
1 Preliminaries

This chapter covers preliminary materials required to understand the presentation in
the following chapters.

1.1 Background on Graphs

Unless stated otherwise, we model the network topology as a connected, undirected,
simple graph G. In the text that follows we introduce some basic notions from graph
theory. We refer the reader to [1] for details.

1.1.1 Graph-Theoretic Definitions

definition 1.1 (Graph) An undirected graph G is defined as a pair (V (G), L(G)),
where V (G) is the set of nodes in G and L(G) the set of links. A graph is simple if
it contains no self-loop (a link beginning/ending at the same node) or parallel links
(multiple links between the same pair of nodes). The degree of G, denoted by |G|, is
the number of nodes in the graph; the order of G, denoted by ||G||, is the number of
links in the graph.

In the sequel, we will simplify denote V (G) by V and L(G) by L when the
graph is clear from the context. We will use “node”/“vertex” and “link”/“edge”
interchangeably.

definition 1.2 (Degree)
(a) The degree of a node v, denoted by deg(v), is the number of links incident to v.
(b) The degree of a subgraph D of a graph G, denoted by deg(D), is the number of
links with one endpoint in D and one endpoint outside D.

definition 1.3 (Vertex/Edge Connectivity)
(a) A connected graph G = (V, L) is said to be k-vertex-connected (or k-edge-
connected) if k ≤ |V | − 1 (or k ≤ |L| − 1) and deleting any subset of up to k − 1
vertices (or edges) does not disconnect G.
(b) The greatest integer k such that G is k-vertex-connected (or k-edge-connected) is
the vertex connectivity (or edge connectivity) of G.
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4 Preliminaries

definition 1.4 (Cut) A vertex cut (or edge cut) in G is a set of nodes (or links)
whose removal increases the number of connected components in G. In particular,
(a) a cut vertex is a node that forms a vertex cut by itself;
(b) a 2-vertex cut is a set of two nodes {v1,v2} such that v1 or v2 alone does not form
a vertex cut, but together they form a vertex cut; and
(c) a bridge is a link that forms an edge cut by itself.

definition 1.5 (Induced Subgraph) An induced subgraph G′ of G is a subgraph
such that for any pair of vertices v and w in G′, vw is an edge in G′ if and only if vw is
an edge in G.

definition 1.6 (k-Vertex/Edge-Connected Component)
(a) A k-vertex-connected component, a.k.a. k-connected component, of G is a maximal
subgraph of G that is either (1) k-vertex-connected or (2) a complete graph with up
to k vertices. The case of k = 2 is also called a biconnected component and k = 3 a
triconnected component.
(b) A k-edge-connected component of G is a maximal subgraph of G that is k-edge-
connected.

Definition 1.6 generalizes the notion of connected component. By this definition,
a connected component is both a 1-connected component and a 1-edge-connected
component.

1.1.2 Graph Algorithms

Solutions in the following chapters will leverage several existing graph algorithms,
particularly graph decomposition algorithms that compute various types of connected
components. For completeness, we outline in Algorithms 1 and 2 the basic steps of
the biconnected and triconnected component decomposition algorithms in [2, 3].

Algorithm 1 Biconnected Component Decomposition
Input: Connected graph G
Output: All biconnected components in G

1 Each vertex v in G is assigned a “pre” and a “low” number [2], where the “pre”
number is obtained during the depth-first search while the “low” number is
computed according to its connections to neighboring vertices;

2 Identify all cut vertices based on the “pre” and “low” values;
3 Store the visited edges in a stack via depth-first search;
4 When a cut vertex is discovered, pop the edges in the stack to get all edges in the

same biconnected component;

The basic idea behind these algorithms is to find the cuts that define the components
of interest. Intuitively, a biconnected component is a subgraph connected to the rest of
the graph by cut vertices, and a triconnected component within a biconnected compo-
nent is a subgraph connected to the rest by 2-vertex cuts. For instance, Fig. 1.1b shows
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Algorithm 2 Triconnected Component Decomposition
Input: A connected preprocessed graph G
Output: All triconnected components in G

