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We consider the dynamics of a vertically stratified, horizontally forced Kolmogorov flow.
Motivated by astrophysical systems where the Prandtl number is often asymptotically
small, our focus is the little-studied limit of high Reynolds number but low Péclet
number (which is defined to be the product of the Reynolds number and the Prandtl
number). Through a linear stability analysis, we demonstrate that the stability of
two-dimensional modes to infinitesimal perturbations is independent of the stratification,
whilst three-dimensional modes are always unstable in the limit of strong stratification
and strong thermal diffusion. The subsequent nonlinear evolution and transition to
turbulence are studied numerically using direct numerical simulations. For sufficiently
large Reynolds numbers, four distinct dynamical regimes naturally emerge, depending
upon the strength of the background stratification. By considering dominant balances
in the governing equations, we derive scaling laws for each regime which explain the
numerical data.
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1. Introduction

Statically stable stratified flows, where the background equilibrium fluid density
decreases (at least on average) upwards in a gravitational field, are ubiquitous. Examples in
geophysics include atmospheres, oceans and lakes, while they also occur on astrophysical
scales in planetary and stellar interiors. A key physical process in such flows is that
fluid parcels perturbed vertically from their equilibrium position experience a restoring
‘buoyancy force’. Furthermore, it is generic that the fluid will also have a spatially and
temporally varying background velocity distribution that is expected to interact with the
background ‘stable’ stratification.

In many cases, the flow becomes turbulent, and the interaction between the turbulence
and the stratification is a major source of vertical transport in geophysical flows
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(Ivey, Winters & Koseff 2008; Ferrari & Wunsch 2009) and stellar interiors (Zahn 1974,
1992; Spiegel & Zahn 1992). What has become known as ‘stratified turbulence’ in the
geophysical literature exhibits a wide range of dynamical, and often counter-intuitive
behaviours, not least because it leads to complex, and still controversial, irreversible
energetic exchange pathways between the kinetic, potential and internal energy reservoirs.
Understanding and modelling those pathways, in particular the ‘efficiency’ of mixing
(associated with the irreversible conversion of kinetic energy into potential energy) is
of great importance for larger-scale descriptions of geophysical flows, such as weather
forecasts, ocean circulation simulation or indeed climate models, and astrophysical flows
that regulate planetary and stellar evolution. In what follows, we first describe the current
understanding of stratified turbulence in geophysical flows, and explain why these results
need to be revisited in the astrophysical context, which is the purpose of this work.

1.1. Stratified turbulence in geophysical flows
There has been a great amount of research into transition, turbulence and mixing in
stratified flows with focus on the relevance to atmospheric and oceanic flows (e.g. Ivey
et al. 2008). Within this context, the simplest idealised (yet commonly considered)
situation has three fundamental modelling assumptions: that the fluid velocity is
solenoidal, i.e. ∇ · u = 0; that the density differences within the flow are sufficiently small
for the ‘Boussinesq approximation’ with a linear equation of state to be an appropriate
model; and that the density variations in the fluid are associated with a single stratifying
agent, avoiding the occurrence of ‘double-diffusive’ phenomena (which may still be very
important in a variety of different circumstances, see for example the reviews of Schmitt
(1994); Radko (2013) and Garaud (2018)). Without loss of generality, the density field
ρ may be assumed to be a function of temperature T alone, such that

(ρ − ρ0)

ρ0
= −α(T − T0), (1.1)

where ρ0 and T0 are reference densities and temperatures, and α is the thermal expansion
coefficient. Since temperature satisfies an advection–diffusion equation

∂T
∂t

+ u · ∇T = κ∇2T, (1.2)

where κ is the thermal diffusivity, the density fluctuations also satisfy the same
advection–diffusion equation.

Both irreversible mixing and turbulent viscous dissipation, leading respectively to
irreversible changes in the potential energy and internal energy of the flow, rely inherently
on the action of diffusive processes. Under the three simplifying assumptions above,
the stratified fluid under consideration has only two relevant diffusivities: the kinematic
viscosity ν quantifying the diffusivity of momentum; and κ , quantifying the diffusivity of
density. Together with these diffusivities, there are at least three additional dimensional
parameters required to describe a stratified flow: a characteristic velocity scale Uc, a
characteristic length scale Lc and a characteristic buoyancy frequency Nc associated with
the background buoyancy frequency profile Nb(z), defined as

N2
b(z) ≡ − g

ρ0

dρb

dz
= αg

dTb

dz
, (1.3)
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Stratified horizontal shear flows at low Péclet number 903 A1-3

where g is the acceleration due to gravity, and ρb and Tb are background profiles of density
and temperature, respectively. Note that the Boussinesq approximation requires that the
total variation of a background scalar quantity qb(z) satisfies Lc|dqb/dz| � q0.

A natural set of non-dimensional parameters can be constructed as: a Reynolds number
Re quantifying the relative magnitude of inertia to momentum diffusion by viscosity; a
Péclet number Pe quantifying the relative magnitude of inertia to the diffusion of the
density; and a Froude number Fr quantifying the relative magnitude of the inertia to the
stratification, defined as

Re ≡ UcLc

ν
, Pe ≡ UcLc

κ
= PrRe and Fr ≡ Uc

NcLc
, (1.4a–c)

where Pr = ν/κ is the Prandtl number. Note that for vertically sheared flows, the Froude
number is related to a bulk Richardson number as

Ri = N2
c L2

c

U2
c

= Fr−2. (1.5)

Also note that we have implicitly restricted our focus to a regime where the scales of
motion are sufficiently small and fast so that the effects of rotation can be ignored,
otherwise an additional parameter is necessary.

As discussed in detail in Riley & Lelong (2000) and Brethouwer et al. (2007), oceanic
and atmospheric flows are often very strongly stratified, in the specific sense that if both
Lc and Uc are identified with typical scales of horizontal motions, then Fr � 1 (Ri � 1).
Nevertheless, turbulence still occurs, at least in spatio-temporally varying patches
(Portwood et al. 2016). This has profound implications for understanding the dynamics
of such flows.

Brethouwer et al. (2007), following Billant & Chomaz (2001), demonstrated that when
both Re � 1 and Fr � 1, several different flow regimes are possible. Each regime can be
understood as a distinct dominant balance between various terms in the Navier–Stokes
equations, dependent on their relative sizes. Of central significance to these balances,
however, are two additional geophysically motivated parameter choices, both of which we
wish to revisit in this manuscript which aims to extend this work to astrophysically relevant
flows. The first of these parameter choices is motivated by the expectation (and empirical
observation) that ‘strong’ stratification leads to anisotropy in the flow, so the characteristic
vertical length scales Lv are expected to be very different from characteristic horizontal
length scales Lh ≡ Lc. The second relies on the fact that the Prandtl number is of order
unity or larger in geophysical flows. Typically, Pr ∼ O(1) for gases (e.g. Pr � 0.7 for air)
while for fresh water Pr ∼ O(10) (with some variability with temperature and pressure,
although the canonical value is chosen to be 7). If the density variations are due to salinity
with diffusivity D rather than temperature differences, the analogous ratio of diffusivities,
known as the Schmidt number Sc = ν/D ∼ O(1000), is even higher.

With these two further choices, Brethouwer et al. (2007) discussed three particular
regimes which are worthy of comment. The first, originally considered by Lilly (1983)
(also see Riley & Lelong (2000) for further discussion) has Re � 1 and Fr � 1, yet
Lv/Lc � Fr and also Lv/Lc � 1/

√
Re. With these scalings, all terms involving vertical

derivatives (specifically diffusive terms and advective terms involving vertical velocity)
are insignificant in the Navier–Stokes equations, and so the governing equations reduce to
the evolution equations for an incompressible and inviscid ‘two-dimensional’ horizontal
velocity uh(x, y, t). Furthermore, since Pr � O(1), diffusive terms in the density equation
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can also be ignored, and quasi-two-dimensional (although possibly layerwise) flow
evolution is expected.

The other two regimes discussed in detail by Brethouwer et al. (2007) still rely
essentially on the fact that Pr � O(1). They also exploit the insight of Billant & Chomaz
(2001) that the vertical length scale should not be externally imposed, but should emerge as
a property of the flow dynamics. In that respect, as presented in detail by Brethouwer et al.
(2007), a key parameter is the quantity commonly referred to as the ‘buoyancy Reynolds
number’ Reb, defined as

Reb ≡ ReFr2 = U3
c

νLcN2
c

. (1.6)

When Reb � O(1), (but still with Pr � O(1)), a viscously affected regime is expected,
where horizontal advection is balanced by viscous diffusion, specifically associated with
vertical shearing. This regime, much more likely to be relevant in experiments (or
simulations) rather than in geophysical applications, has Lv/Lc ∼ 1/

√
Re, and does not

exhibit a conventional turbulent cascade, but rather exhibits the effects of viscosity (and
density diffusion) even at large horizontal scales.

Conversely, Brethouwer et al. (2007) showed that when Reb � 1, viscous effects are
insignificant (as is density diffusion since Pr � O(1)) and the remaining terms (including
the advection by the vertical velocity) become self-similar with respect to zNc/Uc, with z
being the vertical coordinate aligned with gravity. This suggests strongly that Lv ∼ Uc/Nc,
or equivalently that the Froude number based on the vertical scale Lv, defined as

Frv ≡ Uc

LvNc
, (1.7)

should be of order one, so Lv � Lc. Such a vertical layer scale has been commonly
observed in a wide variety of sufficiently high Reynolds number stratified flows (e.g.
Park, Whitehead & Gnanadeskian 1994; Holford & Linden 1999; Billant & Chomaz 2000;
Godeferd & Staquet 2003; Brethouwer et al. 2007; Oglethorpe, Caulfield & Woods 2013;
Lucas, Caulfield & Kerswell 2017; Zhou & Diamessis 2019) and appears to be a generic
property of high Reb and high Pr stratified turbulence. This regime is characterised not
only by anisotropic length scales but also by anisotropy in the velocity field, and hence
the associated turbulence, leading Falder, White & Caulfield (2016) to refer to this flow
regime as the ‘layered anisotropic stratified turbulence’ (LAST) regime.

The vertical layering on the scale Lv is key to understanding how turbulence can be
maintained in the LAST regime despite the fact that Fr � 1. Indeed, these ‘layers’ in
the density distribution consist of relatively weakly stratified wider regions separated by
relatively thinner ‘interfaces’ with substantially enhanced density gradient. As such, local
values of the buoyancy frequency can vary widely from the characteristic value Nc. When
the local vertical shear is sufficiently strong compared to the local density gradient, then
the gradient Richardson number Rig, defined as

Rig ≡ −g
ρ0

∂ρ/∂z
|∂uh/∂z|2 , (1.8)

can drop to values low enough for shear instabilities to be able to develop. If in addition
the Reynolds number is sufficiently large for inertial effects to be dominant, this allows for
the possibility of turbulence through the breakdown of shear instabilities, albeit with both
spatial and temporal intermittency.
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Stratified horizontal shear flows at low Péclet number 903 A1-5

It is crucial to appreciate that this LAST regime relies inherently on the assumption
that Pr � O(1), as high Reynolds number thus implies high Péclet number, so localised
turbulent events can erode the stratification and in turn participate in the formation or
maintenance of the layers. Although appropriate for the atmosphere and the ocean, this
fundamental assumption most definitely does not apply in the astrophysical context, where
Pr � 1 (see below). As we now demonstrate, density layering is prohibited in that case,
suggesting that LAST dynamics cannot occur. This raises the interesting question of
whether analogous or fundamentally different regimes exist when Pr � 1.

1.2. Stratified shear instabilities in stars
The fluid from which stars and gaseous planets are made is a plasma comprised of photons,
ions and free electrons. As a result, one of the main differences between astrophysical
and geophysical flows is the value of the Prandtl number, which is much smaller than
one as mentioned above. In typical stellar radiative zones, for instance, Pr usually ranges
between 10−9 and 10−5 (see Garaud et al. 2015b, figure 7). The microphysical explanation
for this difference is that heat can be transported by photons efficiently while momentum
transport usually requires collisions between ions (which comprise most of the mass),
so ν � κ and Pr � 1. This crucially introduces the possibility of a new regime of flow
dynamics where Re � 1 while Pe = PrRe � 1, which is never realised in geophysics.
In fact, that possibility is always realised provided that the characteristic scale Lc
considered in (1.4a–c) is sufficiently small.

