THE *k*-NORMAL COMPLETION OF FUNCTION LATTICES

HENRY B. COHEN

1. Introduction. A subset G of a non-empty partially ordered set C is called *normal* if it coincides with the set of all upper bounds of the set of lower bounds of G. This is equivalent to stipulating that G be the set of all upper bounds of some subset of C called a *set of generators* for G. When ordered by inclusion, the family of all normal subsets of C forms a complete lattice with maximum C and minimum empty or singleton. The meet operation is simply point set intersection; whence, the meet of a family G_i of normal subsets is the set of upper bounds of $\cup F_i$ where F_i generates G_i for each *i*. A normal subset is called *proper* if it is neither void nor C, and the proper normal subsets of C form a boundedly complete lattice.

Throughout this paper, k denotes a fixed infinite cardinal number, and a k-set (k-family) is a set (family) with k or less members. A normal subset of C which has a k-set of generators will be called k-normal, and the family of all k-normal subsets of C will be called the k-normal completion of C. The k-normal completion of a partially ordered set is k-complete from below; that is, the intersection of a k-family of k-normal subsets is k-normal.

From now on, S denotes a compact Hausdorff topological space, C(S) denotes the lattice of all continuous real-valued functions on S, B(S) the lattice of all bounded real-valued functions on S, and $\mathbf{N}(S)$ the lattice of all proper normal subsets of C(S). The latter two of these are always boundedly complete. Given a subset F of B(S) bounded from above (below), sup $F(\inf F)$ denotes the function obtained by taking suprema (infima) pointwise.

In (3), Dilworth proved that the map $h: \mathbf{N}(S) \to B(S)$ given by $h(G) = \inf G$ is bi-order reversing (hence, 1-1) and that the functions in the range of h are precisely the normal upper semicontinuous functions; i.e., they are the functions f in B(S) such that $(f_*)^* = f$. For the definitions of g^* and g_* , the upper and lower semicontinuous envelopes of a function g in B(S), see (3). We call the normal upper semicontinuous functions in B(S) simply the *normal* functions on S, and we let N(S) denote the lattice of all of these.

Dilworth gives the following formulas for the supremum (infimum) in N(S) of a subset F of N(S) bounded from above (below):

- (1) $\sup(N(S))F = (\sup F)^*,$
- (2) $\inf(N(S))F = ((\inf F)_*)^*.$

The set of all upper bounds in C(S) of a subset E of B(S) will be denoted by

669

Received March 5, 1964.

E^{*}. Given *G* in *N*(*S*) with generating set *F*; viz., *G* = *F*^{*}, the image of *G* under the Dilworth map *h* can be described in terms of the generators. For since $h^{-1}(f) = \{f\}^*$ for each *f* in *C*(*S*), we have

$$h^{-1}(\sup(N(S))F) = \{\sup(N(S))F\}^* = \{(\sup F)^*\}^* = F^*;$$

whence,

(3)
$$h(F^*) = \sup(N(S))F$$

In this paper, we define the k-normal functions and prove that under the Dilworth map h, the image of the set $\mathbf{N}(k, S)$ of proper k-normal subsets of C(S) is precisely the set N(k, S) of all k-normal functions. We show that $\mathbf{N}(k, S)$ is a boundedly k-complete sublattice of N(S) if and only if S is a k-space (2) and that, when this is the case, N(k, S) is isomorphic to the lattice of continuous real-valued functions on the k-extremally disconnected space (2) determined by S.

2. The *k*-normal functions. In (2), we introduced the notion of a *k*-regular closed set; namely, a subset of S of the form cl(V) where V is *k*-open. We say that V is *k*-open if it is the union of a *k*-family of co-zero sets. A co-zero subset of S is a subset of the form $f^{-1}[U]$ where U is an open subset of the reals and f is in C(S). A co-zero set can always be expressed in the form

$$S(0 < f < 1) = \{x \in S : 0 < f(x) < 1\},\$$

where f is in C(S) and $0 \le f < 1$.

Let Q denote the set of rational numbers.

THEOREM 1. For a normal function ϕ , the following conditions are equivalent:

- (1) cl $S(\phi > \lambda)$ is k-regular for each real number λ .
- (2) For each real number λ , $S(\phi > \lambda)$ is the union of a countable family of k-regular closed sets.
- (3) For each real number λ , $S(\phi > \lambda)$ is the union of a k-family of k-regular closed sets.

