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Viscosity-modulated clustering of heated
bidispersed particles in a turbulent gas
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Clustering of externally and evenly heated particles is enhanced by the increased viscosity
of heated fluid in the vicinity of these clusters – a phenomenon known as viscous
capturing (VC). Herein we study, via direct numerical simulations of decaying turbulence,
the effect of temperature-driven viscosity on clustering with different particle loading
densities. We employ a two-way momentum and energy coupling, and gas viscosity
is modelled by a power law to understand the role of the increased drag and particle
back-reaction force on the clustering intensity. For the continuum and dispersed phases,
Eulerian and Lagrangian point particle schemes have been used, neglecting inter-particle
collisions. We found that the enhanced viscosity-driven clustering is a strong function of
particle loading density, as the increase in particle number density enables the formation
of large uneven clusters before heating, which is the main condition for VC to take
effect. Higher number density should result in greater turbulence modulation and negate
local temperature-based viscous effects leading to VC. However, due to higher local
particle number density in the clusters and interphase heat transfer, increased drag force
prevails in such cases and delivers excessive clustering. By sampling conditionally the
particle velocity and temperature inside the clusters, it is found that the thermodynamic
and kinematic properties of the particles in the clusters are highly correlated, and this
correlation increases with the particle loading density. Therefore, based on the particle
number density, temperature-based viscosity can enhance considerably the clustering of
heated particles and alter the effect of particles on the underlying turbulence.
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1. Introduction

The homogeneous distribution of heated particles in a fluid is one of the most
fundamental operating conditions of numerous advanced engineering applications, such
as particle solar receivers (Houf & Greif 1987) and the combustion of metallic dust for
propulsion (Goroshin, Higgins & Kamel 2001). The uneven distribution not only generates
temperature gradients in the continuum phase, but also results in non-uniform expansion of
the gas (Pouransari et al. 2017). This happens because a higher concentration of particles
in one region creates a dearth of particles in other regions. These areas of significant
concentration can have a local particle number density up to sixty times higher than the
global average (Squires & Yamazaki 1995). This is undesirable for thermal systems, as it
can reduce the efficiency of particle–fluid heat transfer by up to 25 % (Pouransari & Mani
2017), and creates strong temperature fluctuations (Zamansky et al. 2016; Banko et al.
2020). These fluctuations grow further with the intensity of clustering (Zamansky et al.
2014). For particle combustion applications, grouping of particles can partially or even
completely impede particle combustion in the centre of a cluster (Rahman et al. 2022).
Such phenomena are evidently unacceptable for any thermal system, therefore efforts are
made to have a homogeneous distribution of the particulate phase at all times.

Inertial particles are known to form clusters in a turbulent flow. This phenomenon
is driven by particle (weight and size), fluid (density and viscosity) and turbulence
characteristics (Sumbekova et al. 2017). The competing effects of these parameters
are accounted for in the particle Stokes number St, which is often considered as the
primary non-dimensional number governing particle clustering (Zhou, Wexler & Wang
2001). Essentially, St is the ratio of particle and fluid time scales, and is used to define
particle behaviour in a turbulent flow ranging from tracer (very small particles, following
closely the streamlines of the flow; Bec et al. 2006b) to ballistic particles (very heavy
particles, passing easily through turbulent eddies; Njue et al. 2021; Nath et al. 2022).
Mathematically, St is defined as (Crowe, Gore & Troutt 1985)

St = τp

τ
, (1.1)

where τp is the particle momentum response time scale, given as Stokes (1851):

τp = ρpd2
p

18ρf νf
. (1.2)

Here, subscripts p and f denote the particle and fluid phases, while d, ρ and
ν are diameter, density and kinematic viscosity, respectively. Moreover, in (1.1), τ

represents an appropriate time scale of the turbulent flow. This is because particles
respond predominantly to different turbulence time scales based on their size/inertia,
therefore particle clustering is scale-dependent (Eaton & Fessler 1994). Additionally, in
polydispersed flows, particles of different sizes collect in different regions of the flow
(Saw et al. 2012), and under similar conditions, different particle species have different
accelerations (Dhariwal & Bragg 2018). This suggests that particle clustering can be driven
by any scale of the turbulent flow. However, integral τl (Khalitov & Longmire 2003) and
Kolmogorov τη (Fessler, Kulick & Eaton 1994) time scales are most commonly used to
characterise particle-laden flows (Dizaji & Marshall 2017). The expressions for τl and τη
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are

τl = (TKE)3/2

εurms
, (1.3)

τη =
(νf

ε

)1/2
, (1.4)

where urms is the root mean square of the fluid velocity, TKE is the turbulent kinetic energy,
and ε is the turbulent kinetic energy dissipation rate.

The past literature agrees on the fact that particles with St � 1 (tracer particles)
and St � 1 (ballistic particles) do not show much clustering (Bec et al. 2007; Zaichik
& Alipchenkov 2007). Particles with St ≈ 1, however, depict the maximum clustering
(Eaton & Fessler 1994). Albeit there are various explanations for this phenomenon, the
most common among these is the preferential concentration or centrifugal effect, where
inertial particles centrifuge out of vortices, local high-vorticity regions, and gather in local
high-strain-rate regions, between vortices (Maxey 1987; Squires & Eaton 1991). On the
other hand, enhanced particle clustering has been observed at St much different from unity
(Baker et al. 2017), an observation that is difficult to reconcile with conventional clustering
mechanisms. Yoshimoto & Goto (2007) argued that since turbulence is a multiscale
phenomenon, clustering is inevitable provided that τη ≤ τp ≤ τl; in this case, particles can
exhibit considerable clustering at Stη /= 1. They observed particle clustering at Stη � 1,
where particles gathered at larger scales. A more accurate explanation is that the particles
depict higher clustering at any scale with time scale τ ∗, provided that St = τp/τ

∗ ≈ 1.
Consequently, two St-based regimes were defined, where at St < 1, clustering is attributed
to the centrifugal force (Squires & Eaton 1991), while at St ≥ 1, clustering is due to
a non-local temporal (history) effect (Bragg & Collins 2014). In the latter mechanism,
particles carry the memory of having St ≈ 1 in the past and then cluster at a later time
when their St is greater than unity.

The above stated mechanisms hold well for unheated particle-laden flows. However,
when particles are heated, a feedback loop is created between particle clustering, local
temperature variations and hydrodynamic forces (Zamansky et al. 2014). Even in this
case, ignoring temperature-driven fluid viscosity maintains the validity of conventional
clustering mechanisms. For example, Pouransari et al. (2017) analysed turbulence
modulation due to heated particles in decaying homogeneous isotropic turbulence (HIT)
with constant viscosity. By focusing on the density-based variations, they observed
maximum particle clustering at St ≈ 1, and consequently a higher uneven expansion of
gas, which enhanced turbulence at the cluster (small) length scales. The gas expansion
(decrease in local density) creates a divergent flow field that pushes the particles away
from each other. This dilatation effect increases with particle loading, resulting in lower
propensity for clustering. Pouransari & Mani (2018) investigated the influence of clustering
on interphase heat transfer using direct numerical simulations (DNS). They reported
that the mean particle-to-fluid heat transfer is a function of St, where St ≈ 1 delivered
the most inhomogeneous heat transfer. Rahmani et al. (2018) studied the influence of
polydispersed particle-size distribution on preferential clustering and particle–fluid heat
transfer characteristics in a fully two-way coupled channel flow. They attributed maximum
clustering and inhomogeneous heat transfer to St ≈ 1, even in polydispersed flow, which
otherwise delivers superior dispersion and heat transfer compared to monodispersed
particles. Pouransari & Mani (2017) also investigated the effect of particle clustering
on heat transfer statistics in a channel flow. They reported that at maximum clustering
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(St ≈ 1), the temperature fluctuation is up to 35 % of the average temperature rise. In
all of these studies, higher clustering and its corresponding impact on turbulence and
temperature statistics were attributed to St ≈ 1. In fact, even in two-way momentum
coupling, where particles can modulate turbulence considerably, the above St-based
clustering characterisation holds (see e.g. Frankel et al. 2016), if temperature-driven
change in viscosity is neglected.