Astrophysical fluids are also not incompressible. However, under a set of assumptions
that are almost always satisfied sufficiently far below the surface of stars and gaseous
planets, the Spiegel–Veronis–Boussinesq approximation (Spiegel & Veronis 1960) can
be used to reduce the governing equations to a form that is almost equivalent to that
used for geophysical flows. In particular, ∇ · u � 0, (ρ − ρ0)/ρ0 � −α(T − T0) and the
temperature equation (1.2) becomes

∂T
∂t

+ u · ∇T + w
g
cp

= κ∇2T, (1.9)

where cp is the specific heat at constant pressure. In comparison with (1.2), the new term
wg/cp accounts for compressional heating (or cooling) as the parcel of fluid contracts
(or expands) to adjust to the ambient pressure as it moves downwards (or upwards) in
a gravitational field. As a result, the background buoyancy frequency profile Nb(z) is
modified from (1.3) to

N2
b(z) ≡ αg

(
dTb

dz
+ g

cp

)
, (1.10)

from which a new characteristic buoyancy frequency Nc can be defined.
Interest in stratified shear instabilities at low Prandtl number and/or low Péclet number

in stars dates back to Zahn (1974). In this regime, thermal dissipation greatly mitigates and
modifies the effect of stratification in comparison to flows with Pr � O(1). In particular,
as demonstrated by Lignières (1999) (see also Spiegel 1962; Thual 1992), a dominant
balance emerges in the temperature equation whereby

w
(

dTb

dz
+ g

cp

)
� κ∇2T, (1.11)

(at least to leading order in Pe−1), showing that temperature fluctuations and vertical
velocity fluctuations are slaved to one another (see more on this in § 2). Mass conservation,
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combined with appropriate boundary conditions, then generally implies that the horizontal
average of T should be zero. Physically, this simply states that due to the very rapid
diffusion of the temperature fluctuations (and hence density), perturbations cannot modify
the background. Density layering is therefore prohibited, as stated above, so the local
buoyancy frequency remains close to the background value Nb(z) everywhere.

Another important consequence of this highly diffusive limit (Lignières 1999) is that the
Péclet and Froude (or Richardson) numbers are no longer independent control parameters
for the system dynamics, but always appear together as Pe/Fr2 or RiPe. Zahn (1974) argued
that, as a result, the threshold for vertical shear instability should be RiPe � Re/Rec where
Rec is the critical Reynolds number for instability in unstratified, unbounded shear flows
(which he estimated would be O(1000)). Zahn’s criterion for instability is now commonly
written as RiPr � KZ , where KZ ∼ O(10−3). This was recently independently confirmed
using direct numerical simulations (DNSs) by Prat et al. (2016) (see also Prat & Lignières
2013, 2014) and Garaud, Gagnier & Verhoeven (2017), who found that KZ � 0.007. With
the aforementioned estimates for Pr, we see that shear-induced turbulence in low Pe
vertical shear flows is therefore likely for Ri up to ∼ 102 or higher. On the other hand,
for astrophysical flows with RiPr � KZ , or for horizontally sheared flows (see below), one
may naturally ask whether any pathway to turbulence exists, since the density layering that
is central to the LAST regime is not possible here. This paper aims to answer this question
for the case of horizontally sheared flows.

Before proceeding, however, it is useful to briefly review the most commonly used
model of shear-induced mixing in stars (see Lignières (2018) for a more comprehensive
review of the topic). Zahn (1992) considered successively both vertically sheared flows
and horizontally sheared flows. For a vertically sheared flow with characteristic shearing
rate Sc, he argued based on work by Townsend (1958) and Dudis (1974) that the largest
unstable vertical scale in the flow would satisfy RiPel ∼ O(1), where here Ri = N2

c /S2
c and

where Pel ≡ Scl2/κ is an eddy-scale Péclet number. This defines the characteristic Zahn
scale lZ as

Ri
Scl2

Z

κ
∼ O(1) ⇒ lZ ∼

√
κ

RiSc
∼

√
κSc

N2
c

. (1.12)

Using dimensional analysis, Zahn (1992) then proposed a simple expression for a turbulent
diffusion coefficient, namely

Dturb ∼ Scl2
Z ∼ κ

Ri
. (1.13)

The relevance of the Zahn scale to the dynamics of low Péclet number stratified turbulence
in vertically sheared flows was confirmed by Garaud et al. (2017) using DNSs. They also
verified that (1.13) applies for flows that have both low Péclet number and sufficiently high
Reynolds number, as long as lZ is much smaller than the domain scale, and RiPr � KZ
(see also Prat & Lignières 2013, 2014; Prat et al. 2016).

In the horizontally sheared case, Zahn (1992) postulated (following an argument
attributed to Schatzman & Baglin 1991), that while the turbulence would be mostly
two-dimensional on the large scales owing to the strong stratification, it could become
three-dimensional below a scale Lc where thermal dissipation becomes important. This
scale is by definition the Zahn scale, and is therefore given by (1.12) where here Sc = Uc/Lc
(and Uc is the characteristic velocity of eddies on scale Lc). Since Pr � 1, this scale is also
unaffected by viscosity, so one would expect a turbulent cascade with well-defined kinetic
energy transfer rate of order U3

c /Lc. If, in addition, dissipative irreversible conversions
into the potential energy reservoir are negligible, then U3

c /Lc = ε where ε is the viscous
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energy dissipation rate. Solving for Lc and Uc yields (see Lignières 2018, for an alternative
derivation of these scalings):

Lc =
(

κε1/3

N2
c

)3/8

and U3
c = Lcε, (1.14a,b)

from which a turbulent diffusion coefficient can then be constructed as

Dturb ∼ UcLc ∼
√

κε

N2
c

. (1.15)

The Zahn (1992) model for turbulent mixing by horizontal shear instabilities at low Péclet
number and/or low Prandtl number has, to our knowledge, never been tested. In addition
to verifying (1.14a,b) and (1.15), we are also interested in testing the assumption that
all energy dissipation is exclusively viscous. Although this assumption is superficially
plausible, there is growing evidence (Maffioli, Brethouwer & Lindborg 2016; Garanaik
& Venayagamoorthy 2019) for flows with Pr � O(1) that non-trivial irreversible mixing
converting kinetic energy into potential energy continues to occur even in the limit Fr → 0
of extremely strong stratification.

In what follows we therefore study the simplest possible model of a stratified horizontal
shear flow, and focus in this paper on the limit where thermal diffusion is important, or
equivalently, the low Péclet number limit. This limit is interesting for three reasons. First,
as discussed by Garaud & Kulenthirarajah (2016), the thermal diffusivity in the outer
layers of the most massive stars (10 M� and above) is so large (with κ ∼ 1011 m2 s−1 or
larger) that the Péclet number based on typical stellar length scales and expected flow
velocities is smaller than one. Second, even though the global-scale Péclet number is
large in lower-mass stars or in the deep interiors of high-mass stars (where the thermal
diffusivity is much smaller), there must necessarily exist a length scale Lc below which
the flow behaves diffusively (Zahn 1992), and for which the limit is relevant. Hence,
understanding the behaviour of low Péclet number flows may provide a way of creating a
model for mixing at small scales in stars. Finally, and from a practical perspective, studying
high Pe flows with Pr � 1 is numerically very challenging since it requires very large
values of Re. As such, understanding the low Pe limit should be viewed as a first step
towards the more ambitious goal of understanding low Pr stratified mixing.

Section 2 presents the model set-up, and § 3 summarises the results of a linear stability
analysis of the problem. Section 4 describes the results of a few characteristic simulations
and identifies four separate regimes, each with its own characteristic properties. These
are then systematically reviewed in § 5, where we study the dominant balances for each
regime and derive pertinent scaling laws that are then compared with the numerical data.
We discuss these results and draw our conclusions in § 6.

2. Mathematical formulation

2.1. Mathematical model
We consider an incompressible, body-forced, stably stratified flow with streamwise
velocity field aligned with the x-axis. In accordance with the Spiegel–Veronis–Boussinesq
approximation (Spiegel & Veronis 1960), we assume that the basic state comprises
a linearised temperature distribution Tb(z) given by Tb(z) = T0 + z(dTb/dz), where T0
is a reference temperature, along with a body-forced laminar velocity field uL( y).
The total temperature field, T , includes perturbations T ′(x, y, z, t) away from the basic
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(a) (b)(a)

z

Tb(z)

uL(y)

yx

z

yx

FIGURE 1. Schematics of the basic state set-up showing (a) the linearised background
temperature distribution Tb(z) and (b) the laminar body-forced velocity profile uL( y).

state such that T = Tb(z) + T ′(x, y, z, t). As discussed in § 1.2, the density fluctuations ρ ′

and temperature fluctuations T ′ are related according to the linearised equation of state

ρ ′

ρ0
= −αT ′, (2.1)

where ρ0 is a reference density and α = −ρ−1
0 (∂ρ/∂T) is the coefficient of thermal

expansion. The three-dimensional velocity field is given by u(x, y, z, t) = uex + vey

+ wez. For numerical efficiency, we impose triply periodic boundary conditions on the
body force F and the variables T ′ and u such that (x, y, z) ∈ [0, Lx) × [0, Ly) × [0, Lz).
A suitable candidate for the applied force is a monochromatic sinusoidal forcing driving a
horizontal Kolmogorov flow

F ∝ sin
(

2πy

Ly

)
ex . (2.2)

This choice of forcing is computationally straightforward to implement and was selected
following the work of Lucas et al. (2017) who studied horizontally sheared stratified flows
at Pr = 1. The monochromatic Kolmogorov forcing was also used by Balmforth & Young
(2002) to study vertically sheared stratified flows at high Pr, and by Garaud, Gallet &
Bischoff (2015a) and Garaud & Kulenthirarajah (2016) for vertically sheared stratified
flows at low Pr (and in the low Pe limit). It has the advantage of being linearly unstable
(as shown below), in contrast with other set-ups such as the shearing box that only have
finite amplitude instabilities. Figure 1 illustrates the basic laminar state.

The governing Spiegel–Veronis–Boussinesq equations (Spiegel & Veronis 1960) for this
model set-up are

∂u
∂t

+ u · ∇u + 1
ρ0

∇p = ν∇2u + αgT ′ez + χ sin
(

2πy

Ly

)
ex , (2.3)

∂T ′

∂t
+ u · ∇T ′ + w

(
dTb

dz
+ g

cp

)
= κ∇2T ′, (2.4)

∇ · u = 0, (2.5)
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where ν is the kinematic viscosity, κ is the thermal diffusivity, χ is the forcing amplitude,
p is the pressure, cp is the specific heat at constant pressure and gravity g acts in the
negative z-direction. In this study, we specify that Ly = Lz while Lx may vary continuously
such that the aspect ratio of the domain is given by λ = Lx/Ly . The case λ > 1 corresponds
to domains which are longer in the streamwise direction.

