \otimes [n, Tm] \rightarrow [n, TX] \text{ is a strong epimorphism, and}$ (c) $U: V^{T} \rightarrow V$ reflects kernel pairs.

Proof. Because V^{T} has coequalisers iff V^{T} is cocomplete (see Linton [§]) the conditions are sufficient by Corollary 2.4. Necessity of (a) is clear since T^b is always cocomplete. Moreover, if V^{T} is a Birkhoff subcategory of T^b then the unit of the composite reflection $T^q \to T^b \to V^{\mathsf{T}}$ is a strong epimorphism. This implies that (b) is necessary. Finally, the functor $U^t : T^b \to V$ reflects kernel pairs and the Birkhoff property implies that the embedding $V^{\mathsf{T}} \subset T^b$ reflects kernel pairs, so (c) is necessary. //

An example of a monad which satisfies (a) and (b) but not (c) is the reflection to Hausdorff k-spaces from non-Hausdorff k-spaces.

References

 Francis Borceux and Brian Day, "Universal algebra in a closed category", J. Pure Appl. Algebra (to appear).

- [2] Brian Day, "On closed categories of functors II", Category seminar, 20-54 (Proc. Sydney Category Seminar 1972/1973. Lecture Notes in Mathematics, 420. Springer-Verlag, Berlin, Heidelberg, New York, 1974).
- [3] B.J. Day, "Density presentations of functors", Bull. Austral. Math. Soc. 16 (1977), 427-448.
- [4] B.J. Day and G.M. Kelly, "Enriched functor categories", Report of the Midwest Category Seminar III, 178-191 (Lecture Notes in Mathematics, 106. Springer-Verlag, Berlin, Heidelberg, New York, 1969).
- [5] Y. Diers, "Foncteur pleinement fidèle dense classant les algèbres", (Publications Internes de l'U.E.R. de Mathématiques Pures et Appliquées, 58. Université des Science et Techniques de Lille I, 1975).
- [6] Samuel Eilenberg and G. Max Kelly, "Closed categories", Proc. Conf. Categorical Algebra, La Jolla, California, 1965, 421-562 (Springer-Verlag, Berlin, Heidelberg, New York, 1966).
- [7] P.J. Freyd and G.M. Kelly, "Categories of continuous functors, I", J. Pure Appl. Algebra 2 (1972), 169-191.
- [8] F.E.J. Linton, "Coequalisers in categories of algebras", Seminar on Triples and Categorical Homology Theory, 75-90 (Lecture Notes in Mathematics, 80. Springer-Verlag, Berlin, Heidelberg, New York, 1969).
- [9] S. Mac Lane, Categories for the working mathematician (Graduate Texts in Mathematics, 5. Springer-Verlag, New York, Heidelberg, Berlin, 1971).

Department of Pure Mathematics, University of Sydney, Sydney, New South Wales.

192