Note that under the constant viscosity assumption, the drop in density reduces the
drag force on the particles. In practice, however, particle heating drops the density and
increases the dynamic viscosity (μf ) of the local gas, where viscous effects are expected
to be much stronger than density effects. In our study, compared to the initial values,
ρf dropped by only 3.6 % (locally), while μf increased by approximately 60 % with the
increase in temperature. The overall domain volume and density is constant, and this
3.6 % drop in ρf refers to the local maximum change in ρf . This small decrease in
local ρf is due, in part, to the increase in domain pressure because of the triply periodic
boundary condition. If the average domain pressure were constant, then the density would
decrease proportional to the increase in temperature, while the viscosity would alter
with a power law of temperature. Hence the effect of temperature-driven viscosity will
remain a considerable factor. Additionally, the temperature-driven variation in viscosity is
critical as it alters greatly the turbulent flow field and dynamics of the vortical structures
(Zonta, Marchioli & Soldati 2012). As per (1.2), the rise in νf alters τp considerably,
which consequently changes the particles’ St number. In decaying turbulence – which is
representative of turbulence in many engineering flows – τl decreases, while τη increases
with time, which also affects the values of St. The compounding effects of these variations
have a unique influence on particle clustering. Therefore, our primary focus is on the
clustering originating from the increase in viscosity and the resulting rise in particle drag
force.

In a recent analysis, we observed higher clustering in a heated bidispersed particle-laden
flow when variable viscosity was used in comparison to constant viscosity cases (Saieed,
Rahman & Hickey 2022). It was found that as the gas temperature-driven viscosity
increased, the clustering of smaller particles increased even when their St based on the
Kolmogorov scale (Stη = τp/τη) decreased from 0.65 to 0.33 – a trend opposite to the
conventional assumption. This was surprising because an identical constant viscosity
case with the evolution of Stη from 1.1 to 0.9 showed lower clustering than in the
aforementioned simulation. This counterintuitive behaviour cannot be elucidated even
with the history effect, as particle clustering increased continuously, while Stη kept
declining below unity. We argued that this high clustering is the result of viscous capturing
(VC), where a particle cluster prior to heating creates a viscous cloud around itself upon
heating, which retains the already clustered particles and captures more particles as a result
of the higher drag force on them.

Albeit VC is a compelling argument that explained adequately the deviation of particle
clustering from the clustering predicted by St (maximum clustering is observed at St ≈ 1),
we made some simplifying assumptions to isolate the effect of temperature-dependent
viscosity on particle dispersion. The most important among these is the one-way
fluid–particle momentum coupling, where only the fluid exerted drag force on the
particles, and consequently the particles could not resist the VC. Although this assumption
has been used earlier (Carbone, Bragg & Iovieno 2019), it is crucial to test VC in the regime
where particle drag on the carrier fluid is non-negligible (two-way momentum coupling).

Analysing the turbulent energy spectrum in two-way coupling suggested that particles
attenuate energy at low wavenumbers and augment it at high wavenumbers (Letournel
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et al. 2020), and this effect enhances with the rise in particle number density (Hassaini &
Coletti 2022). The increase in small-scale energy escalates ε, the rate of energy transfer
from the large to small scales, l growth rate, and drops η (Elghobashi & Truesdell 1993).
Boivin, Simonin & Squires (1998) found that the TKE dissipation increases with the
increase in particle loading. By examining the exchange rate of fluid–particle energy,
they reported that larger turbulent eddies drag the inertial particles, whereas particles
drag the smaller eddies with them. Hence particles act as a sink at larger scales and a
source at smaller scales, and this effect augments with the rise in particle loading. In a
comprehensive review on particle-laden flows, Balachandar & Eaton (2010) concluded that
even in dilute particle-laden flows, turbulence modulation is prevalent as particles impart
their kinetic energy on the fluid. Additionally, turbulence modification is also known to
be maximum at St ≈ 1 (Yang & Shy 2005). In terms of particle size, Gore & Crowe
(1989) observed that smaller particles decrease TKE as they are moved by the local fluid,
whereas larger particles increase TKE as they drag the fluid with them. The strength of
this phenomenon also depends on the number of particles in the system.

Considering the discussion above, we are interested in characterising the effect of
temperature-dependent gas viscosity on clustering at different particle loading densities, as
the particles are heated rapidly to reach a temperature double their initial temperature. This
analysis will bring out the prepotent impact of increasing drag force on the particle during
heating, which has been greatly overlooked due to constant viscosity assumption. Here,
particle–particle collisions were neglected and only drag force was taken into account.
In this case, it is expected that the rise in drag force will correlate the kinematic and
thermodynamic parameters of the particles and fluid inside a cluster.

By decreasing the global number of particles, we decrease the number of particles in
each cluster/viscous cloud, and also reduce the particle clustering capacity (Aliseda et al.
2002; Guo & Capecelatro 2019). This will help us to understand whether viscous clouds
still form and capture particles when the local particle loading in each cloud drops and
the particle–fluid heat transfer is reduced. We hypothesise that the rise in localised heating
with particle loading density will enhance VC, despite the increase in particles’ ability to
resist local viscous effects due to their reaction drag on the fluid. Furthermore, potentially,
particle back-reaction force can also aid viscosity-driven clustering, as it reduces the local
fluid velocity fluctuations, which in return drops the transfer of heat via turbulent fluid
diffusion (Kuerten, Van der Geld & Geurts 2011). Note that the parameters in this study
are presented in arbitrary but consistent units. Thus present results can be interpreted in
any consistent units system. This paper is structured such that § 2 states the computational
set-up of this study, while simulation results are discussed in § 3. The conclusions drawn
from the present analysis are outlined in § 4.