2.2. Non-dimensionalisation and model parameters
In equilibrium, we anticipate a balance between the body force and fluid inertia such that
u · ∇u ∼ χ sin(2πy/Ly)ex in the streamwise direction. For a characteristic length scale
Ly/2π, this gives a characteristic velocity scale

√
χLy/2π and a characteristic time scale√

Ly/2πχ . Combined with the vertical temperature gradient scale (dTb/dz + g/cp), we
use the equivalent non-dimensionalisation as in Lucas et al. (2017) to give the following
system of equations, in which all quantities are non-dimensional:

∂u
∂t

+ u · ∇u + ∇p = 1
Re

∇2u + BT ′ez + sin( y)ex , (2.6)

∂T ′

∂t
+ u · ∇T ′ + w = 1

RePr
∇2T ′, (2.7)

∇ · u = 0. (2.8)

We thus have three non-dimensional numbers: the Reynolds number Re; the buoyancy
parameter B; and the Prandtl number Pr, which determine the dynamics of the system:

Re :=
√

χ

ν

(
Ly

2π

)3/2

, B := αg(dTb/dz + g/cp)Ly

2πχ
= N2

b Ly

2πχ
, Pr := ν

κ
, (2.9a–c)

where Nb is the dimensional buoyancy frequency defined in (1.10), which is now constant
by construction. Note that B is related to the Froude number as

B = Fr−2. (2.10)

It is also convenient to introduce the Péclet number Pe, defined as

Pe := RePr =
√

χ

κ

(
Ly

2π

)3/2

. (2.11)

Both sets of parameters, (Re, B, Pr) or (Re, B, Pe), uniquely define the system and will be
used interchangeably throughout this study. In all that follows, the domain is a cuboid such
that (x, y, z) ∈ [0, 2πλ) × [0, 2π) × [0, 2π), and variables p, T ′ and u have triply periodic
boundary conditions. This system, defined by (2.6)–(2.8), will henceforth be referred to as
the standard system of equations.

2.3. Low Péclet number approximation
As discussed in § 1.2, when the thermal diffusion time scale is much shorter than the
advective time scale, a quasi-static regime is established where temperature fluctuations
are slaved to the vertical velocity field. Motivated by the astrophysical applications
described in § 1.2, we consider the standard set of (2.6)–(2.8) in the asymptotic limit of
low Péclet number (LPN). This limit was studied by Spiegel (1962) and Thual (1992) in
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the context of thermal convection, and more recently by Lignières (1999) in the context of
stably stratified flows. Lignières proposed that the standard equations can be approximated
by a reduced set of equations called the ‘low Péclet number’ equations (LPN equations
hereafter), in which the density fluctuations are slaved to the vertical velocity field:

∂u
∂t

+ u · ∇u + ∇p = 1
Re

∇2u + BT ′ez + sin( y)ex , (2.12)

w − 1
Pe

∇2T ′ = 0, (2.13)

∇ · u = 0. (2.14)

These can be derived by assuming a regular asymptotic expansion of T ′ in powers of
Pe, i.e. T ′ = T ′

0 + T ′
1Pe + O(Pe2), and by assuming that the velocity field is of order

unity. At lowest order (Pe−1), we get ∇2T ′
0 = 0 implying that T ′

0 = 0 is required to satisfy
the boundary conditions, while at the next order (Pe0), the equations yield w = ∇2T ′

1 ≈
Pe−1∇2T ′ as required.

Noting that (2.13) can be re-written formally as T ′ = Pe∇−2w, we derive the reduced set
of LPN equations

∂u
∂t

+ u · ∇u + ∇p = 1
Re

∇2u + BPe∇−2wez + sin( y)ex , (2.15)

∇ · u = 0. (2.16)

These equations explicitly demonstrate that under the LPN approximation (and in contrast
to the standard equations), there are only two non-dimensional parameters governing
the flow dynamics, notably the Reynolds number Re and the product of the buoyancy
parameter and the Péclet number, BPe = PeFr−2. This combined parameter, which we
consider to be a measure of the stratification, can take any value (even for small Péclet
numbers) because B can be arbitrarily large, or equivalently Fr can be arbitrarily small, as
the stratification becomes strong.

There are advantages of studying the LPN equations rather than the standard equations.
For example, this reduced set of equations allows for the derivation of mathematical results
such as an energy stability threshold that explicitly depends on BPe (see Garaud et al.
2015a). Throughout this study, we will discuss both systems of equations, verifying the
validity of the LPN equations where possible.

3. Linear stability analysis

3.1. Standard equations
We begin by considering the stability of a laminar flow to infinitesimal perturbations, with
initial focus on the standard set of (2.6)–(2.8). The background flow uL( y), which satisfies
Re−1∇2uL + sin( y)ex = 0, is given by

uL( y) = Re sin( y)ex . (3.1)

Note that if one wishes to consider a basic state with generic amplitude aRe instead of
amplitude Re, it is straightforward to apply a rescaling using the method described in
appendix A. For small perturbations u′(x, y, z, t) away from this laminar flow, i.e. letting
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u = uL( y) + u′(x, y, z, t), the linearised perturbation equations are

∂u′

∂t
+ Re cos( y)v′ex + Re sin( y)

∂u′

∂x
+ ∇p = 1

Re
∇2u′ + BT ′ez, (3.2)

∂T ′

∂t
+ Re sin( y)

∂T ′

∂x
+ w′ = 1

RePr
∇2T ′, (3.3)

∇ · u′ = 0. (3.4)

In this set of partial differential equations, the coefficients are periodic in y but
independent of x , z and t. Consequently, and in the conventional fashion, we consider
normal mode disturbances of the form

q(x, y, z, t) = q̂( y) exp[ikx x + ikzz + σ t], (3.5)

where q ∈ (u′, v′, w′, T ′, p) and kx and kz are the perturbation wavenumbers in the x
and z-directions respectively. The geometry of the model set-up requires that kx ∈ R and
kz ∈ Z. We seek periodic solutions for q̂( y) given by

q̂( y) =
L∑

l=−L

qleily. (3.6)

Substituting this ansatz into (3.2)–(3.4) and using the orthogonality property of complex
exponentials, we obtain a 5 × (2L + 1) = (10L + 5) algebraic system of equations for the
ul, vl, wl, Tl and pl for l ∈ (−L, L):

1
2

Rekx(ul+1 − ul−1) − l2 + k2
x + k2

z

Re
ul − 1

2
Re(vl−1 + vl+1) − ikx pl = σul, (3.7)

1
2

Rekx(vl+1 − vl−1) − l2 + k2
x + k2

z

Re
vl − ilpl = σvl, (3.8)

1
2

Rekx(wl+1 − wl−1) − l2 + k2
x + k2

z

Re
wl + BTl − ikzpl = σwl, (3.9)

1
2

Rekx(Tl+1 − Tl−1) − wl −
l2 + k2

x + k2
z

RePr
Tl = σTl, (3.10)

kx ul + lvl + kzwl = 0. (3.11)

This system can be re-formulated as a generalised eigenvalue problem for the complex
growth rates σ ,

A(kx , kz, Re, B, Pr)X = σBX , (3.12)

where X = (u−L, . . . , uL, v−L, . . . , vL, w−L, . . . , wL, T−L, . . . , TL, p−L, . . . , pL), A and B
are (10L + 5) × (10L + 5) square matrices and Bi,j = {δij, i, j ≤ (8L + 4); 0, otherwise}.
Equation (3.12) has (10L + 5) eigenvalues σ . For perturbation wavenumbers kx and kz and
system parameters Re, B and Pr, the eigenvalue with the largest real part determines the
growth rate of the linear instability. The eigenvalue problem can be solved numerically,
with L chosen such that convergence is achieved.
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FIGURE 2. (a) Neutral stability curves for a range of kz wavenumbers as a function of Reynolds
number and kx wavenumber, with instability occurring to the right and below the curves.
Variation with Reynolds number for a collection of kz wavenumbers of: (b) the largest growth rate
σmax maximised across all horizontal wavenumbers kx ; (c) the associated horizontal wavenumber
kx,max . The curves plotted include kz = 0 (black) and kz = 1, 2, 3, 4, 5, 6 (coloured) and the
standard equations were used with B = 100 and Pr = 1 fixed (so Pe = Re).

3.1.1. Comparison with previous results at Pr = 1
We first consider the case of Pr = 1 for ease of comparison with previous work.

Deloncle, Chomaz & Billant (2007), Arobone & Sarkar (2012) and Park, Prat & Mathis
(2020) each considered the linear stability of horizontal shear layers with somewhat
different base flows, and Lucas et al. (2017) considered the linear stability of the specific
horizontally sheared Kolmogorov flow considered here, exclusively for Pr = 1. Letting
B = 100, we consider the linear stability of the basic state flow uL (see (3.1)) across a
range of Reynolds numbers for both two-dimensional (2-D) and 3-D perturbation modes.

Figure 2(a) shows the neutral stability curves (σ = 0) for varying vertical wavenumbers
kz ∈ (0, . . . , 6) in the (Re, kx) space. Our results are in agreement with those of Lucas
et al. (2017). Stability (σ < 0) is found to the left and above the curves whilst instability
(σ > 0) occurs to the right and below. The black curve illustrates the 2-D (kz = 0) mode.
This neutral stability curve intercepts the x-axis when Re = 21/4 � 1.19, implying that the
system is linearly stable when Re < 21/4 (in agreement with Beaumont 1981; Balmforth &
Young 2002, once the correct rescaling is applied (see appendix B for details)). For large
Re, it asymptotes to kx = 1 but, in agreement with Lucas et al. (2017), always lies below
this line, leading to the conclusion that domains such that λ = Lx/Ly ≤ 1 are linearly
stable to the 2-D mode.

The coloured curves show the neutral stability curves for the first six 3-D modes
(kz ∈ (1, . . . , 6)). The onset of instability in the 3-D modes is found to occur for higher
Reynolds numbers than the 2-D mode, with the critical Reynolds number for instability of
these 3-D modes increasing monotonically with increasing kz. For a range of Re ∼ O(100)

(corresponding to Pe ∼ O(100)), the 3-D curves actually cross the line kx = 1 implying
that these modes are unstable for domains where λ = 1, i.e. cubic domains.

Figures 2(b) and 2(c) further analyse the information in figure 2(a) by computing, for
each Reynolds number and kz, the largest (positive) growth rate, σmax , across all values
of kx and the value of kx for which that maximum is achieved, kx,max . We see that, as
well as being the mode that becomes unstable first, the 2-D mode is always the fastest
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FIGURE 3. A comparison of linear stability analysis results between the standard equations (top
row) and the LPN equations (bottom row). Neutral stability curves for a range of kz wavenumbers
(kz = 0 (black) and kz = 1, 2, 3, 4, 5, 6 (coloured)) are plotted as a function of Reynolds
number and kx . Instability occurs to the right and below the curves. Parameter values used are
(a) B = 100, Pr = 0.1, (b) B = 100, Pr = 0.01, (c) B = 100, Pr = 0.001, (d) BPr = 10,
(e) BPr = 1, ( f ) BPr = 0.1. Grey rectangles indicate regions where Pe ≤ 0.1.

growing one. In addition, the ratio of the growth rate of the 2-D mode to that of the 3-D
modes increases with Re. We therefore predict that the 2-D mode would strongly influence
the dynamics when it is unstable (i.e. for domain sizes such that λ > 1). Finally, we note
that the corresponding streamwise wavenumbers of the fastest growing 3-D modes satisfy
kx,max → 0 in the limit Re → ∞, while those of the fastest growing 2-D mode remain
constant.

3.1.2. Stability at low Pr
Astrophysical applications motivate an understanding of the effects of the stratification

parameter B and Prandtl number Pr on the linear stability of the basic state. Consequently,
in figure 3(a–c) we plot the neutral stability curves in exactly the same fashion as
in figure 2(a), for three different Prandtl numbers: Pr = 0.1 (first column), Pr = 0.01
(second column) and Pr = 0.001 (third column), keeping B = 100 constant. Whilst the
neutral stability curves for the 2-D mode are identical, clear trends exist for the 3-D
modes. A reduction in the value of Pr shifts the critical Reynolds numbers for the onset
of instability of the 3-D modes towards higher values, thereby making these modes less
unstable. This result is consistent with Arobone & Sarkar (2012) and Park et al. (2020),
who investigated the stability of a diffusive, stratified, horizontally sheared hyperbolic
flow. We also note that the same trend is found by letting B → 0 and keeping Pr constant
(not plotted). Thus, B → 0 (at fixed Pr) and Pr → 0 (at fixed B) have the same effect:
the 3-D modes of instability are suppressed while the 2-D mode remains unstable. The
explanation for this emerges from consideration of (2.7). As the Prandtl number tends to
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zero (keeping the Reynolds number finite), the Péclet number becomes small and so the
buoyancy diffusion becomes important. In this case, a parcel of fluid that is advected into
surrounding fluid of a different density adjusts very rapidly to its surroundings, thereby
reducing the buoyancy force and so approximating an unstratified system.