Proof. The third condition is a trivial consequence of the second. Assuming the third condition for λ , let $\{V_i\}$ be a k-family of k-open sets such that $\bigcup_i \operatorname{cl}(V_i) = S(\phi > \lambda)$. Then $V \equiv \bigcup_i V_i$ is k-open and $\operatorname{cl} S(\phi > \lambda) = \operatorname{cl}(V)$. For the remaining implication, we note from the first paragraph of the proof of (3, Theorem 3.2) that for each real number λ ,

(4)
$$S(\phi > \lambda) = \bigcup (q \in Q, q > \lambda) \operatorname{cl} S(\phi_* > q),$$

so that, taking closures and simplifying, we have

(5)
$$\operatorname{cl} S(\phi > \lambda) = \operatorname{cl} S(\phi_* > \lambda).$$

Using (5) in (4) yields

(6)
$$S(\phi > \lambda) = \bigcup (q \in Q, q > \lambda) \operatorname{cl} S(\phi > q).$$

670

Definition. A k-normal function is a function satisfying the conditions of Theorem 1.

THEOREM 2. The supremum in N(S) of a k-family (bounded from above) of k-normal functions is k-normal.

Proof. Let *F* denote a *k*-family, bounded from above, of *k*-normal functions; according to (1), it must be shown that $(\sup F)^*$ is *k*-normal. But this follows from the fact that for each real number λ , cl $S((\sup F)^* > \lambda)$ is equal to the *k*-regular closed set cl $(\bigcup (f \in F)S(f > \lambda))$.

THEOREM 3. If V is a k-open subset of S, there exists a k-subset F of C(S) such that $\sup F = \chi(V)$.

Proof. First suppose V is a co-zero set and therefore of the form S(0 < g < 1) where g is in $C(S \text{ and } 0 \leq g < 1$. For each positive integer n, let g_n map the reals into the reals continuously as follows:

$$g_n(r) = r$$
 if $1 \le r$,
 $1 - 1/n < g_n(r) < 1$ if $1/n < r < 1$,
 $0 < g_n(r) \le 1 - 1/n$ if $0 < r \le 1/n$,
 $g_n(r) = 0$ if $r \le 0$.

Then $f_n \equiv g_n \circ g$ is continuous and $\sup f_n = \chi(V)$.

Now let V be a k-open set, the union of a k-family $\{V_i\}$ of co-zero sets. If, for each i, F_i is a countable subset of C(S) such that sup $F_i = \chi(V_i)$, then the union F of the F_i is a k-subset of C(S) such that sup $F = \chi(V)$.

THEOREM 4. The Dilworth map $h: \mathbf{N}(S) \to N(S)$ carries $\mathbf{N}(k, S)$ onto N(k, S).

Proof. If G is a proper k-normal subset of C(S), then $G = F^*$ for some nonempty k-subset F of C(S). From (1) and (3), $h(G) = \sup(N(S))F$, a k-normal function by Theorem 2.

Now let ϕ denote a positive-valued k-normal function. For each rational number q, let V_q be a k-open set such that $\operatorname{cl} S(\phi > q) = \operatorname{cl} V_q$. Let F_q be a k-subset of C(S) such that $\sup F_q = \chi(V_q)$ so that $(\sup F_q)^* = \chi(\operatorname{cl} V_q)$; and let qF_q denote $\{qf: f \in F_q\}$. Given x in S, using the upper semicontinuity of ϕ ,

$$\phi(x) = \sup\{q \in Q: x \in \operatorname{cl} S(\phi > q)\} = \sup\{q \in Q: x \in \operatorname{cl} V_q\};\$$

hence, using the positiveness, $\phi = \sup(q \in Q)q\chi(\operatorname{cl} V_q)$. Therefore,

$$\begin{split} \phi &= \phi^* = (\sup(q \in Q)q\chi(\operatorname{cl} V_q))^* = (\sup(q \in Q)q(\sup F_q)^*)^* \\ &= (\sup(q \in Q)\sup(N(S))qF_q)^* = \sup(N(S))F, \end{split}$$

where F denotes the union of the qF_q , a k-subset of C(S).

If ϕ is an arbitrary k-normal function, then $a + \phi$ is positive-valued and k-normal for a suitable scalar a and the result follows.

COROLLARY TO THE PROOF. Every positive-valued k-normal function is the supremum in N(S) of a k-family of scalar multiples of characteristic functions of k-regular closed subsets of S.

In (5), M. H. Stone proved that C(S) forms a boundedly k-complete lattice if and only if the cl-open sets of S form a base for the open sets and a k-complete Boolean algebra. An equivalent condition (2) is that every k-regular closed set be open. These conditions have yet another characterization, this time in terms of k-normal functions.