2. Methodology

In this study, DNS were conducted using a slightly modified version of the open-source,
high-order finite difference code known as Pencil Code (Brandenburg et al. 2020). Three
particle number densities were tested with two particle sizes (bidispersed particles); the
numbers of large and small particles had a 50 : 50 ratio in each particle loading scenario.
The radii of the two particle species were 0.0028 and 0.0106, which are identical to
the test case Gas 2 of Saieed et al. (2022). From here on, the two particle sizes will
be referred to as small and large particles in the text. We employed bidispersed flow
because we wanted to study the clustering characteristics of particles responding to
different turbulence scales, without complicating further our simulations, which already
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involved particle heating, turbulence decay and heat diffusion. The global numbers of
particles tested are 5 × 105 (similar to our previous study), 2.5 × 105 and 1.6 × 105.
For conciseness, we will refer to these simulations as L5, L2.5 and L1.6, respectively.
Here, L represents the loading, and the subscripts 5, 2.5 and 1.6 are the multiples of
105 in their respective loading numbers. We also simulated particle number densities
1.2 × 105 (L1.2), 0.5 × 105 (L0.5), 0.1 × 105 (L0.1) and 0.05 × 105 (L0.05). However, these
simulations were not included in the main analysis (except for comparison in a few places)
as it was found that below L1.6, particle clustering depends on Taylor-based Reynolds
number (Reλ = urmsρfλ/μf , where λ is the Taylor length scale) of the flow (see § 3.1).
Note that the volume fraction (φp) of the L5, L2.5 and L1.6 simulations is O(10−3),
which is just at the point where particle–particle collisions (φp > 10−3) become relevant
(Elghobashi 1994). For simplification, we employed two-way momentum coupling. The
volume fraction of L0.5 is O(10−4), which is almost in the one-way coupling regime,
but we also modelled it with two-way momentum coupling for consistency. We used a
triangular-shaped cloud scheme, which employs second-order spline interpolation from
27 grid points for modelling fluid–particle interaction.

First, three base simulations were run with the same initial parameters but different
particle number densities (L5, L2.5 and L1.6). For the development of HIT, these
simulations were carried out in a 2π3 periodic box, resolved into a 3843 grid with a
solenoidal forcing function Fi (Brandenburg 2001). We used a 3843 grid to interpolate
particle motion accurately from the fluid, and keep the temperature gradient across
each cell small and accurate. Likewise, the present forcing scheme is temporally
delta-correlated in k space, meaning that all the random forcing points are correlated at
a particular time instance but vary between time steps.

These initialising simulations without particle heating were conducted for approximately
five large eddy turnover times of the L5 case. Here, L5 took the longest time to develop
equilibrium between the large-scale energy addition and small-scale energy dissipation.
The L5 simulation was also extended to ten eddy turnover times to ensure that the mean
turbulence characteristics remain stable after five turnover times (not shown here). The
instantaneous TKE showed non-negligible oscillations about an average value even after
five turnover times, which is a known problem in forced HIT in both spectral (Overholt
& Pope 1998) and linear (Rosales & Meneveau 2005; Bassenne et al. 2016) forcing.
These temporal fluctuations, along with the fact that particle heating also adds energy
to the flow, which could destabilise the simulations, were the reason why we did not use
forced turbulence when running the particle heating simulations. Note that the forcing
adds energy at the large scale, while particle heating adds energy at the particle/cluster
scale. Here, kmaxη > 12 was obtained, suggesting that the small scales are resolved fully
(Pope 2000).

These simulations solved the compressible Navier–Stokes equation, but we neglected
the kinetic energy in the energy equation in order to decouple fluid velocity and
temperature – only fluid internal energy is considered in the energy equation. This
assumption is valid only in the low Mach number cases. This was verified in our L1.6 case,
in which the maximum local Mach number never exceeded 0.08. Given the conservation
of mass and the fixed volume of the triply periodic DNS domain, the mean gas density
remained constant at ρf = 1.08 (prescribed value), but particle heating altered the local gas
density in the vicinity of particles. After fully developed HIT was achieved, the artificial
forcing was removed, allowing turbulence to decay, and particle heating was initiated. Of
interest is the period of turbulence decay and particle heating over the first ten time units.
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Parameter Symbol L5 L2.5 L1.6

Particle loading Np 5 × 105 2.5 × 105 1.6 × 105

Average root mean square velocity urms 0.19 0.28 0.32
Turbulent kinetic energy TKE 0.018 0.035 0.052
Dissipation rate ε 0.0006 0.001 0.0015
Taylor Reynolds number Reλ 53 68 78
Turbulent Reynolds number Re 200 286 343
Integral time scale τl 22.33 15.65 13.04
Integral length scale l 4.18 4.18 4.18
Kolmogorov time scale τη 2.65 1.96 1.64
Kolmogorov length scale η 0.10 0.088 0.080

Table 1. Characteristics of the fully developed HIT.

Table 1 lists the turbulence characteristics at the beginning of the particle heating
simulations. In table 1, the turbulent Reynolds number is defined as Re = urmsρf l/μf .
Here, the simulation set-up of all three base cases was identical, including the forcing
function, but the difference in number of particles (due to two-way momentum coupling)
resulted in the base simulations having slightly different turbulence characteristics.

The most critical turbulence characteristic in table 1 is the Taylor-based Reynolds
number Reλ, as it determines the resolution of small scales and whether clustering is
governed by a single or multiple turbulence scales (Coleman & Vassilicos 2009). Ireland,
Bragg & Collins (2016) stated that particle clustering is independent of Reλ for St < 1,
which is the case in the present heating simulations, as discussed in § 3.4. However, for
further assurance, we decreased Fi in L2.5, L1.6, L1.2 and L0.5 to match the Reλ of L5,
and compared clustering in the original and reduced Reλ cases. Since Reλ does not scale
linearly with the forcing function, there was an approximate 5–10 % difference in the Reλ
of the original and Reλ matched cases compared to Reλ,L5 . But we will see in § 3.1 that
only those particle loading densities were selected in which clustering is insensitive to
Reλ. Therefore, this difference of 5–10 % is considered trivial in these cases. Note that
we opted to use identical forcing and overall simulation set-up in our test cases, based on
Reλ independence analysis. Particle clustering was quantified with the radial distribution
function (RDF), which counts the number of particles within a certain radial distance
from a reference particle (for details, see Saieed et al. 2022). This analysis is explained
in § 3.1. Note that the l/η ratios of our lowest (L5) and highest (L1.6) Reλ cases are 41.8
and 52.3, respectively. Comparing these ratios with Reλ = 88 of Ireland et al. (2016) (i.e.
l/η = 55.8) suggests that despite the low Reλ, our scale separation is adequate. Our mean
energy spectrum E(k) in figure 5 also shows good resolution of the small scales, and we
also obtained a −5/3 slope in E(k), albeit with shorter inertial range due to the two-way
momentum coupling.

We employed a point-particle approach for both particle species in this analysis. For
small particles, this is a straightforward choice, as for all the considered cases, dp/η =
O(10−2); typically, the point-particle method assumes dp/η � 1. As per table 1, the ratio
dp/η for L5 and L1.6 larger particles is O(10−1). According to Balachandar & Eaton
(2010), for particles with ρp > ρf and dp ≈ O(η), a point-particle assumption can be used.
Here, ρp/ρf ≈ 1400 and the particle Reynolds number is Rep ≤ 1. Hence the use of a
point-particle approach is justified.
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Case L5 L2.5 L1.6

Particle radius 0.0106 0.0028 0.0106 0.0028 0.0106 0.0028
Stokes number Stl Stη Stl Stη Stl Stη

0.37 0.51 0.33 0.63 0.33 0.68

Table 2. Particle Stl and Stη values at the start of heating simulations.