However, it is important to note that another distinguished limit exists in which B → ∞
and Pr → 0, while the product BPr remains finite. This limit is relevant to stellar interiors,
and behaves quite differently from the case where B is fixed while Pr → 0, as we now
demonstrate.

3.2. Low Péclet number equations
We now examine the linear stability of the LPN equations, given by (2.15) and (2.16). We
follow the same steps as in the previous section, however, we find ourselves working this
time with a reduced set of four equations rather than five. We obtain a 4 × (2L + 1) =
(8L + 4) algebraic system of equations for the ul, vl, wl and pl for l ∈ (−L, L):

1
2

Rekx(ul+1 − ul−1) − l2 + k2
x + k2

z

Re
ul − 1

2
Re(vl−1 + vl+1) − ikx pl = σul, (3.13)

1
2

Rekx(vl+1 − vl−1) − l2 + k2
x + k2

z

Re
vl − ilpl = σvl, (3.14)

1
2

Rekx(wl+1 − wl−1) − l2 + k2
x + k2

z

Re
wl − BPe

k2
x + k2

z

wl − ikzpl = σwl, (3.15)

kx ul + lvl + kzwl = 0. (3.16)

As before, this can be re-formulated as a generalised eigenvalue problem for the complex
growth rates σ ,

A(kx , kz, Re, BPe)X = σBX , (3.17)

where X = (u−L, . . . , uL, v−L, . . . , vL, w−L, . . . , wL, p−L, . . . , pL), A and B are (8L + 4) ×
(8L + 4) square matrices and Bi,j = {δij, i, j ≤ (6L + 3); 0, otherwise}. We follow the
same procedure as before, solving the eigenvalue problem numerically.

In order to test the validity of the LPN equations, we first compare the results of the
linear stability analysis in the LPN limit to that obtained using the standard equations.
Figure 3 illustrates this comparison. The top row (as already discussed) shows the neutral
stability curves from the standard equations and the bottom row shows the equivalent
results from the LPN equations. The value of BPr = BPe/Re in the bottom row decreases
from left to right by two orders of magnitude, in line with reductions in the value of
BPe at fixed Re in the standard equations in the top row. As demonstrated in § 2.3, the
LPN equations are asymptotically correct in the limit where Pe → 0. Figure 3 shows that
they remain valid up to Pe � 0.1 (i.e. within the regions shown in grey). Outside of these
regions, increasingly large differences emerge, especially as Pe increases above one. In
particular, the neutral stability curves for the 3-D modes never cross the line kx = 1 in the
LPN equations, suggesting that horizontal shear instabilities do not arise for cubic domains
when the LPN approximation is used.

The LPN system of equations depend on the combined parameter BPr = BPe/Re. In
the limit of strong stratification (B → ∞) and strong thermal diffusion (Pr → 0), this
parameter remains finite and is not necessarily small. As can be seen in figure 3, the 3-D
modes remain unstable in this limit, in agreement with the results from the standard system
of equations.
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FIGURE 4. (a) Neutral stability curves for a range of kz wavenumbers as a function of Re and kx ,
with instability occurring to the right and below the curves. This time we used the LPN equations,
with BPr = 1 fixed. Variation with Reynolds number for a collection of kz wavenumbers of: (b)
the largest growth rate σmax maximised across all horizontal wavenumbers kx ; (c) the associated
horizontal wavenumber kx,max . The curves plotted include kz = 0 (black) and kz = 1, 2, 3, 4, 5, 6
(coloured).

We now focus on the case when BPr = 1. By way of comparison with the standard
equations at Pr = 1, figure 4(b,c) show, for each Reynolds number and kz wavenumber,
the largest (positive) growth rate, σmax , across all values of kx and the value of kx for which
that maximum is achieved, kx,max . As before, we observe that the 2-D mode is both the first
mode to become unstable, and is always the fastest growing mode. There are, however, two
significant differences between high and low Prandtl number dynamics. Firstly, in the LPN
limit, figure 4(b) shows that the growth rates of the fastest growing 3-D modes increase
in line with those of the fastest growing 2-D mode. Secondly, the corresponding values
of kx,max remain constant as Re → ∞. Consequently, the 3-D modes remain important
relative to the 2-D mode and we therefore predict that, in contrast to the case when Pr = 1,
both the 2-D and 3-D modes would strongly influence the dynamics in this limit. These
results, combined with the fact that the 3-D modes remain unstable in the limit of strong
stratification and strong thermal diffusion, have important consequences, as we shall see
in § 4.

4. Direct numerical simulations

We now present results from a series of DNSs of horizontal shear flows at low
Péclet number following the model set-up and equations described in § 2. As we shall
demonstrate, the system presents a rich ecosystem of instabilities that feed on each other,
leading to a number of distinct dynamical regimes that will be further characterised in § 5.

4.1. Numerical algorithm
The DNSs are performed using the PADDI code first introduced by Traxler et al. (2011)
and Stellmach et al. (2011) to study double-diffusive fingering. The code has since
then been modified to study many different kinds of instabilities, including body-forced
vertical shear instabilities, using both the standard equations and the LPN approximation
(Garaud et al. 2015a; Garaud & Kulenthirarajah 2016; Gagnier & Garaud 2018;
Kulenthirarajah & Garaud 2018). PADDI is a triply periodic pseudo-spectral algorithm
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that uses pencil-based fast Fourier transforms, and third-order backward-differentiation
Adams–Bashforth adaptive time stepping (Peyret 2002) in which diffusive terms are
treated implicitly while all other terms are treated explicitly. The velocity field is made
divergence-free at every time step by solving the relevant Poisson equation for the pressure.
Two versions of the code exist, one that solves the standard equations (2.6)–(2.8), and one
that solves the LPN equations (2.15) and (2.16).

Based on the linear stability analysis performed in § 3, we have selected a domain size
such that Ly = Lz = 2π and Lx = 4π. This allows for the natural development of a single
2-D mode of instability (for which kx = 0.5), without being computationally prohibitive
at high Reynolds number (see below). A comparison of simulation outcomes for different
domain lengths is presented in Cope (2019, section 4.2) but only for Re = 50, for which
only two dynamical regimes exist. A systematic exploration of the effect of domain aspect
ratio at high Reynolds number will be the subject of future work.

Tables 1 and 2 present all the runs that have been performed with this model set-up,
using (2.6)–(2.8) and (2.15) and (2.16), respectively. To save on computational time, only
one of the simulations at each Reynolds number is initiated from the original initial
conditions (i.e. u = sin( y)ex plus some small amplitude white noise). All the others are
restarted from the end point of a simulation at nearby values of Pe or B. In all cases,
we have run the simulations until they reach a statistically stationary state, except where
explicitly mentioned. Note that for very large values of B or very small values of Pr,
we have found it necessary to decrease the value of the maximum allowable time step
substantially. This is because the system of equations becomes increasingly stiff and is
otherwise susceptible to the development of spurious elevator modes (i.e. modes that are
invariant in the vertical direction). To save on computational time, we only ran simulations
using the standard equations in that limit.

The number of Fourier modes used in each direction (after dealiasing) depends on the
Reynolds number Re selected. In terms of equivalent grid points, the resolution used
is 192 × 96 × 96 (Re = 50 runs), 384 × 192 × 192 (Re = 100 runs), 576 × 288 × 288
(Re = 300 runs) and 768 × 384 × 384 (Re = 600 runs). The same resolution is used
regardless of the values of B and Pe. We have verified that the product of the maximum
wavenumber and the Kolmogorov scale is always greater than one (it is ∼1.1 for the
Re = 600 runs, and increases as Re decreases).

4.2. Typical simulations: early phase
We begin by presenting the early phases of development of the horizontal shear instability,
in two typical simulations at moderately large Reynolds number (Re = 300), high
stratification (B = 30 000 and 300 000, respectively) and relatively low Péclet number
(Pe = 0.1). Both simulations were initialised with u = sin( y)ex plus small amplitude
white noise. Figures 5(a) and 5(d) show the root mean square (r.m.s.) values of the
streamwise (urms), spanwise (vrms) and vertical (wrms) velocities for each simulation,
computed at each instant in time as

qrms(t) = 〈q2〉1/2, (4.1)

where the angular brackets denote a volume average such that

〈q〉 = 1
Lx LyLz

∫
q(x, y, z, t) dx dy dz. (4.2)
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Re Pe B Reλ lz ± δlz wrms ± δwrms T ′
rms ± δT ′