1 Partition G into biconnected components B1, B2, . . ., according to Algorithm 1;
2 foreach biconnected component Bi do
3 Find a cycle C in Bi ;
4 if C does not exist then
5 Bi is a triconnected component;
6 else
7 B′

i = Bi − C;
8 Localize all 2-vertex-cuts (see Definition 3.5) by finding cycles in each

connected component within B′
i ;

9 Follow a depth-first search to store the edges belonging to the same
triconnected component;

virtual link

(a) (b) (c)

Figure 1.1 (a) Original graph. (b) Biconnected components. (c) Triconnected components. ©
2014 IEEE. Reprinted, with permission, from [4].

the biconnected components of Fig. 1.1a, separated by cut vertices d, j , k, w, s, and r .
Figure 1.1c shows the triconnected components, separated by the aforementioned cut
vertices and 2-vertex cuts {w,d}, {f,i}, and {u,v}.

However, it is possible that not all the subgraphs separated by cut vertices and
2-vertex cuts are valid triconnected components. To avoid this issue, we need to
preprocess the graph by adding virtual links as follows: if ∃ a 2-vertex cut whose
vertices are not neighbors (e.g., {u,v} in Fig. 1.1), connect them by a virtual link; repeat
this on the resulting graph until no such cut exists. Note that the set of virtual links may
not be unique (e.g., in Fig. 1.1, preprocessing may add a virtual link (u,v) or (r,t), but
not both). The output of Algorithm 2 comprises all the triconnected components in the
preprocessed graph. In the sequel, we assume that the graph is always preprocessed
before a triconnected component decomposition, and the nodes that are cut vertices or
part of 2-vertex cuts are called separation vertices (e.g., w, d, f , i, j , k, s, r , u, and v
in Fig. 1.1 with an added virtual link (u,v)).
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1.2 Background on Linear Algebra

For additive constant link metrics (e.g., means/variances of delays or jitters, log-
success rates), the metric on a path equals the summation of the metrics on the tra-
versed links. Therefore, as shown in (2.1), the measurement system can be modeled
by a system of linear equations Rw = c, where the coefficient matrix R largely
determines the structure of the solution. To study the structure of the solution, we
will use the following notions from linear algebra. We refer the reader to standard
books on linear algebra such as [5] for more details.

definition 1.7 (Linear Independence)
(a) A set of vectors x1, . . . ,xn are linearly independent of each other if none of them
can be written as a linear combination of the other vectors, i.e., a1x1 +· · ·+anxn = 0
implies a1 = · · · = an = 0.
(b) A basis of a linear space is a maximal set of vectors in this space that are linearly
independent of each other.

definition 1.8 (rank)
(a) The rank of a matrix R, denoted by rank(R), is the number of linearly independent
rows (or columns).
(b) A matrix R has full column rank if all the columns are linearly independent of each
other, i.e., rank(R) equals the number of columns.

definition 1.9 (Null Space) The null space of an m × n matrix R is the set of all
n × 1 vectors x satisfying Rx = 0.

Additionally, given a square matrix A, we will use A−1 to denote its inverse (assum-
ing that A is invertible), det(A) to denote its determinant, and Tr(A) to denote its trace;
see their standard definitions in [5].