Table 2 summarises the initial St values (prior to heating) of the present simulations.
For this work, the smaller particles are defined by the Kolmogorov scale, as they are
about 18 times smaller than the Kolmogorov scale. Due to filtering effect (Bec et al.
2006a; Ayyalasomayajula, Warhaft & Collins 2008), larger particles will correspond to
the integral scale, as they are about five orders of magnitude smaller than η. In two-way
momentum coupling, the energy transfer from large to small scale has two routes: the
classical energy cascade, and particles taking energy from the large scales and feeding it
to the small scales. This affects the inertial scale (see figure 5), therefore it is plausible to
assume that larger particles correspond primarily to the integral scale. Consequently, St
based on Kolmogorov scale (Stη = τ/τη) is used to characterise the smaller particles, and
St calculated from the integral scale (Stl = τ/τl) is used for larger particles, as shown in
table 2. In the present case, the initial values of Stη are different, since TKE and ε decrease
with increasing particle loading (Boivin et al. 1998). As clustering is maximum at the
scale where St (based on that scale) is unity, an increase in clustering can be observed at
the integral scale. Thus we use Stl for comparing simulations, as L5, L2.5 and L1.6 start
with similar Stl.

2.1. Continuum phase
The conservation equations of the carrier phase mass, momentum and energy are

∂ρf

∂t
+ ∂ρf ui

∂xi
= 0, (2.1)

∂ρf ui

∂t
+ ∂ρf uiuj

∂xj
= −∂pf

∂xi
+ ∂μf

∂xj

(
∂ui

∂xj
+ ∂uj

∂xi
− 2

3
∂uk

∂xk
δij

)
+ Fi + Fp, (2.2)

∂
(
ρf Cv,f Tf

)
∂t

+ ∂
(
ρf Cp,f Tf uj

)
∂xj

= ∂

∂xj

(
kf

∂Tf

∂xj

)
+ Qpf , (2.3)

where T , p and ui are the temperature, pressure and gas velocity in the ith direction, while
the specific heats of the fluid at constant volume (pressure) and thermal conductivity are
expressed as Cv,f (Cp,f ) and kf , respectively. In (2.2), Fp represents the local reaction
force that the particles exert on the fluid, and thus accounts for the two-way fluid–particle
momentum coupling. This force is opposite to the fluid drag on the particle and is given
as

Fp = mp
up − uf (xp)

τp
, (2.4)

where mp and up are particle mass and velocity, while uf (xp) is the (disturbed) fluid
velocity at the particle location xp. As per the two-way coupling scheme, uf (xp) should
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be the undisturbed fluid velocity at the particle location. This can affect the drag force
prediction (Horwitz & Mani 2016), and may require correction to the disturbed velocity
for estimating the drag force. Horwitz & Mani (2018) proposed a regime diagram that
can be used to determine if a model requires velocity correction. According to their
dp/η = O(10−2) and Stη = O(10−1), our smaller particles lie in the regime where a
correction is not needed, while large particles may require correction, considering that
their dp/η = O(10−1) and equivalent Stη = O(100) lie on the borderline between two-way
coupling correction and ‘other multiphase flow’ regimes. However, since the Stη of our
larger particles is small and decreases further with time (due to the increase in τη as the
turbulence decays), velocity correction can be neglected without a considerable effect on
the results.

Similarly, the expression for the temperature-dependent gas dynamic viscosity (μf ) is

μf = μf ,0

(
T
T0

)2/3

, (2.5)

where subscript 0 stands for the initial/reference value. The initial kinematic viscosity was
νf ,0 = 0.0034, and the temperature of the base simulations was T0 = 273.

2.2. Particulate phase
The Lagrangian equation set for the particles is given as

dxp

dt
= up, (2.6)

dup

dt
= CD

τp
(uf (xp) − up), (2.7)

where CD is the particle drag coefficient, defined by the Schiller–Naumann equation
(Schiller & Naumann 1935)

CD = 1 + 0.15 Re0.687
p , Rep = dp |up − uf (xp)|

νf
, (2.8a,b)

with Rep the Reynolds number of the particles, and |up − uf (xp)| the local fluid–particle
drift velocity.

2.3. Particle heating model
We adopted the Mouallem & Hickey (2020) particle heating model, which heats the
particles externally and uniformly. The gaseous carrier phase is transparent to this
heating, and absorbs heat from the particles via conduction (in the immediate vicinity
of particles) and convection (gas far from particles). In this model, particle heating Qp and
particle-to-fluid heat transfer Qp,f terms are defined as

Qp = mpCp,p
Tmax − Tp

τheat
, (2.9)

Qp,f = mpCp,p Nu
2τt

(Tp − T̂p). (2.10)

In (2.9) and (2.10), mp, Cp,p and Tp are particle mass, heat capacity and temperature,
respectively, whereas T̂p is the undisturbed gas temperature at the particle position.
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Similarly, Tmax is the maximum particle temperature (prescribed as 600) that can be
attained via external heating. The particle heating time scale τheat was set to 1.0 for rapid
heating, and the particle-to-fluid heat transfer time scale τt was 10 for fast heat transfer. It is
worth mentioning that the heating is governed by the particle–fluid temperature difference,
and the heat flux drops as the temperature of the fluid increases.

In (2.10), the particle–fluid Nusselt number is computed with the Ranz–Marshall
correlation (Marshall & Ranz 1952)

Nu = 2 + 0.6 Re1/2
p Pr1/3, (2.11)

where Pr is the Prandtl number.

3. Results

3.1. Verifying Reλ independence
To verify if particle clustering – characterised by the RDF – is independent of Reλ for
our simulation set-up, we compare the cases with original Reλ and Reλ matched to L5
(Reλ,L5), as shown in figure 1. This comparison implies that clustering in L2.5 and L1.6
is independent of Reλ, but we see a non-negligible difference in RDF plots of L1.2 and
L0.5 smaller particles. This is plausible since higher Reλ generates more smaller scales in
the flow, while the largest scale in the domain is restricted by the domain size. There is a
slight difference between the original Reλ (solid lines) and Reλ = Reλ,L5 curves of larger
particles. However, since this difference is significantly less than the difference that we
observe for the smaller particles of L1.2 and L0.5, we consider it negligible. This analysis
is critical as it narrowed our comparison to L5, L2.5 and L1.6, where particle clustering
is independent of Reλ, and therefore prevented the erroneous comparisons of particle
clustering with lower loading densities cases.

3.2. Particle heating
Considering the point-particle assumption, each particle has a uniform temperature (Biot
number Bi � 1). Using (2.11), Nu was found to be less than 2.6, which, according to the
Ranz–Marshall expression, implies that conduction is the primary mode of heat transfer
in the test cases. As heat conduction is a local phenomenon, it can enable/enhance other
local phenomena such as thermal viscosity-driven clustering.

As a consequence of the rapid particle heating, it is expected that the particle and
fluid will reach their maximum prescribed temperatures quickly, and the particle–fluid
temperature difference will be small. This can be observed in figure 2(a), as the
particle–fluid temperature difference drops to zero at approximately t = 5, which also
implies that the increase in μf stops approximately at this time. Consequently, as per
figure 2, at t = 1 the particle–fluid temperature difference in L5 is about 1 %, which
increased to 30 % in L0.05 (not shown here). This suggests that the rate of increase in gas
viscosity drops with the decrease in particle loading, which will hinder the development
of the fluid viscosity-based clustering, as discussed later. The increase in particle–fluid
temperature difference with the drop in loading density is due to the reduction in heat
transfer to the carrier fluid at lower loading densities. We also included the normalised
variance (σ 2) of particle–fluid temperature difference in figure 2(b), which portrays a
trend similar to the mean temperature difference. This suggests the absence of any
significant local viscosity fluctuations, hence the fluid viscosity varies with the rise in
fluid temperature.
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Figure 1. The dependence of particle clustering (RDF) on Reλ.