rms η ± δη

600 0.1 6000 280 0.25 ± 0.02 0.24 ± 0.03 (3.5 ± 0.3) × 10−4 0.36 ± 0.03
600 0.1 12 000 359 0.19 ± 0.02 0.21 ± 0.03 (2.3 ± 0.3) × 10−4 0.31 ± 0.02
600 0.1 100 000 465 0.11 ± 0.005 0.038 ± 0.003 (4.0 ± 0.4) × 10−5 0.18 ± 0.02
300 0.1 1 173 1.88 ± 0.29 0.91 ± 0.10 (3.1 ± 0.8) × 10−2 0.029 ± 0.007
300 0.1 100 171 0.99 ± 0.08 0.56 ± 0.03 (6.9 ± 0.9) × 10−3 0.43 ± 0.05
300 0.1 1000 173 0.45 ± 0.02 0.34 ± 0.03 (1.4 ± 0.1) × 10−3 0.42 ± 0.03
300 0.1 3000 227 0.32 ± 0.05 0.25 ± 0.03 (6.5 ± 0.6) × 10−4 0.35 ± 0.02
300 0.1 6000 300 0.24 ± 0.01 0.17 ± 0.03 (4.1 ± 0.6) × 10−4 0.30 ± 0.03
300 0.1 10 000 319 0.19 ± 0.02 0.11 ± 0.04 (2.7 ± 0.7) × 10−4 0.23 ± 0.04
300 0.1 30 000 281 0.15 ± 0.01 0.05 ± 0.004 (9.7 ± 0.8) × 10−5 0.18 ± 0.02
300 0.1 100 000 265 0.13 ± 0.01 0.03 ± 0.003 (4.2 ± 0.4) × 10−5 0.16 ± 0.02
300 0.1 300 000 219 0.11 ± 0.000 0.02 ± 0.002 (2.1 ± 0.2) × 10−5 0.15 ± 0.01
100 0.01 1 102 1.94 ± 0.27 0.91 ± 0.11 (5.3 ± 2.2) × 10−3 0.004 ± 0.002
100 0.01 10 98 1.94 ± 0.34 0.89 ± 0.09 (3.3 ± 0.9) × 10−3 0.031 ± 0.007
100 0.01 100 91 1.62 ± 0.14 0.83 ± 0.09 (2.0 ± 0.3) × 10−3 0.18 ± 0.04
100 0.1 100 93 0.96 ± 0.07 0.49 ± 0.06 (7.5 ± 1.0) × 10−3 0.45 ± 0.04
100 0.1 1000 201 0.39 ± 0.03 0.17 ± 0.03 (1.4 ± 0.2) × 10−3 0.26 ± 0.04
100 0.1 3000 161 0.28 ± 0.02 0.09 ± 0.01 (5.4 ± 0.8) × 10−4 0.20 ± 0.03
100 0.1 10 000 172 0.22 ± 0.02 0.06 ± 0.01 (2.2 ± 0.5) × 10−4 0.15 ± 0.03
100 0.1 100 000 112 0.16 ± 0.004 0.02 ± 0.001 (4.4 ± 0.3) × 10−5 0.105 ± 0.006
100 1 100 152 0.42 ± 0.03 0.20 ± 0.035 (1.6 ± 0.3) × 10−2 0.29 ± 0.04
100 1 300 165 0.28 ± 0.02 0.08 ± 0.011 (5.2 ± 0.8) × 10−3 0.19 ± 0.03
100 1 500 151 0.26 ± 0.01 0.06 ± 0.006 (3.4 ± 0.4) × 10−3 0.17 ± 0.02
100 1 1000 140 0.23 ± 0.000 0.05 ± 0.005 (2.2 ± 0.3) × 10−3 0.17 ± 0.02
100 1 10 000 117 0.18 ± 0.02 0.015 ± 0.001 (4.5 ± 0.5) × 10−4 0.11 ± 0.01
100 1 30 000 245 0.19 ± 0.02 0.007 ± 0.002 (2.7 ± 0.7) × 10−4 0.09 ± 0.03
100 1 50 000 362 0.20 ± 0.03 0.005 ± 0.002 (1.9 ± 0.6) × 10−4 0.08 ± 0.04
100 1 100 000 437 0.21 ± 0.02 0.003 ± 0.001 (1.2 ± 0.4) × 10−4 0.05 ± 0.02
100 1 1 000 000 554 0.30 ± 0.04 0.0002 ± 0.00004 (1.2 ± 0.2) × 10−5 0.005 ± 0.002
50 0.1 0.3 68 2.05 ± 0.30 0.85 ± 0.11 (4.5 ± 1.8) × 10−2 0.013 ± 0.004
50 0.1 1 68 2.02 ± 0.37 0.82 ± 0.09 (3.6 ± 0.9) × 10−2 0.04 ± 0.008
50 0.1 10 63 1.59 ± 0.17 0.71 ± 0.09 (2.0 ± 0.4) × 10−2 0.19 ± 0.03
50 0.1 30 64 1.28 ± 0.13 0.55 ± 0.06 (1.3 ± 0.2) × 10−2 0.32 ± 0.04
50 0.1 100 67 0.89 ± 0.07 0.39 ± 0.05 (7.2 ± 1.2) × 10−3 0.33 ± 0.04
50 0.1 300 102 0.57 ± 0.05 0.24 ± 0.04 (3.3 ± 0.7) × 10−3 0.21 ± 0.04
50 0.1 1000 92 0.38 ± 0.03 0.11 ± 0.02 (1.2 ± 0.2) × 10−3 0.15 ± 0.02
50 0.1 3000 95 0.29 ± 0.03 0.08 ± 0.02 (5.2 ± 1.2) × 10−4 0.13 ± 0.03
50 0.1 10 000 81 0.28 ± 0.03 0.04 ± 0.006 (2.8 ± 0.5) × 10−4 0.17 ± 0.04
50 0.1 30 000 122 0.28 ± 0.03 0.016 ± 0.002 (1.1 ± 0.3) × 10−4 0.09 ± 0.03
50 0.1 100 000 344 0.26 ± 0.000 0.007 ± 0.001 (4.7 ± 0.7) × 10−5 0.05 ± 0.01
50 1 3 63 1.39 ± 0.16 0.60 ± 0.06 (1.3 ± 0.2) × 10−1 0.32 ± 0.05
50 1 10 70 1.03 ± 0.1 0.43 ± 0.05 (7.8 ± 1.2) × 10−2 0.34 ± 0.03
50 1 30 97 0.65 ± 0.08 0.27 ± 0.05 (3.7 ± 0.8) × 10−2 0.24 ± 0.04
50 1 100 90 0.38 ± 0.03 0.12 ± 0.02 (1.2 ± 0.2) × 10−2 0.15 ± 0.03
50 1 300 97 0.29 ± 0.04 0.07 ± 0.02 (5.2 ± 1.3) × 10−3 0.13 ± 0.03
50 1 1000 68 0.27 ± 0.03 0.04 ± 0.003 (2.5 ± 0.4) × 10−3 0.14 ± 0.02
50 1 3000 99 0.28 ± 0.03 0.02 ± 0.003 (1.2 ± 0.3) × 10−3 0.10 ± 0.02
50 1 100 000 474 0.62 ± 0.4 0.0008 ± 0.0004 (7.0 ± 2.9) × 10−5 0.006 ± 0.003

TABLE 1. Summary of all the runs obtained using the standard equations, with parameters Re,
Pe and B. Quantities in columns 5–8 are computed in the manner described in § 4.4.
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Re BPe Reλ lz ± δlz wrms ± δwrms η ± δη

600 1 236 1.451 ± 0.184 0.814 ± 0.084 0.16 ± 0.04
600 10 246 0.962 ± 0.074 0.566 ± 0.045 0.38 ± 0.07
600 40 276 0.613 ± 0.028 0.485 ± 0.041 0.37 ± 0.05
600 100 266 0.455 ± 0.029 0.379 ± 0.037 0.40 ± 0.05
600 300 281 0.319 ± 0.012 0.297 ± 0.038 0.38 ± 0.04
600 600 383 0.254 ± 0.016 0.249 ± 0.041 0.35 ± 0.03
300 1 166 1.609 ± 0.191 0.864 ± 0.104 0.17 ± 0.04
300 10 167 0.992 ± 0.093 0.609 ± 0.042 0.38 ± 0.04
300 40 202 0.619 ± 0.028 0.457 ± 0.036 0.41 ± 0.04
300 100 262 0.458 ± 0.020 0.378 ± 0.048 0.40 ± 0.03
300 300 427 0.312 ± 0.015 0.256 ± 0.030 0.36 ± 0.02
300 600 182 0.218 ± 0.000 0.122 ± 0.005 0.40 ± 0.02
100 1 98 1.731 ± 0.376 0.771 ± 0.059 0.18 ± 0.04
100 10 96 0.933 ± 0.064 0.478 ± 0.036 0.43 ± 0.04
100 100 184 0.411 ± 0.029 0.198 ± 0.035 0.29 ± 0.04
100 300 87 0.309 ± 0.008 0.096 ± 0.007 0.26 ± 0.03
100 600 87 0.255 ± 0.011 0.063 ± 0.006 0.21 ± 0.03

TABLE 2. Summary of all the runs obtained using the low Péclet number equations, with
parameters Re and BPe. Quantities in columns 3–5 are computed in the manner described in
§ 4.4.

For both values of B, we clearly see the growth of the streamwise flow due to the
forcing. Spanwise and vertical fluid motions first decay, until the onset of the 2-D mode
of instability (i.e. whereby vrms begins to grow while wrms continues to decay), rapidly
followed by the 3-D mode, for which wrms finally also begins to grow.

Snapshots of the streamwise velocity fields near the saturation of these instabilities are
presented in figures 5(b,c) and 5(e, f ). In both cases, the snapshot at t1 illustrates the early
development of the 2-D and 3-D modes of instability. The 2-D mode causes a meandering
of the background flow, and the 3-D mode causes a vertical modulation of the position
of the meanders. We also see that the 3-D mode has a substantially smaller vertical scale
for larger B. The snapshot at t2 shows how the instability further evolves with time: the
meanders and their vertical shifts both grow in amplitude, leading to the development of
substantial vertical shear of the streamwise flow.

While similar early-time dynamics are observed at all parameter values (assuming the
2-D mode is unstable), what happens beyond that depends on Re, B and Pe. We now
describe in turn the various regimes that can be found.

4.3. Typical simulations: nonlinear saturation
The nonlinear saturation of this body-forced horizontal shear flow depends crucially on the
selected value of the stratification parameter B. In what follows, we investigate the effect
of varying B. Snapshots of the streamwise velocity, vertical velocity and local viscous
dissipation rate, taken during the statistically stationary state, are presented in figure 6.
In all but the last row, Re = 300, and Pe = 0.1. For the last row, Re = 50.

For very large values of B (bottom row in figure 6), the vertical scale of the 3-D mode of
instability is relatively small. Even though substantial shear develops between successive
meanders of the streamwise jets, this shear is too small to overcome the stabilising effect of
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FIGURE 5. (a) Time evolution of the r.m.s. velocities in a simulation with Re = 300, Pe = 0.1
and B = 30 000. The onset of the 2-D modes (kz = 0) and 3-D modes (kz /= 0) of instability are
indicated. (b,c) Snapshots of the streamwise velocity at times t1 and t2 for the same simulation
as panel (a). (d ) As in (a), except with B = 300 000. (e, f ) Snapshots of the streamwise velocity
at times t1 and t2 for the same simulation as in panel (d ). Note the change in the vertical scale as
B increases.

viscosity, and remains stable. The resulting flow takes the form of thin layers, crucially in
the velocity field, each of which presents a meandering jet with its own distinct phase.
These jets are weakly coupled in the vertical direction through viscosity. The vertical
velocity field is small but non-zero, however, and is presumably generated by the weak
horizontal divergence of the flow within each jet.

As B decreases (i.e. moving up in figure 6), the reduced stratification now allows for the
development of secondary vertical shear instabilities between the meanders, albeit only
intermittently, with correspondingly larger vertical velocities. Spatially localised overturns
can be seen in figure 6(g–i). These become more numerous and more frequent as B
continues to decrease. The viscous dissipation is clearly enhanced in the turbulent regions
compared with the laminar regions.

For intermediate values of B (see figure 6d–f ), the flow becomes fully turbulent. The
vertical scale of the eddies remains relatively small, however, consistent with stratification
playing a role in shaping the dynamics of the turbulence. The meandering streamwise jets
are still clearly visible. The dissipation rate snapshot shows that the scale of the turbulent
eddies is small in both horizontal and vertical directions.

Finally, for low values of B, the scale of the eddies is now the domain scale, and the
turbulence is unaffected by stratification. In fact, this system is very similar to the one
obtained in weakly stratified vertically sheared flows (see Garaud & Kulenthirarajah 2016),
except for the horizontally averaged mean flow (which varies with y instead of z).

These observations therefore suggest the existence of at least four distinct LPN
dynamical regimes: unstratified turbulence for very low B; stratified turbulence for
intermediate values of B; intermittent turbulence for higher values of B; and finally,
viscously dominated stratified laminar flow for the highest values of B. We will now
proceed to characterise these different regimes more quantitatively.
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FIGURE 6. Snapshots of the streamwise velocity (a,d,g, j), vertical velocity (b,e, h, k) and
local viscous dissipation rate (c, f,i,l ) during the statistically stationary states of DNSs with
Pe = 0.1 and: (a–c) Re = 300, B = 1; (d–f ) Re = 300, B = 100; (g–i) Re = 300, B = 10 000;
( j–l) Re = 50, B = 100 000. Each of these examples are characteristic of a particular regime,
listed on the left.

4.4. Data extraction
Each of the simulations we have performed was integrated until the system reached a
statistically stationary state. This can take a long time, especially for the very strongly
stratified systems, so data in that limit are scarce except for the lowest values of Re. Once
in that statistically stationary state, we compute the time average, and deviations around
that average, of wrms(t) and T ′

rms(t), where qrms(t) for any quantity q was defined in (4.1).
These are reported as wrms ± δwrms and T ′

rms ± δT ′
rms, respectively, in tables 1 and 2.
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We also compute the temperature flux as

FT(t) = 〈wT ′〉, (4.3)

for DNSs that use the standard equations and

Pe−1FT(t) = 〈w∇−2w〉, (4.4)

for DNSs that use the LPN equations, where the angular bracket was defined in (4.2). We
finally compute the viscous energy dissipation rate as

ε(t) = Re−1〈|∇u|2〉, (4.5)

where ε is the non-dimensional version of ε introduced in § 1.2. Even though the
turbulence is highly anisotropic, we can use ε to compute the Reynolds number based
on the Taylor microscale, which in our non-dimensionalisation is given by

Reλ =
√

15Re
ε

U2
rms, (4.6)

where Urms is the total r.m.s. velocity defined as

Urms =
(

1
3

(
u2

rms + v2
rms + w2

rms

))1/2

. (4.7)

The quantity Reλ, whose interpretation for homogeneous isotropic turbulence is well
documented (Taylor 1935; Pope 2000; Davidson 2015), is reported in tables 1 and 2, and
reaches values between 250 and 500 for the Re = 600 simulations.