1.3 Background on Parameter Estimation

For stochastic link metrics (e.g., realizations of delays, jitters, losses), network
tomography aims at inferring the parameters θ = (θl)l∈L (e.g., link success rates)
that characterize the distributions of these link metrics from the observed realizations
x = (xt )Nt=1 of the corresponding path performance metrics. Therefore, the network
tomography problem is cast as a parameter estimation problem in this case. Let
f (x;θ) denote the conditional probability of observing x under parameter θ. We will
leverage the following results from estimation theory. We refer the reader to a book
on estimation theory, such as [6], for details.
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1.3.1 Fisher Information Matrix and the Cramér–Rao Bound

Let X have probability distribution f (x;θ) where θ ∈ Rs . Suppose that

1. X has common support for all values of θ, i.e., {x : f (x;θ) > 0} is independent
of θ.

2. The derivative ∂f (x;θ)/∂θi exists and is finite, i = 1, . . . ,s.

definition 1.10 The Fisher information matrix (FIM) is the s × s matrix

I (θ) = [Iij (θ)]si,j=1, (1.1)

where

Iij (θ) = Eθ

[
∂

∂θi

log f (x;θ) · ∂

∂θj

log f (x;θ)

]
. (1.2)

If log f (x;θ) has a second derivative, then

Iij (θ) = −E

[
∂2

∂θi∂θj

log f (x;θ)

]
. (1.3)

The significance of the FIM is due to the following lower bound on the covariance
of an unbiased estimator of θ, called the Cramér–Rao bound (CRB).

definition 1.11 Let μ(X) be an unbiased estimator of θ given observations X.
Then

Covθ(μ) ≥ I (θ)−1, (1.4)

where Covθ(μ) := E[(μ − θ)(μ − θ)T ]. Note that this yields the following lower
bound on the variance for the estimate of θi:

Varθ(μi) ≥ (I (θ)−1)ii . (1.5)

Estimator μ is said to be efficient when it is unbiased and satisfies (1.4) with
equality.

1.3.2 Maximum Likelihood Estimator

The maximum likelihood estimator (MLE) θ̂
MLE

is a mapping from a given set of
observations x to the parameter value that maximizes the likelihood of these observa-
tions, i.e.,

θ̂
MLE

(x) := arg max
θ

f (x;θ). (1.6)

The MLE plays an important role in estimation theory. Implicit in any application
of FIM is the assumption that the adopted estimator is unbiased and achieves the CRB,
and thus the CRB characterizes the estimation error. In this regard, the MLE has the
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property that if an efficient estimator exists for a parameter, then the MLE of that
parameter is efficient [6]. Moreover, although the MLE may not be unbiased and thus
not efficient for finite sample sizes, the MLE is asymptotically efficient under mild
regularity conditions [7]; i.e., its expectation converges to the true parameter at a rate
approximating that of the CRB. Therefore, the variance of the MLE will approximate
the CRB as the number of observations becomes large.

1.4 Background on Routing Mechanisms

With the exception of Chapter 8, we assume that all the end-to-end measurements
are taken via unicast; i.e., each probing packet is forwarded without replication from
a single source to a single destination. Given a network topology G and the set of
monitors M , the set of paths that can be measured (a.k.a. measurement paths) P is
determined by the mechanism used to route probes between monitors.

Depending on the flexibility of routing, we classify routing mechanisms into the
following types: (1) uncontrollable routing (UR), where P contains paths between
monitors specified by the underlying routing protocol of the network; (2) controllable
cycle-free routing (CFR), where P contains all simple (e.g., cycle-free) paths between
monitors; (3) controllable cycle-based routing (CBR), where P contains every path
between monitors that does not contain repeated links (but repeated nodes, i.e., cycles,
are allowed); and (4) arbitrarily controllable routing (ACR), where P contains any
path between monitors.

Remark While ACR dominates the others in terms of the flexibility of measure-
ments, each of these cases can represent practical constraints in some network envi-
ronments. Specifically, ACR models the ideal case when strict source routing [8]
or its equivalence (e.g., software-defined networking (SDN) routing [9]) is available
for setting up measurement paths, CBR models the constraints when monitoring all-
optical networks [10], CFR models the constraints when setting up measurement paths
by multiprotocol label switching (MPLS) [11] or virtual private networks (VPNs) over
IP [12], and UR models the most common scenario when only the default routing paths
(e.g., least-cost paths) for data packets are monitored.
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