3.3. Turbulence modulation
To quantify the effect of particle reaction drag force, the heating of different particle
loadings, and the resulting change in viscosity on the underlying turbulence, we plot the
evolution of the Taylor length scale in figure 3. Because the Taylor microscale bridges
the energy transfer between the integral and Kolmogorov scales, it indicates the impact
of different test conditions on turbulence. It is apparent that the decay rate of λ is similar
in all the test cases; however, particle heating significantly raises λ between t = 0 and
2. This can be justified with rapid particle heating, which increases TKE of the flow via
pressure-dilatation at scales comparable to the size of particle clusters (Pouransari et al.
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Figure 2. (a) The average difference between particle (Tp) and fluid (Tf ) temperatures, and (b) the variance
(σ 2) of this temperature difference, normalised with the temperature at t = 0 of heating (T0).
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Figure 3. The evolution of the normalised Taylor micro length scale (λ). Here, NH represents non-heated
simulations.

2017). Therefore, the Taylor length scale augments as λ = √
10νf TKE/ε. The rise in TKE

can also be witnessed in figure 4 in the form of a TKE jump right after the onset of heating.
Although this slight transience is short-lived, it produces strong and long-lasting effects
on other parameters such as λ, as the added energy is then passed down to the smaller
scales, imparting a prolonged influence on the corresponding turbulence parameters. The
drop in particle loading reduces fluid–particle energy exchange (Elghobashi & Truesdell
1993; Boivin et al. 1998) – the overall TKE increases with the decrease in particle loading
(Squires & Eaton 1990; Ling, Chung & Crowe 2000) – and also delays the increase in fluid
temperature and viscosity, which then slows the rate of TKE decay, as shown in figure 4.
A critical take away here is that in comparison to non-heated (NH) cases, the difference
in λ between heating and Reλ = Reλ,L5 cases is very small. This is another proof that the
present comparison of L5, L2.5 and L1.6 clustering behaviour is valid.

Another important parameter depicting turbulence modulation by particles is the energy
spectrum, as it determines the energy distribution among different turbulence scales. As
discussed in § 1, in two-way momentum coupling, particles add energy to the small scales
of turbulence at the expense of energy at the large scales (Letournel et al. 2020), and
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Figure 4. The temporal change in normalised TKE.
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Figure 5. The mean energy spectrum (E(k)) of the test cases at t = 0 of heating, normalised with its initial
value. The case L5,OWC is identical to the present L5, except with one-way momentum coupling (OWC).

this effect increases with increasing particle loading (Hassaini & Coletti 2022). Similar
trends are observed in the mean energy spectrum, E(k); see plots in figure 5. This figure
presents the energy spectrum prior to particle heating (t = 0), such that only particle
loading influences the energy distribution among the turbulence scales. Moving from L5
to L0.05 shows the transition from the region where particle back-reaction is significant
to where the particles stop enhancing energy of the smaller scales. Note that the inertial
range in figure 5 is small (L5 to L0.5), which is due to two-way momentum coupling where
fluid energy is also transferred from large to small scales via particles. Additionally, our
low Reλ also caused the inertial range to be small.

3.4. Time scales and Stokes number
In decaying HIT, the integral time scale decreases monotonically, while the Kolmogorov
time scale increases. Potentially, particle heating can alter this standard behaviour;
however, present results are consistent with the classical trends despite the slight
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Figure 6. The evolution of integral (τl) and Kolmogorov (τη) time scales normalised with their initial values.
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Figure 7. The temporal evolution of Stl and Stη in the heating regime.

logarithmic curves of time scales, as depicted in figure 6. This is because for τη, as per
(1.4), the increase in νf is divided by the rise in the TKE dissipation rate (ε = 2νf |ui,jui,j|),
while for τl, the increase in νf decreases the velocity fluctuations (TKE), which according
to (1.3) is divided by the increase in ε. On the other hand, in an incompressible flow
without heating – constant νf and τp – Stl and Stη monotonically increase and decrease,
respectively, as depicted by the NH curves in figure 7. But since νf in (1.2) is not
normalised, our heating Stl and Stη curves depart from the conventional trends – variable
τp. Here, Stη shows the greatest deviation due to smaller d2

p, which is overpowered by the
increase in νf in the denominator of the right-hand side of (1.2). Hence in the initial heating
transient, when the viscosity rapidly changes with temperature, Stη drops abruptly. It is
clear overall that particle heating alters turbulence characteristics of the flow considerably,
which should affect particle clustering characteristics.

3.5. Clustering quantification
Looking at Stl and Stη, the main question is, does particle clustering adapt to the changes
in St and still portray maximum clustering at St ≈ 1? As per figure 7, it is expected that the
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Figure 8. The RDF of small and large particles at even time steps.

larger particles will show higher clustering, especially towards the end of the simulation,
where Stl approaches unity. An opposite trend is expected for smaller particles considering
the evolution of their Stη. To test this, we computed the RDF of the three test cases as
shown in figure 8. We also repeated these cases without heating, which shows particle
clustering in the absence of thermodynamic changes in the fluid. Here, the clustering in
NH cases can be explained by the history effect for larger particles and enhanced clustering
at dissipative scales for smaller particles. In the absence of temperature-based viscous
effects, the heating and NH RDF curves should overlap. We observe a dissimilar trend
in figure 8 for L5 and L2.5. But before elucidating this, it is worth highlighting that the
clustering pattern of small and large particles inverts from L5 to L1.6; larger particles
show more clustering in L5, and small particles show greater clustering in L1.6. A similar
trend was witnessed in Saieed et al. (2022), where in Gas 1 and Liquid 1, larger particles
depicted higher RDF than smaller particles, while an opposite pattern was observed in
the other cases. This is a turbulence-driven effect (as discussed later), thus we are not
concerned with whether smaller or larger particles show greater clustering. Our focus is
on the increase in clustering – of either particle species – due to the increase in viscosity
upon heating.

Before analysing the heating results, we need to grasp the clustering pattern of each
particle species prior to heating. We see that Stl and Stη values at the start of the heating
simulations are comparable as per figure 7. Thus both particle species should have similar
clustering at the onset of heating. We observed this trend in L2.5 and weakly in L1.6, but
not in L5. This is due potentially to the forcing scheme used, which adds energy to the flow
at random locations, increasing the local velocity fluctuations and gradient. Towards the
end of base simulations when Stl and Stη have approached their values at t = 0 in figure 7,
addition of energy would disperse the particles, potentially breaking clusters. The particles
in test cases L2.5 and L1.6 have enough empty spaces to stay dispersed once a cluster
breaks, before particles form new clusters. Hence they also show very low clustering at
the start of heat (figure 8). The lack of large empty spaces in L5 results in the formation
of a new cluster as one cluster breaks, resulting in higher clustering. However, even in
this scenario, both particle species of L5 should depict similar initial RDF curves. This
difference in initial clustering is due to the difference in drag force experienced by the two
particle sizes. The drag force experienced by larger particles is on average about O(101)
higher than that of smaller particles. The random addition of TKE pushes larger particles
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Figure 9. The PDF of normalised particle–particle relative velocity at t = 0 of heating. Here, n represents the
nth particle.

more, forcing them to disperse and then form clusters. Hence we cannot use Stl and Stη to
delineate particle clustering at the onset of heating.