We can also use the data to diagnose the dominant energetic balance taking place in
the system. Indeed, dotting the momentum equation (2.6) with u and integrating over the
domain, we obtain

∂

∂t

〈
1
2
|u|2

〉
= B〈wT ′〉 − 1

Re
〈|∇u|2〉 + 〈u sin( y)〉, (4.8)

= BFT − ε + 〈u sin( y)〉. (4.9)

This shows that the rate at which the body force does work on the flow, 〈u sin( y)〉, is
partitioned between energy that is dissipated viscously (through ε), and energy that is
converted into potential energy (at a rate BFT). The fate of the latter can be established by
multiplying the temperature equation by T ′ and integrating over the domain, which reveals
that

∂

∂t

〈
1
2

T ′2
〉
+ BFT =

〈
1
Pe

T ′∇2T ′
〉

= −
〈

1
Pe

|∇T ′|2
〉
, (4.10)

for the full equations (while in the LPN limit, the time derivative simply disappears). This
shows that BFT is ultimately dissipated thermally at a rate Pe−1〈|∇T ′|2〉.

From these considerations, it is common to define a so-called instantaneous mixing
efficiency (see e.g. Maffioli et al. 2016)

η(t) = −BFT(t)
−BFT(t) + ε(t)

= −BFT(t)
〈u sin( y)〉 , (4.11)

at a given point in time, which measures the efficiency with which kinetic energy,
produced by the applied forcing, is converted into potential energy as opposed to being
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FIGURE 7. Autocorrelation function Aw(l, t) as defined in (4.12) computed at six randomly
selected times during the statistically stationary state of a simulation with parameters Re = 300,
B = 10 000 and Pe = 0.1. Note how Aw(l, t) has a well-defined first zero, whose time average
defines the vertical eddy scale lz.

dissipated viscously. We have computed η(t) for all simulations produced, and report its
time average and deviation from that average, while in a statistically stationary state, as
η ± δη in tables 1 and 2.

Finally, another useful diagnostic of the flow is the typical vertical scale of the turbulent
eddies. As discussed in Garaud & Kulenthirarajah (2016) and Garaud et al. (2017), there
are many different ways of extracting such a length scale, either from weighted averages
over the turbulent energy spectrum, or from spatial autocorrelation functions of the
velocity field. Garaud et al. (2017) compared these different methods and concluded that
the spatial autocorrelation function was a more physical and reliable way of extracting the
vertical length scale. In what follows, we therefore compute the function

Aw(l, t) = 1
Lx LyLz

∫
w(x, y, z, t)w(x, y, z + l, t) dx dy dz, (4.12)

at each time step for which the full fields are available, using periodicity of w to deal
with points near the domain boundaries. Sample functions for six randomly selected
times during the statistically stationary state are shown in figure 7 for a simulation
with parameters Re = 300, B = 10 000 and Pe = 0.1 (a simulation from the stratified
intermittent regime, snapshots from which are shown in figure 6g–i). We clearly see that
Aw(l, t) has a well-defined first zero at each time step, which we call lz(t). The vertical eddy
scale thus obtained is then averaged over all available time steps during the statistically
stationary state to obtain the mean vertical eddy scale lz and its standard deviation δlz.

5. Nonlinear saturation: scaling regimes

In our quest for a quantitative description of the four dynamical regimes described in
§ 4.3, we endeavour to derive scaling laws that explain our data, in an analogous fashion
to the approach of Brethouwer et al. (2007) in which the focus was on geophysically
relevant parameters (Pr � O(1)). Consistent with our goal to study systems in which
the Péclet number Pe is small, we have run a range of simulations using the standard
equations (2.6)–(2.8) for three different Péclet numbers (0.01, 0.1 and 1), which we
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compare alongside simulations using the LPN equations (2.15) and (2.16), noting excellent
agreement. Using both sets of equations, we consider four different Reynolds numbers
(50, 100, 300, 600) and investigate a wide range of background stratifications.

5.1. Effects of stratification on mixing and the vertical scale of eddies
The first flow diagnostic that we discuss is the vertical eddy scale lz, computed using the
method described in § 4.4. Figure 8(a) shows lz as a function of BPe, consistent with our
expectations on the potential relevance of this parameter for low Péclet number flows (as
discussed in § 2.3). For all but the largest values of BPe (which corresponds to the viscous
regime discussed in § 4.3), we confirm that BPe is indeed the relevant parameter, and
that lz is independent of Re. As a result, all the data collapse on a single universal curve.
For weak stratification, which we refer to as the unstratified regime, the vertical eddy scale
is invariant with respect to both stratification and Reynolds number. We find that lz � 2,
which is of the order of the size of the periodic domain. For intermediate values of BPe,
corresponding to the stratified turbulent regime described in § 4.3, we find that

lz � 2(BPe)−1/3, (5.1)

with some uncertainty in both the prefactor and the exponent due to the inherent variability
of the flow.

Finally, for very strong stratification in the stratified viscous regime, the vertical eddy
scale appears to become independent of BPe and now depends solely on Reynolds number,
with the empirical relationship given by

lz � 2Re−1/2, (5.2)

again with some uncertainty in the scaling and exponent. This scaling is analogous to the
viscously affected stratified regime considered by Brethouwer et al. (2007) and discussed
in the introduction (since lz in (5.2) is non-dimensional and scaled by a characteristic
horizontal length scale). While only three clear regimes are evident in this plot, data from
the stratified intermittent regime discussed in § 4.3 lie in the region of parameter space
between the lz ∼ (BPe)−1/3 and lz ∼ Re−1/2 regimes, as the DNSs begin to feel the effects
of viscosity, and hence Re.

It is also of interest to observe how the mixing efficiency η, discussed in § 4.4, depends
on the stratification BPe and Reynolds number Re. Figure 8(b) shows η as a function of
BPe for each of our simulations. This time, the four regimes can be clearly identified. For
the unstratified regime, the mixing efficiency depends only on BPe, and is given by

η � 0.4BPe. (5.3)

As the stratification increases, the mixing efficiency increases until it reaches a plateau
at η � 0.4 which, as we argue below, is a defining property of the stratified turbulent
regime. The range of values of BPe for which η is approximately constant is very small for
Re = 50, but clearly increases with Re, and is quite substantial for Re = 600. However, in
all cases, a threshold is reached where η begins to decrease again. To understand why this
is the case, note that the vertical eddy scale decreases rapidly (as discussed above) as the
stratification increases and inevitably reaches a point where the effects of viscosity begin
to play a role. This is manifest in the fact that η begins to depends on Re. The system enters
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FIGURE 8. Variation with BPe of four diagnostics, defined in § 4.4: (a) lz, (b) η, (c) wrms,
(d) T ′

rms/Pe. All DNSs listed in tables 1 and 2 are plotted, with shapes indicating the Reynolds
number and colours indicating the Péclet number. Coloured lines illustrate our proposed scalings
for the (red) unstratified, (yellow) stratified turbulent, (green) stratified intermittent and (blue)
stratified viscous regimes.

the intermittently turbulent regime, where we observe the new empirical scaling

η � 0.08Re1/2(BPe)−1/4, (5.4)

with significant uncertainty in the scalings owing to the high variability of η in this regime.
Finally, for even larger values of BPe, our DNSs suggest a fourth regime for very large
stratification, where we tentatively observe the scaling

η � 0.25Re2(BPe)−1 (5.5)
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which we described earlier (see § 4.3) as characteristic of the stratified viscous regime.
Note that the observed scaling in this regime is the most uncertain, as very little data are
available.

Analogous empirical scalings are evident in figures 8(c) and 8(d) for the respective
variations with BPe of the vertical velocity field wrms and the temperature perturbation
field T ′

rms/Pe. These observations inspire us to attempt to derive scaling laws using ideas
of dominant balance in the governing equations.

5.2. Derivation of scaling regimes
In the following analysis, and consistent with our study of low Péclet number systems, we
always assume a LPN balance in (2.7) such that

w � 1
Pe

∇2T ′. (5.6)

Our approach, therefore, is to consider the dominant balance between terms in the
momentum equation (2.6), specifically the relative importance of stratification, inertia and
viscosity.

5.2.1. Unstratified regime
We begin by considering the unstratified regime, described in § 4.3 and illustrated in

figures 6(a–c). Motivated by the qualitative observation of the domain-filling eddies in
figures 6(a) and 6(b), we make the assumptions that each of the three velocity components
and eddy length scales are approximately isotropic with

urms, vrms, wrms ∼ O(1); lx , ly, lz ∼ O(1). (5.7a,b)

These assumptions for wrms and lz are confirmed in figures 8(a) and 8(c), indicated by the
red lines. By combining the LPN approximation (5.6) with assumptions (5.7a,b), we find
a scaling for the typical temperature perturbations

T ′
rms

Pe
∼ O(1). (5.8)

In terms of the mixing efficiency η, (5.7a,b) implies 〈u sin( y)〉 ∼ O(1). Thus

η ∼ B〈wT ′〉
〈u sin( y)〉 ∼ BwrmsT ′

rms ∼ BPe. (5.9)

The theoretically derived scalings (5.8) and (5.9) are consistent with the empirical scalings
determined using our DNSs, shown using the red lines in figures 8(d) and 8(b) respectively.
The lack of Re-dependence affirms the irrelevance of viscosity in this regime.

Finally, it is of interest to compute the condition of validity for this unstratified regime.
In the vertical momentum equation (2.6), we have assumed that stratification is weak
relative to fluid inertia, such that BT ′ � u · ∇w. Using the scalings derived above, we
find that this is true when

BPe � O(1). (5.10)

Condition (5.10) combined with the condition for linear instability (Re > 21/4) defines the
region of parameter space in which we would expect to observe this regime of unstratified
turbulence.
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5.2.2. Stratified turbulent regime
As the stratification increases, the system transitions into the stratified turbulent

regime, first presented in § 4.3. This regime is defined by a constant mixing efficiency.
Inspection of the snapshots in figures 6(d) and 6(e) reveals that the vertical velocity
field, which is generated by localised shear-driven Kelvin–Helmholtz-type instabilities,
is mostly small-scale. By contrast, the horizontal velocity field contains both large scales
(the modulated meanders) and small scales (associated with the small vertical scales).
Consequently, we assume that

urms, vrms ∼ O(1); lx ∼ ly ∼ lz. (5.11a,b)

With this assumption, the LPN approximation becomes

wrms ∼ Pe−1 T ′
rms

l2
z

. (5.12)

Since the vertical flow is generated by shear instabilities of the horizontal flow, and since
stratification is now important, we anticipate that the dominant balance in the vertical
momentum equation should be u · ∇w ∼ BT ′, implying that

urmswrmsl−1
z ∼ BT ′

rms. (5.13)

We note that this implicitly assumes that the vertical pressure gradient ∂p/∂z is either of
the same order as BT ′

rms or much smaller, which on the surface appears to contradict the
fact that p ought to be O(1) based on the horizontal component of the momentum equation.
However, the contradiction can be resolved by noting that p, similar to u and v, has both a
large-scale and a small-scale component, and that only the large-scale component is O(1)
while it is the small-scale component (of unknown amplitude) that mostly contributes to
the vertical derivative. While a rigorous multi-scale analysis (which is beyond the scope
of this paper) will be required to formalise this argument, we note that since both the
inertial and the buoyancy terms must play a role in the dynamics of the flow, the ∂p/∂z
term cannot replace either u · ∇w or BT ′ in the dominant balance (at best, it can be of the
same order of magnitude). Combining with (5.12) and urms ∼ O(1) leads to the vertical
eddy length scale

lz ∼ (BPe)−1/3, (5.14)
which is confirmed by the yellow line in figure 8(a). Empirically, we find that the prefactor
is close to 2, and confirm that this scaling is independent of the Reynolds number.

