Physical and chemical properties of the AFGL 333 cloud

Takeshi Sakai¹[†], Tomoharu Oka² and Satoshi Yamamoto²

¹ Nobeyama, Radio Observatory, Japan email: sakai@nro.nao.ac.jp

²Department of Physics, Graduate School of Science, University of Tokyo, Japan

Abstract. We have found massive clumps without any sign of active star formation in the AFGL 333 cloud. We present a study of the physical and chemical properties of the AFGL 333 cloud.

The AFGL 333 cloud is located in the W 3 giant molecular cloud (W 3 GMC). It is known that the W 3 GMC involves three star forming clouds; W 3 Main, W 3(OH), and AFGL 333 (e.g. Thronson *et al.* 1985). The three clouds exhibit different star-forming activities in spite of their similarity in size and mass. The ratio of the infrared luminosities in W 3 Main, W 3(OH) and AFGL 333 is 1.0:0.25:0.07 (Thronson *et al.* 1980), suggesting that AFGL 333 is less active than W 3 Main and W 3(OH).

We have mapped the C⁰ ${}^{3}P_{1}-{}^{3}P_{0}$ ([CI]) and CO J=3-2 lines toward the W 3 GMC by using the Mount Fuji Submillimeter Telescope (Sakai *et al.* 2006). The [CI] emission is found to be strong in the AFGL 333 cloud, where the 12 CO J=3-2 emission is relatively weak. To investigate the origin of the strong [CI] emission in the AFGL 333 cloud, we have observed the AFGL 333 and W 3(OH) clouds in the CO isotopomer lines and the CCS and N₂H⁺ lines with the Nobeyama Radio Observatory 45 m telescope. We have found that $N(C^{0})$ linearly increases with N(CO) up to A_{V} of 50 mag. This indicates that C⁰ exists in the deep inside of the molecular clouds. The [C⁰]/[CO] and [CCS]/[N₂H⁺] ratios tend to be higher in the AFGL 333 cloud than in the W 3(OH) cloud. These results may indicate the chemical youth of the AFGL 333 cloud relative to the W 3(OH) cloud.

In the AFGL 333 cloud, we have found two massive clumps (Clump A and B) without any sign of active star formation. They are highly gravitationally bound $(M_{\rm VIR}/M_{\rm LTE} \sim$ 0.4), and the LTE mass is $2.3 \times 10^3 \ M_{\odot}$ and $1.4 \times 10^3 \ M_{\odot}$ for Clump A and Clump B, respectively. These masses are comparable to those for on-going massive star-forming clumps. We have mapped the CCS, HC₃N and N₂H⁺ emissions toward the clumps, and have found that the CCS and HC₃N emissions are stronger toward Clump B than toward Clump A. There are several YSO candidates (2MASS sources with H-K>2) in Clump A, while no YSO candidate is associated with Clump B. These results suggest that Clump B is younger than Clump A and is in a very early stage of cluster formation. Therefore Clump B is a very good target to understand the initial condition of cluster formation.

References

Sakai, T., Oka, T. & Yamamoto, S. 2006, ApJ 649, 268
Thronson, H. A., Jr., Campbell, M. F. & Hoffmann, W. F. I. 1980, ApJ 239, 533
Thronson, H. A., Jr., Lada, C. J. & Hewagama, T. 1985, ApJ 297, 662

† Present address: Nobeyama, Minamimaki, Minamisaku, Nagano 384-1305, Japan