To this end, we evaluated the probability density function (PDF) of particle–particle
relative velocity just prior to heating (t = 0), as illustrated in figure 9, to elucidate
clustering at t = 0 as particle clustering is a function of this relative velocity (Chun et al.
2005; Bragg & Collins 2014). This PDF indicates the number of particles of each species
possessing similar velocity. Therefore, a tighter PDF shows a greater clustering capability
of a particle species. We see a good agreement between the PDF peaks and the initial RDF
curves. For example, the PDF of L5 larger particles is higher than its smaller particles,
while both species of L1.6 show similar PDF curves. On the other hand, relative velocity
curves of small and large particles of L2.5 overlap perfectly.

Now that the initial clustering pattern of each particle species is understood, we can
explain the VC by collating heating and NH RDF plots in figure 8. Comparing these curves
of L5 shows opposite trends in the two simulation sets, while the difference between these
two simulations (heating and NH) decreases with particle loading. This highlights a crucial
phenomenon that only well-formed clusters before heating establish VC upon heating, and
the probability of cluster formation before heating dwindles with the reduction in particle
loading. In the case of finite heating, the fluid reaches its maximum temperature and
viscosity before the VC takes any dominant effect. Hence the difference between heating
and NH simulations decreases with particle loading.

3.6. Viscous capturing
To elucidate further the RDF trends with the VC mechanism, we evaluated the mean
particle–fluid drift velocity in regions with temperature one standard deviation higher
than the average fluid temperature (hot regions, HR) – THR > �Tf + σ(Tf ), where σ is
the standard deviation – in the heating simulations, as shown in figure 10. The strength
of VC can be determined by the low local particle–fluid drift velocity in THR regions as
higher viscous drag on particles correlates the fluid and particle velocities. In figure 10,
we see that not only do larger particles of L5 show the lowest drift velocity, but the drift
velocity increases with the decrease in particle loading. Plausibly, lower particle loading
results in more unoccupied fluid volume, where the fluid does not exchange energy with
the particles, and consequently possesses higher TKE; see figure 4. This high-energy
fluid disperses viscous clouds, therefore the local fluid velocity fluctuations at the particle
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Figure 10. The temporal evolution of fluid–particle mean drift velocity (|up − uf (xp)|) in the hot regions,
normalised with the Kolmogorov velocity (uη = η/τη).

location increase with the drop in particle loading, raising the drift velocity. Overall, the
high RDF and low drift velocity in heated cases clearly suggest the important role of VC.

A surprising observation in figure 10 is the monotonic decrease in L5 and L2.5 drift
velocities. In a turbulent flow – whether particles are clustered or unclustered – it is
expected that particles experience finite spatial translation between consecutive time
instances due to local fluid velocity variance, thus fluctuating drift velocity curves should
have been observed. To highlight this, the drift velocity of L0.5 is also plotted in figure 10,
which clearly validates this phenomenon. Minor fluctuations in L1.6 suggest only marginal
VC at this particle loading. Additionally, on average the drift velocity of both particle
species of L0.5 was approximately 2.5 times higher than that of L5 particles, which
further highlights the aforementioned relationship between VC and particle loading. It
is worth mentioning that we do not take inter-particle collisions into account, which is a
reasonable and common assumption based on the global particle loading considered. But
particle loading in a cluster can be significantly higher than the global average, and as
a result, inter-particle collisions can have negligible (reduced effect of particle–particle
collisions due to increased viscosity) to detrimental (particles disperse after collisions)
impact on VC. However, for a definitive conclusion, this requires further scrutiny of the
VC mechanism with four-way momentum coupling.

Considering the particle–fluid drift velocity in figure 10, it is expected that the intensity
of VC determines the particle–fluid velocity correlation in hot zones. To test this,
we evaluated the distance correlation coefficient Rup,uf (xp) between particle and fluid
velocities in the hot zones, as depicted in figure 11. We observe good agreement between
the drift velocity trends in figure 10 and Rup,uf (xp) values, where cases with low drift
velocity result in higher correlation between particles and fluid velocities. Therefore, VC
correlates the fluid–particle velocity in a cluster, and the intensity of VC determines the
strength of this correlation.

3.7. Fluid–particle acceleration
The effect of fluid viscosity is reflected directly in the acceleration experienced by
each particle species, as the viscous drag is the only force acting on the particles.
Conventionally, smaller particles should adapt to the fluid acceleration, whereas larger
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Figure 11. The temporal evolution of the fluid–particle velocity distance correlation coefficient Rup,uf (xp) in
the hot zones.
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Figure 12. The temporal evolution of mean small and large particle acceleration magnitude. The local fluid
acceleration at small (af (xη)) and large (af (xl)) particle locations is also provided for comparison. Note that
these curves are non-normalised.

particles should show a higher tendency to follow their own path due to their higher
momentum. These trends can be seen in figure 12, where the negative values depict
deceleration, while positive values represent acceleration. In this figure, acceleration
was found by computing the difference in the mean velocity magnitude of each particle
species between two consecutive time steps. The same procedure was repeated for the
magnitude of the fluid acceleration at the particle location. As expected, smaller particles
adapt rapidly to the fluid deceleration and readjustment to the evolving drag force, which
attenuates very slowly; see figure 13. In contrast, initially larger particles accelerate due
to their much higher drag coefficient (figure 13), which forces them to adapt to the local
fluid with a high velocity variance. Recall that the fluid is faster than the particles; as in
the base simulations, we forced the fluid to energise the particle motion. On the other
hand, as the mean particle drag coefficient (CD) dwindles, particles transition from an
accelerating to a decelerating regime after μf /μ0 = 1.4 (figure 13). The increase in large
particle deceleration is in the order L5 < L2.5 < L1.6, exactly opposite to the VC effect in
the three test cases. This is because the difference in the acceleration of large particles and
af (xl) of L5 is much smaller than in other cases; in fact, its acceleration curve is almost
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Figure 13. The behaviour of the mean particle drag coefficient CD with respect to the normalised dynamic
viscosity.
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Figure 14. The temporal evolution of normalised difference in mean TKE at the positions of small (xη) and
large (xl) particles.

a plateau at zero. Hence the L5 larger particles are well correlated with the local fluid
acceleration and are travelling spatially with the same fluid at their location.

The continuous adaptation of the acceleration of small particles to the fluid suggests
that they are taking energy from the fluid, while the continuous rise in the deceleration
of L2.5 and L1.6 larger particles indicates that they are adding energy to the fluid – as per
the classical behaviour (Gore & Crowe 1989). To confirm this, the difference in the mean
turbulent kinetic energy (TKE(xη) − TKE(xl)) at the location of small and large particles
is computed in figure 14. According to convention, the turbulent kinetic energy at the
location of the larger particles should be greater than that of their smaller counterparts.
Here, only L5 shows an unconventional trend. This is possible only if the particles do not
add energy to the fluid, and follow the fluid according to figure 10. In other words, apart
from altering particle clustering behaviour, VC also impacts the turbulence modulation by
particles.
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Figure 15. The normalised differences in the number of small (Nη) and large (Nl) particles in different
(a,c,e,g) strain rate S and (b,d, f,h) vorticity Ω regions at even time steps.