As mentioned earlier, η ∼ O(1) is a defining property of the stratified turbulent regime,
with a roughly equal partitioning between viscous dissipation and thermal dissipation. The
yellow line in figure 8(b) suggests that this constant value of the mixing efficiency is

η � 0.4. (5.15)

Since 〈u sin( y)〉 ∼ O(1) from assumption (5.11a,b), then η ∼ B〈wT ′〉 implies that

BwrmsT ′
rms ∼ O(1). (5.16)

Combining (5.16) with the LPN approximation (5.6) and the vertical momentum equation
balance (5.13) leads to the additional scalings

T ′
rms

Pe
∼ (BPe)−5/6; wrms ∼ (BPe)−1/6. (5.17a,b)

There is strong evidence for both of these scalings as illustrated by the yellow lines in
figures 8(d) and 8(c) respectively, and the empirical data are consistent with the associated

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

60
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.600


Stratified horizontal shear flows at low Péclet number 903 A1-27

prefactors being close to one in each case. Once again, we highlight the lack of dependence
on Re in (5.17a,b).

In this regime, we can finally estimate a generic non-dimensional turbulent diffusivity
for vertical transport of a passive scalar as

Dturb ∼ wrmslz ∼ (BPe)−1/2, (5.18)

with a prefactor that is expected to be of order unity. This result can be compared with the
mixing coefficient expected in low Péclet number stratified turbulence caused by vertical
shear, which scales as (RiPe)−1 instead (see (1.13), when cast in non-dimensional form).
We see that Dturb decreases much less rapidly with increasing stratification in horizontally
sheared flows than in vertically sheared flows, at least while the system is in this stratified
turbulent regime.

The assumptions that we made in the vertical momentum equation balance, i.e. that the
viscous terms are negligible (Re−1∇2w � BT ′), along with scalings for lz, urms and T ′

rms,
lead to the condition BPe � Re2. This suggests that the stratified turbulent regime scalings
should apply when

1 � BPe � Re2. (5.19)

Condition (5.19), computed more precisely in § 5.2.4, uniquely defines the region of
parameter space in which we would expect to observe this particular type of stratified
turbulence in flows at low Péclet number.

5.2.3. Stratified viscous regime
As discussed in § 4.3, for very strong stratification we observe the formation of thin

and viscously coupled layers, each containing almost two-dimensional flow. Consequently,
we expect that horizontal and vertical velocity components and length scales will both
be strongly anisotropic. Denoting horizontal length scales as lh, we make the following
assumptions:

lh ∼ O(1); lz � lh; (5.20)

urms, vrms ∼ O(1); wrms � urms, vrms. (5.21)

In what follows, we split the velocity field into a horizontal and vertical component,
u = uh + wez, with a corresponding decomposition of the gradient operator ∇ =
(∇h, ∂/∂z). The momentum equation can be split into its horizontal and vertical
components as

∂uh

∂t
+ uh · ∇huh + w

∂uh

∂z
+ ∇hp = 1

Re

(
∇2

huh + ∂2uh

∂z2

)
+ sin( y)ex , (5.22)

∂w
∂t

+ uh · ∇hw + w
∂w
∂z

+ ∂p
∂z

= 1
Re

(
∇2

hw + ∂2w
∂z2

)
+ BT ′. (5.23)

If we assume a dominant balance between viscosity and the forcing in the horizontal
momentum equation (5.22), then Re−1∂2

z uh ∼ sin( y)ex ∼ O(1). This balance, combined
with uh ∼ O(1), leads to the classical viscous scaling for the vertical length scales
(cf. Brethouwer et al. 2007):

lz ∼ Re−1/2. (5.24)

Substantial evidence for this scaling is visible in figure 8(a), where the series of blue lines
correspond to lz � 2Re−1/2 for each individual Reynolds number. Note that these strongly
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stratified DNSs exhibit large amplitude quasi-time-periodic behaviour, a feature that we
believe to be an intrinsic property of such flows. We consequently attribute the large error
bars associated with some DNSs to this observation.

In the vertical momentum equation, we assume that the dynamics is hydrostatic,
therefore ∂zp ∼ BT ′ implies pl−1

z ∼ BT ′
rms. This approximation, combined with the

requirement from the balance in the horizontal momentum equation that p ∼ O(1), and
with the scaling (5.24) for lz, gives us a scaling for temperature perturbations

T ′
rms

Pe
∼ Re1/2(BPe)−1. (5.25)

This stratified viscous regime is considerably more challenging to simulate than the other
three regimes, a consequence of the very small time steps required and long integration
times. However, we see in figure 8(d) that the blue lines, which represent the scalings in
(5.25), fit the few available data points well, once again with a prefactor close to one.

The LPN approximation (5.12), combined with (5.24) and (5.25), leads to a scaling for
the vertical velocity field

wrms ∼ Re3/2(BPe)−1. (5.26)

Again we see a good correspondence between the blue curves in figure 8(c), which
represent this scaling, and the data, with a prefactor of 0.25.

Using these results, we finally find that

η ∼ B〈wT ′〉
〈u sin( y)〉 ∼ BwrmsT ′

rms ∼ Re2(BPe)−1, (5.27)

with a prefactor of 0.25 for consistency with the data obtained for wrms and T ′
rms. This is

consistent with observations for Re = 50 and Re = 100 in figure 8(b). We can also estimate
a generic non-dimensional turbulent diffusivity for vertical transport of a passive scalar as

Dturb ∼ wrmslz ∼ Re(BPe)−1 ∼ (BPr)−1 (5.28)

with a prefactor that is again expected to be of order unity.
The viscous regime is achieved in the opposite limit to the one derived in (5.19) for

the stratified turbulent regime, namely when BPe � Re2. Thus we find that the system
parameters must satisfy

21/2 < Re2 � BPe (5.29)

when combined with the condition for linear instability. Condition (5.29), computed more
precisely in § 5.3, defines the region of parameter space in which we would expect to
observe this stratified viscous regime. We note for consistency that each of the scalings
obtained here do depend on the value of the Reynolds number, as one would expect.

5.2.4. Stratified intermittent regime
There exists a fourth regime, visible both in the DNSs and the results presented in

figure 8(a–d). This final regime is a transitional regime that occurs between the stratified
turbulent regime and the stratified viscous regime. As discussed in § 4.3, it is inherently
intermittent in the sense that we observe spatially and temporally localised patches of
small-scale turbulence generated via vertical shear instabilities, surrounded by more
laminar, viscously dominated flow. Whilst we have been unable to derive satisfactory
scalings for this regime, we can nevertheless deduce some of them empirically from
figures 8(b) and 8(c).
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For instance, we see in figure 8(b) that the onset of this stratified intermittent regime
(indicated by the green lines) is characterised by a sudden change in the dependence of
the mixing efficiency η on BPe, from the constant value of 0.4 observed in the stratified
turbulent regime to a regime where η is given by (5.4). It is interesting and perhaps
reassuring to note that the parameter group BPe/Re2, which controls η in this regime,
is the same parameter group that appears in the viscous regime. Note that for η � 0.1, we
observe a temporary flattening of this scaling just before the onset of the viscous regime.
It is certainly possible that this feature is an artefact of inherent variability in the
simulations (and therefore the measurement of η has larger associated error bars). It is
interesting to note, however, that this ‘knee’ in the curve does occur for flows with at least
three different Reynolds numbers.

In addition, figure 8(c) suggests that wrms scales as

wrms � 0.05Re3/4(BPe)−1/2. (5.30)

No clear scalings for lz or T ′
rms/Pe appear to be deducible from the numerical results.

5.3. Regime diagram
Figure 9 summarises the four regimes of nonlinear saturation that were described in § 5.2
along with the inclusion of the linearly stable regime that was discussed in § 3. The
unstratified regime, indicated in red in figure 9, occurs when

BPe � O(1); Re > 21/4. (5.31a,b)

The stratified turbulent regime, indicated by the yellow region in figure 9, and the stratified
viscous regime, indicated by the blue region, exist when BPe � Re2 and BPe � Re2

respectively, with the stratified intermittent regime (green) lying at the transition. Written
in terms of the buoyancy Reynolds number Reb = Re/B, which is a key parameter
identified by Brethouwer et al. (2007) delineating parameter regimes when Pr � 1, these
regime boundaries become Reb � Pr and Reb � Pr respectively. Thus we observe that at
low Pr, the stratified turbulent regime can be realised even if Reb is very small.

Greater precision on these regime boundaries, permitting the identification of the
domain of validity of the stratified intermittent regime, can be determined from figure 8(b).
If we assume that, for each Reynolds number, the transition between the stratified turbulent
and stratified intermittent regimes occurs when η � 0.4, then the boundary is given by
BPe � 0.0016Re2. This provides the more precise condition for the stratified turbulent
regime

1 � BPe � 0.0016Re2, (5.32)

labelled in figure 9. We note that this regime does not intersect the region of linear stability,
indicating that for certain Reynolds numbers for which instability occurs (21/4 < Re < 25)
this particular type of stratified turbulence does not exist.

From figure 8(b) we can also estimate that the transition between the stratified
intermittent regime and the stratified viscous regime approximately occurs when η � 0.05
irrespective of the Reynolds number, which would imply that the boundary is given by
BPe � 4.6Re2. Thus a more precise condition for the stratified viscous regime is given by

BPe � 4.6Re2; Re > 21/4. (5.33)

For each Reynolds number, the stratified intermittent regime exists for intermediate values
of BPe between conditions (5.32) and (5.33). When combined with the converse of the
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FIGURE 9. Regime diagram, applicable in the LPN limit, illustrating five dynamical regimes
across system parameters BPe (horizontal axis) and Re (vertical axis). Each regime is associated
with a colour: linearly stable (purple); unstratified (red); stratified turbulent (yellow); stratified
intermittent (green); stratified viscous regime (blue). The four example DNSs presented in
figure 6 are associated with parameters corresponding to the red, yellow, green and blue squares.

condition for the unstratified regime (i.e. BPe � 1) and the condition for linear instability
(Re > 21/4), this regime condition becomes

max{1, 0.0016Re2} � BPe � 4.6Re2; Re > 21/4. (5.34)

Figure 9 shows that the stratified intermittent regime can exist for any value of Re, provided
that the system is linearly unstable.

6. Discussion

As summarised in § 5.3, our numerical experiments have revealed that stratified
horizontal Kolmogorov flows at high Reynolds number but low Péclet number exhibit
(at least) four different non-trivial dynamical regimes depending on the respective values
of the parameters BPe and Re (where B, Pe and Re were defined in (2.9a–c) and (2.11)). In
all but one of these regimes, well-defined dominant balances in the momentum equation
lead to simple scaling laws for the turbulent properties of the flow. We now first compare
our results with prior studies of stratified mixing in the geophysical context, and then
discuss the implications of our findings for stratified mixing in stars, whose understanding
motivated this study.
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6.1. Comparison with stratified mixing in geophysical flows
As we have demonstrated in this work, geophysical and astrophysical stratified turbulence
is fundamentally different, because the former has a Prandtl number Pr � O(1) while the
latter has Pr � 1. Therefore, crucially, in geophysically relevant flows, a high Reynolds
number flow necessarily also has a high Péclet number. Meanwhile, in astrophysics it is
possible to have both Re � 1 and Pe � 1, and the effect of thermal diffusion can become
a dominant factor in the system dynamics. As demonstrated by Lignières (1999) (see also
Spiegel 1962; Thual 1992), temperature and velocity fluctuations in the low Péclet number
limit are slaved to one another, and density layering is prohibited (see § 1.2). This is in
stark contrast with geophysical flows where density layering (or at the very least, the
propensity to form alternating regions of shallower and steeper density gradients) is key
to understanding the properties of stratified turbulence in the LAST regime. Indeed, the
standard Miles–Howard stability criterion (Howard 1961; Miles 1961) for linear instability
to vertical shear, namely Rig < 1

4 (where Rig is here the minimum gradient Richardson
number based on the local vertical stratification and vertical shear), is at first glance
incompatible with the ubiquitous presence of turbulence in most large-scale stratified
shear flows in geophysics (in particular in the ocean and atmosphere) where the gradient
Richardson number is typically much larger than one, or indeed is irrelevant in the case
of horizontally sheared flows. However, small-scale layering releases this constraint by
creating regions where the stratification is locally reduced, and the instability that is now
allowed to develop continues to mix the layer, thereby allowing turbulence to sustain itself.
This process, as reviewed in § 1.1, can lead to the formation of layers on the scale Uc/Nc,
and is controlled by the buoyancy Reynolds number Reb = ReFr2 = Re/B.