3.8. Particle distribution

3.8.1. Strain rate and vorticity
It was found in one-way momentum coupling that particles of different sizes congregate
in a range of strain rate (S) and vorticity (Ω) zones; see figures 14 and 15 of Saieed et al.
(2022). In two-way coupling, we expect the local S and Ω fluctuation to be damped by the
particles as S and Ω are the symmetric and skew-symmetric parts of ∇u, respectively.
Furthermore, the extent of local increase in viscosity also determines the attenuation
in local S and Ω . We see this phenomenon in figure 15, which presents the temporal
distribution of particles in different S and Ω regions. Similar to the previous plots, L5
shows opposite trends compared to L2.5 and L1.6, where its larger particles are sampling
low S and Ω regions. Enhanced clustering of L5 larger particles produces a higher
attenuation of S and Ω . The extent of VC also causes the particles to reside temporally
in the same local fluid (inside a viscous cloud), resulting in particles’ local S and Ω values
dropping with time. If the particles were not captured and restrained in local high viscosity
regions, then a particle cluster would disintegrate in t = O(τη) (Liu et al. 2020). In fact,
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even if a cluster experiences partial disintegration, the curves in figure 15 would display
many more fluctuations; the separating particles would reside in different S and Ω regions
at adjacent time steps. This trend can be seen in the L0.5 plots.

Based on the understanding of preferential concentration (Squires & Eaton 1991), as Stl
approaches unity, the larger particles should move into high S and low Ω regions, while
as Stη drops further below unity, smaller particles should reside in high Ω regions. We do
not see this in figure 15. This is because the explanation above applies to the local maxima
and minima of S and Ω , but we present particle number densities in a global (computed
over the entire domain) context. The main observation here is that the local viscous effects
influence particle behaviour greatly in the fluid, and cause them to sample globally certain
S and Ω regions depending upon the strength of VC. Albeit the local sampling of inertial
particles in high S (low Ω) regions is a plausible explanation of particle clustering in
unheated cases, VC can cause particles to remain captured temporally in different S and
Ω regions of the domain. Therefore, this global description of particle location can be
critical for thermal applications of particle-laden flows, although it requires further testing
in continuous flow scenarios such as channel flow.

3.8.2. Cluster identification
To identify individual particle clusters in the flow, we employ a method known as
density-based spatial clustering of application with noise (DBSCAN) (Ester et al. 1996),
which is an unsupervised machine learning algorithm. Similar tools have been applied
successfully to a posteriori analysis in a variety of turbulent flows (Fan et al. 2019; Younes
et al. 2021; Zhang, Rival & Wu 2021). We chose DBSCAN for this analysis because of
its ability to localize particle clusters spatially, where it identifies particles in each cluster
and labels them separately. This aids greatly in conducting other statistical analyses on the
clustered particles, as shown later in this section. Furthermore, the DBSCAN method is
similar theoretically to the RDF that we used earlier, in §§ 3.1 and 3.5, as it also counts the
number of particles at a certain distance from a reference particle, as discussed below.

The DBSCAN method identifies regions of high particle density by segregating data
into core and noise points based on two parameters: inter-particle distance ε, and
minimum number of neighbouring particles Nε required to form a cluster. Here, Nε or
more particles at a distance ε from a core particle belong to a cluster, while the other
particles are noise points and are considered unclustered. Note that ε and Nε are input
parameters and require careful estimation, as cluster identification is highly sensitive to
these parameters. Determining Nε is straightforward, as typically it is taken as twice the
number of considered data dimensions (Sander et al. 1998). For example, Nε = 6 for a
three-dimensional (3-D) data set. The estimation of ε on the other hand, is slightly complex
as it requires a good understanding of the data and some experience with the DBSCAN
method. For finding ε, a k-distance plot is required, which binds the particles based on
their minimum distance from the nearest neighbour. This plot has a characteristic elbow
shape, and the prevailing idea is to take ε equal to the inflection point on the curve.

In light of the above discussion, we take Nε = 6 for our 3-D snapshots. Next, we
computed the species-specific k-distance plots for all test cases that resulted in ε as shown
in table 3. Note that our k-distance plots exhibited two inflection points, which is normal.
As per the DBSCAN guideline, we chose the smallest ε values.

Returning to § 3.5, there is still an unanswered question: why is the clustering of L5
smaller particles (RDF curves) not evolving temporally, despite sharing the domain with
L5 larger particles showing strong VC? In the other two test cases, this can be attributed
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Case L5 L2.5 L1.6

Particle radius 0.0106 0.0028 0.0106 0.0028 0.0106 0.0028
ε 0.055 0.055 0.065 0.060 0.070 0.060

Table 3. Particle species-specific values of ε for cluster identification in 3-D snapshots.
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Figure 16. Cluster identification using the DBSCAN method at t = 2 of heating. The 3-D snapshots represent
the overall distribution of clusters in the domain, whereas the 2-D slices show the normalised temperature
(T́f = Tf /Tf ,max|t=2, where Tf ,max|t=2 is the maximum fluid temperature at t = 2) and clusters distribution in
2-D slice of depth 5η computed at the centre (x = 0) of the box domain. Here, each particle cluster is identified
with a different colour, and unclustered particles are removed.

to weaker VC. Furthermore, the reasonably high RDF at t = 2 also implies that L5
smaller particles are clustered prior to heating, a prerequisite for VC. To answer this, we
estimate the distribution of clusters using DBSCAN in the 3-D domain. We also extracted
two-dimensional (2-D) slices from the 3-D clustering snapshots, and mapped them on
2-D temperature contours at the centre of the domain. These are illustrated in figure 16.
Visualising the 3-D snapshots shows that, albeit L5 smaller particles are clustered, such
clusters are much smaller and well-distributed in comparison to L5 larger particles. Such
small clusters can be witnessed in all other 3-D snapshots. This indicates that in addition
to well-formed clusters, VC also requires large unevenly distributed clusters in the domain.
It can be seen that the clusters are not exactly in the shape of a cloud. In fact, they
are elongated in the shape of tubes/threads similar to caustics of suspended particles
(Wilkinson & Mehlig 2005), as they are confined by a virtual boundary of a sharp
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Figure 17. The PDFs of normalised particle velocity (up) and clustered particle velocity (up,c).

temperature gradient called a front (Bec, Homann & Krstulovic 2014), as depicted by the
2-D contours of figure 16.

In a fluid domain, particles with vastly different history paths can assemble in a region.
In the absence of any external factor, such as heat, these particles carry their history even
in shared space. This implies that the distribution of particle velocity in a cluster should be
similar to particle velocity distribution in the entire domain. We see this trend in smaller
particles as per figure 17, yet a much tighter PDF is obtained for up,c of larger particles.
These particles inside a cluster have similar and the highest temperature in the domain (see
figure 18), which correlates the particle velocity field via increased drag. In these figures,
the peak velocity and temperature PDFs of clustered larger particles are approximately
1.4 and 2 times higher than the PDF of the entire domain. Thus VC greatly overpowers
the particle history path, forcing the particles to remain in a hot zone. Figures 17 and 18
also suggest that the difference between the global and clustered particles’ velocity and
temperature PDFs drops as the particles loading decreases.

Next, we want to test if VC retains particles over time. Inherently, the particle history
should vastly alter the number of particles per cluster in the absence of VC. For assessing
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Figure 18. The PDFs of normalised particle temperature in the entire domain (Tp) and in clusters (Tp,c) at
t = 2 of heating, where Tmax is 600. Only one time step is shown as a similar distribution is obtained at other
time steps.

this notion, we computed the average number of particles in a cluster per cluster length
as demonstrated in figure 19. Similar to figure 10, the temporal fluctuation increases as
the VC effect loses its strength from L5 to L1.6. We also note that the number of particles
per cluster increases significantly due to VC. Hence it is clear from the discussion in this
section that the control of temperature-driven viscosity on particle clustering is a strong
function of particle loading density.

3.9. Mathematical interpretation of VC
Considering the significance of thermoviscous effects on the turbulence and particle
dispersion, another scientific question is why St and particle clustering do not evolve
together, since St already accounts for μf . This is because τp, and consequently St, accounts
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Figure 19. The average number of particles in a cluster per cluster characteristic length (Lc). Here, Np,c and
Nc are the number of clustered particles and number of clusters in the domain, respectively.

for the instantaneous μf , but it does not consider the spatial and temporal change in μf . As
established in this study, the changes in μf and the corresponding effects on the particles
and fluid turbulence play a critical role in governing particle clustering. Thus we propose
a mathematical explanation to account for VC in heated systems. Recall that VC is tied to
the ability of higher-viscosity gas to capture and retain particles passing through it. This
ability is tied to the drag force, which is enhanced within the viscous region, and is linked
directly to the particle acceleration. Therefore, if we substitute particle relaxation time
scale (1.2) into the equation of Lagrangian particle motion (2.7), we get

dup

dt
= CD18μf

ρpd2
p

(uf (xp) − up). (3.1)

Here, CD has a weak dependence on fluid viscosity (and thus temperature) and can, for
mathematical tractability, be assumed constant in the present analysis.

Noting the power-law form of the viscosity (2.5), we can write

dup

dt
= CD18

ρpd2
p

u μ0

(
T
T0

)2/3

, (3.2)

where u = uf (xp) − up. We can now separate the purely hydrodynamic component,
denoted as

Fhydro = CD18
ρpd2

p
u μ0. (3.3)

This component is related to the particle drag force without variable viscosity effect.
The term is modified by the coefficient of VC (ϕ):

ϕ =
(

T
T0

)2/3

. (3.4)

Here, T is the fluid temperature in the vicinity of a particle. Therefore, the equation of
Lagrangian particle motion can be expressed as

dup

dt
= ϕ Fhydro. (3.5)
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Figure 20. The PDFs of ϕc − ϕuc at t = 2.

As shown earlier, viscosity-driven clustering is tied to a higher ϕ. To verify this, we
compute the coefficient ϕ for the fluid at the locations of the clustered (ϕc) and unclustered
(ϕuc) particles. We plot the PDF of their difference at t = 2 in figure 20. Since the
numbers of clustered and unclustered particles can vary at each time step, and we are
concerned primarily with ϕc, we subtracted the mean coefficient of unclustered particles
(ϕuc) from that of clustered particles. The peak and spread of the PDF (ϕc − ϕuc) matches
our previous plots, where L5 larger particles show more VC than their small particle
counterparts, and this trend inverts slowly in lower particle loading numbers. Note that
this difference in ϕc and ϕuc accounts for the spatial change in temperature-based viscous
effects, while T in the numerator in (3.4) increases with time due to particle heating.

We acknowledge that this formulation of ϕ is very simplistic and assumes CD constant,
which is not true in practice. However, it demonstrates adequately the VC trends in
agreement with the RDF of the present particle loading densities. A comprehensive
mathematical model of ϕ warrants a more thorough testing of thermoviscous effects on
particle dispersion, especially with higher Reynolds number simulations. We leave this for
future analysis.

4. Conclusion

A fully two-way coupled DNS study of particle-laden, decaying HIT is conducted to test
the effect of particle number density on temperature-dependent viscosity-based particle
clustering. For this, a power-law model was used for specifying temperature-dependent gas
viscosity, and two particle species were used for three cases with different particle loading
numbers. The particle–fluid interactions were two-way coupled in both momentum and
energy. It is observed that the particle loading determines the strength of VC. Since higher
loading density enhances the change of cluster formation before heating and also the local
particle number density inside a cluster, it governs the fluid viscosity-based clustering.
Depending on the strength of the VC, a particle species can deviate considerably from its
conventional clustering behaviour. Similarly, particle loading has a significant influence
on the energy distribution between the turbulence scales. Higher particle loading density
alters substantially the energy spectrum by transferring energy from the integral scales to
the dissipative scales via particles, which shrinks the Taylor microscale. Higher particle
loading also decreases local fluid velocity fluctuations, which aids in the retention of VC.
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The global sampling of particles in distinct S and Ω regions is also a strong function
of particle loading and consequently the extent of VC. The particles captured viscously
reside in the same local fluid within a viscous cloud over time, and therefore S and
Ω at particle locations dwindle temporally. Hence the increasing fluid viscosity can
stabilise considerably the global distribution of particles in distinct S and Ω regions,
and in this case the particles appeared to be temporally stuck in these regions. This
global S and Ω based distribution of particles is critical as it outlines the high and low
particle concentration regions during turbulence decay. Finally, we visualised individual
particle clusters in the 3-D domain with the DBSCAN method, which expanded further the
requirement of preformed clusters prior to heating for VC to be noticeable. We found that
the preformed clusters must be large in size and unevenly distributed. Small clusters might
themselves be distributed somewhat evenly in the domain, albeit particles are distributed
inhomogeneously. Thus they do not produce the same high local viscosity effect and
cannot be captured or retained as particles in large unevenly distributed clusters. We also
applied the temperature and velocity based conditional sampling on the clusters, and found
that the thermodynamic and kinematic parameters of the particles are greatly correlated
inside clusters. This phenomenon also increased with the rise in particle loading density.

Phenomenologically, VC will take effect only if particles receive an even amount of heat
regardless of their location (inside or outside the cluster), which is the case here. But if
particles experience a shadowing effect, which is a considerable factor in radiative heating
(Frankel, Iaccarino & Mani 2017; Banko et al. 2019), then the temperature inside a particle
cluster would be lower than the temperature at the periphery of the cluster. In such a case, a
particle cluster will not be able to create a strong viscous cloud. Hence, VC is not expected
to be a dominant factor – even if observed at all – in controlling particle distribution in
radiative heating. Also note that there was no heat conduction between particles due to
uniform particle heating and the fast particle heating time scale (based on the heating
model of Mouallem & Hickey 2020), and the inter-particle collisions were neglected. The
presence of these effects might affect VC considerably.

In systems where the aforementioned conditions of higher particle number density
and uniform particle heating are met, particles will show notably higher clustering
and unconventionally modulate turbulence. This can be substantially detrimental for
applications such as particle solar receivers, combustion of nanothermites in satellite
engines, and thermal spray coatings, etc. Furthermore, since viscous clouds can restrain
particles, in extreme cases, particles might be restricted spatially in certain regions of the
flow. However, this hypothesis requires further scrutiny in a continuous flow scenario.
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Appendix. Mesh independence study

To verify that the present results are not grid resolution dependent, we repeated the base
and heated simulations of L5 with a mesh of 5123, as shown in figure 21. It can be seen
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Figure 21. The normalised mean energy spectrum (E(k)) at the end of the L5 base case (t = 5τl), and at the
end of the L5 heating simulation (t = 10).

that the dependence of both HIT development and heating simulations on grid resolution
is almost negligible.
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