In astrophysics, typical values of the gradient Richardson number are also very large,
but density layering is prohibited so this pathway to turbulence is not available. Instead, we
have shown that three-dimensional perturbations of the horizontal shear (see also Deloncle
et al. 2007; Arobone & Sarkar 2012; Lucas et al. 2017) cause the flow to develop layers in
the velocity field that enhance the vertical shear (or create it when it is not initially present).
For sufficiently thin velocity layers, thermal diffusion reduces the effect of stratification,
allowing vertical shear instabilities to develop in between the layers. These two effects
combine to drive turbulence and can cause substantial vertical mixing even when the
background flow has no vertical shear. The dynamics of the system is no longer controlled
by ReFr2, but instead, first by BPe = Pe/Fr2 in the limit where BPe � Re2, and then by
the ratio BPe/Re2 in the limit where BPe � Re2, thus partitioning parameter space in the
four different dynamical regimes discussed in § 5.

The viscous regime that we have identified (when BPe � Re2) is analogous to the
viscously affected Reb � O(1) regime discussed by Brethouwer et al. (2007), in the sense
that it relies on the same dominant balances in the momentum equation. As a result,
it exhibits the same scaling in terms of the vertical length scale lz ∼ Re−1/2. It differs,
however, in the treatment of the buoyancy equation, which is not surprising given the low
Péclet number limit appropriate in our case. On the other hand, the stratified turbulent
regime identified here bears little resemblance with the Reb � 1, high Pe regime of
Brethouwer et al. (2007) (i.e. the LAST regime), where lz ∼ Uc/Nc. Indeed, for this new
low Péclet number stratified turbulent regime,

lz ∼ (BPe)−1/3Lc ∼
(

Ucκ

N2
c

)1/3

, (6.1)

as found in § 5. From a dimensional analysis point of view, this new scaling can be
understood as the only combination of Uc and Nc that can be created to form a length
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scale given the constraint that N2
c and κ can only appear together as N2

c /κ in the low
Péclet number limit (as is apparent from (1.11)). But more importantly, we also saw that
this scaling emerges from the assumption that the turbulent eddies are isotropic on the
small scales, with lx ∼ ly ∼ lz (see § 5.2.2), which is quite different from the inherently
anisotropic scalings discussed in Brethouwer et al. (2007) where lx , ly � lz. In other
words, the stratified turbulent regime identified here is (we believe) a genuinely new
regime of turbulence, that can only exist at low Péclet number, and so we refer to it as
low Péclet number stratified turbulence (LPNST).

6.2. Implications for mixing in stars
We begin by comparing our numerical results to the theory proposed by Zahn (1992) for
turbulence driven by horizontal shear in stellar radiation zones. Recall (see § 1.2) that the
characteristic flow length scale and amplitude in his model are given by (1.14a,b). Written
in terms of the non-dimensionalisation used in this work (see § 2), these are

Lc ∼
(

ε1/3

BPe

)3/8

and Uc ∼
(

ε3

BPe

)1/8

, (6.2a,b)

where ε is the non-dimensional dissipation rate (see also Lignières 2018). As he assumes
that all the energy input in the system (i.e. 〈u sin( y)〉, which is always of order one in the
chosen units) is dissipated viscously (i.e. there is negligible irreversible conversion into
the potential energy reservoir), then ε � 1. The corresponding non-dimensional turbulent
diffusivity in Zahn’s model would therefore scale as

Dturb ∼ (BPe)−1/2, (6.3)

which is indeed what we find in the stratified turbulent regime, see (5.18). It is interesting
to note, however, that Lc ∼ (BPe)−3/8 in Zahn’s model, and that this does not fit the data as
well as our proposed lz ∼ (BPe)−1/3 scaling. It is our belief that both scalings are relevant,
with the difference emerging due to different choices for the velocity Uc. In (6.1), we have
assumed that Uc is the r.m.s. horizontal velocity which is approximately constant in our
simulations. By contrast, Zahn assumes a constant dissipation rate ε in (1.14a,b), giving a
modified Ozmidov scale representing the scale below which an isotropic turbulent cascade
can exist (see Lignières 2018).

While we believe our results are a step forward in the study of stratified mixing in
stars, they are nevertheless not yet applicable as is for a number of reasons. First and
foremost is the fact that the majority of stars (i.e. all stars except the most massive ones,
see § 1.2) are actually in the high Péclet number yet low Prandtl number regime, while
the simulations presented here only probe the low Péclet number regime. Indeed, a classic
example of a stellar shear layer is the solar tachocline. Located just below the base of
the solar convective envelope (Christensen-Dalsgaard & Schou 1988; Goode et al. 1991),
this layer contains a horizontal shear flow with characteristic values of the amplitude
and length scale of the base flow being Uc � 150 m/s and Lc � 5 × 108 m, while the
buoyancy frequency is of the order of Nc � 10−3s−1 (Hughes, Rosner & Weiss 2007).
With ν � 0.001 m2 s−1 and κ � 1000 m2 s−1, this implies Re ∼ O(1014), Pe ∼ O(108)

and B ∼ O(107), with Pr ∼ O(10−6). Corresponding numbers for other main sequence
low-mass and intermediate-mass stars are in the same parameter regime. Our low Péclet
number findings are not to be casually dismissed, however. As shown by Garaud (2020),
flows with Pe � 1 and Pr � 1 can still be governed by low Péclet number dynamics
(and therefore all the scalings derived in this work) when the turbulent Péclet number
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Pet = wrmslzPe � 1. This is likely because the effective local Péclet number of the flow
(written in terms of the actual vertical eddy scale lz instead of Lc) is low even though the
Péclet number based on the global scale itself is large. A thorough study of the high Péclet
and low Prandtl number regime is beyond the scope of this paper, however, and will be the
subject of future work.

More crucial, however, is the fact that other effects will need to be taken into account
before a comprehensive model of stratified mixing in stars can be created. The main source
of shear in stars is their differential rotation, where the mean rotation rate is typically
substantially larger than the shearing rate, and where the horizontal shear is usually
global (i.e. with a length scale of the order of the stellar radius). This implies that the
effects of curvature and angular momentum conservation must be taken into account to
determine whether the horizontal shear is unstable in the first place. Two-dimensional
horizontal shear flows in a rotating spherical shell were first studied by Watson (1980)
(see also Garaud 2001), who found that the shearing rate must exceed a critical threshold
for instability to proceed. In the context of our work, this implies that rotation could in
principle inhibit the development of the primary instability. If the latter does take place,
however, we anticipate that the same sequence of instabilities resulting in the development
of small-scale eddies of size lz would ensue. The Rossby number based on lz is likely very
large (in the tachocline, for instance, Ro ∼ Uc/Ωlz ∼ O(104), where Ω ∼ 3 × 10−6s−1 is
the mean rotation rate of the Sun), suggesting that rotation would not have a significant
effect on the flow dynamics in any stratified turbulent regime. It may be relevant in the
intermittent and viscous regimes on the other hand, where the horizontal eddy scale is of
the order of the scale of the background flow.

In addition, stars are subject to vertical shear as well as horizontal shear, and the
dynamics of shear-induced turbulence is notably different in the two cases (see § 1.2).
A question of interest will therefore be to establish what controls the outcome when
vertical and horizontal shear are both present. Finally, most stars are expected to be
magnetised to some extent (Mestel 2012), either by the presence of a primordial magnetic
field or by the action of a dynamo in a nearby convective zone. The effect of these magnetic
fields will need to be taken into account to construct a truly astrophysically relevant theory
of stratified turbulence.
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Appendix A. Generalisation of the linear stability analysis

It is sometimes of interest, particularly when comparing results with DNSs, to consider
the linear stability of a laminar flow with different amplitude to that of the basic laminar
solution (3.1). Consequently, we explain here how the linear stability of such flows can
be computed from the results presented in § 3. We will focus on the standard system of
(2.6)–(2.8), although an equivalent procedure can also be applied straightforwardly to the
LPN equations (2.15) and (2.16).

We consider a laminar flow auL( y) given by

auL( y) = aRe sin( y)ex , (A 1)

with amplitude aRe where a ∈ R, and without loss of generality a > 0. For small
perturbations u′(x, y, z, t) away from this laminar flow, i.e. letting u = auL( y) +
u′(x, y, z, t), and using the assumption that the growth rates of instabilities are
significantly larger than the rate at which the background flow is evolving due to the
uncompensated forcing, the linearised perturbation equations are

∂u′

∂t
+ aRe cos( y)v′ex + aRe sin( y)

∂u′

∂x
+ ∇p = 1

Re
∇2u′ + BT ′ez, (A 2)

∂T ′

∂t
+ aRe sin( y)

∂T ′

∂x
+ w′ = 1

RePr
∇2T ′, (A 3)

∇ · u′ = 0. (A 4)

Rescaling the velocity field according to u′ = a1/2ũ′ leads to the transformed set

a−1/2 ∂ũ′

∂t
+ a1/2Re cos( y)ṽ′ex + a1/2Re sin( y)

∂ũ′

∂x
+ a−1∇p = 1

a1/2Re
∇2ũ′ + B

a
T ′ez,

(A 5)

a−1/2 ∂T ′

∂t
+ a1/2Re sin( y)

∂T ′

∂x
+ w̃′ = 1

a1/2RePr
∇2T ′, (A 6)

∇ · ũ′ = 0. (A 7)

By considering normal mode disturbances of the form q(x, y, z, t) = q̂( y) exp[ikx x +
ikzz + σ t] and rescaling the parameters and growth rates using the relations

σ̂ = σ

a1/2
; R̂e = a1/2Re; B̂ = B

a
; P̂r = Pr, (A 8a–d)

the resulting system is identical to the set of (3.7)–(3.11) except for the rescaling implicit
in the hats on parameters and growth rates. It can be re-formulated as a generalised
eigenvalue problem for the complex growth rates σ̂ ,

A(kx , kz, R̂e, B̂, P̂r)X = σ̂BX , (A 9)

and can solved using the method described in § 3.
The linear stability analysis presented in § 3 considered a = 1, where R̂e = Re,

B̂ = B, P̂r = Pr and σ̂ = σ . For a /= 1, relations (A 8) provide a transformation between
the original analysis and the linear stability of flows with generic amplitude auL( y).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

60
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.600


Stratified horizontal shear flows at low Péclet number 903 A1-35

Appendix B. Critical Reynolds number for linear instability

An important finding in this study, determined numerically across a broad spectrum
of parameters, is the fact that the critical Reynolds number, Rec, for the onset of linear
instability, as given by the 2-D mode (kz = 0), is independent of both the stratification
and Prandtl numbers, being fixed at Rec = 21/4. This result holds for both the standard
equations and the LPN equations and differs quite substantially from that obtained in
Garaud et al. (2015a) for the case of a vertically orientated shear, where stratification
was found to be able to stabilise a system.

To see why this is the case, we observe in (3.7)–(3.11) (or the equivalent LPN equations
(3.13)–(3.16)) that setting kz = 0 reduces the problem to the study of (3.7), (3.8) and
(3.11) (or equivalently (3.13), (3.14) and (3.16)). This reduced problem is well studied
(Beaumont 1981; Balmforth & Young 2002), being the linear stability of an unstratified
(B = 0) flow. The critical Reynolds number for instability around a basic state of uL( y) =
sin( y)ex has been shown to be

√
2 (Beaumont 1981). As detailed in appendix A, a simple

transformation given by relations (A 8) (for a = Re−1) gives the corresponding critical
Reynolds number for 2-D modes in this study to be 21/4, which corresponds to the result
obtained numerically. Consequently, we note that horizontally sheared Kolmogorov flows
with Re > 21/4 are always unstable, irrespective of the stratification, and thus form a
convenient basis from which to study the subsequent nonlinear evolution of stratified, low
Péclet number flows.
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