Definition. We shall say that S is k-extremally disconnected when cl V is open for each k-open subset V of S.

THEOREM 5. The following conditions are equivalent:

- (a) S is k-extremally disconnected.
- (b) Every k-normal function is continuous.
- (c) C(S) is boundedly k-complete.

Proof. Assume S is k-extremally disconnected and let ϕ be a k-normal function. Then for each real number λ , $S(\phi > \lambda)$ is the union of k-regular closed sets each of which, by hypothesis, is open; hence, $S(\phi > \lambda)$ is open. Thus ϕ is lower semicontinuous as well as upper semicontinuous, and is therefore continuous.

Assume that each k-normal function is continuous and let F be a k-subset of C(S) bounded from above. Then $\sup(N(S))F$, being k-normal, is continuous. Since $C(S) \subset N(S)$, we must have $\sup(N(S))F = \sup(C(S))F$.

Assume that C(S) is boundedly k-complete and let V be k-open. Using Theorem 3, let F be a k-subset of C(S) such that sup $F = \chi(V)$. Then

$$\chi(\operatorname{cl} V) = (\sup F)^* = \sup(N(S))F = h(F^*) = \inf F^*$$

$$\geqslant \sup(C(S))F \geqslant \sup(N(S))F = \chi(\operatorname{cl} V).$$

In particular, $\chi(cl V) = \sup(C(S))F$, a continuous function, so cl V is open.

3. Characterization of the k-spaces. The k-spaces were introduced in (2) to describe the class of (compact Hausdorff) spaces whose k-regular closed sets form a k-complete subalgebra of the Boolean algebra of regular closed subsets of S. The defining condition on S is that $cl(S \setminus M)$ be a k-regular closed set whenever M is; or, equivalently, given V k-open, there is a k-open subset W of S such that $W \cup V$ is dense and $W \cap V$ is void. In this section, the k-spaces are characterized in terms of their k-normal functions. We first introduce an operation in N(S) analogous to $f \to -f$ in C(S).

Definition. For each f in N(S), set $\sim f = -(f_*) = (-f)^*$.

It is immediate that $\sim f$ is normal and $\sim (\sim f) = f$. Since $f \leq g$ implies that $\sim g \leq \sim f$, DeMorgan's laws hold; e.g., if $\lor f_i$ exists in N(S), then $\land \sim f_i$ exists in N(S) and is equal to $\sim \lor f_i$.

THEOREM 6. The following conditions are equivalent:

- (a) N(k, S) is a boundedly k-complete sublattice of N(S).
- (b) If f is in N(k, S), so is $\sim f$.
- (c) S is a k-space.

Proof. Assume (a) and let V be a given k-open subset of S. By Theorem 3, let F be a k-subset of C(S) such that $\sup F = \chi(V)$. Set $G = \{1 - f : f \in F\}$ so that $\inf G = \chi(S \setminus V)$. Therefore,

$$\chi(\operatorname{cl}(S\backslash\operatorname{cl} V)) = \chi(\operatorname{cl}\operatorname{int}(S\backslash V)) = (\chi\operatorname{int}(S\backslash V))^* = ((\chi(S\backslash V)_*)^*$$

= ((inf G)_*)* = inf(N(S))G,

which is k-normal by hypothesis. This implies that $cl(S \setminus cl V)$ is k-regular. Therefore, S is a k-space.

Assume S is a k-space, and let f be k-normal. Let λ be a given real number. For each rational number $q < \lambda$, cl S(f > q) is k-regular: let V_q be a k-open subset of S such that cl($S \setminus cl S(f > q)$) = cl V_q . Then V, defined as $\bigcup_{(q < \lambda)} V_q$ is k-open and

$$cl S(\sim f > \lambda) = cl S(f_* < \lambda) = cl S(f < \lambda)$$
$$= cl[\bigcup_{(q < \lambda)} (S \land cl S(f > q))] = cl V,$$

a k-regular closed set. Thus $\sim f$ is k-normal.

That (b) implies (a) follows from Theorem 2 and DeMorgan's laws.

4. A second representation of N(k, S) when S is a k-space. The complement in S of a k-open set will be called a k-closed set; such a set is the intersection of a k-family of zero sets (4). A regular (k-regular) open set is the interior of a closed (k-closed) set. The map $M \rightarrow int M$ carries the (complete) Boolean algebra of regular closed subsets of S isomorphically onto the Boolean algebra **R** of regular open subsets of S. When S is a k-space, it is easy to prove that this isomorphism carries the k-regular closed sets onto the k-regular open sets. Thus, the collection $\mathbf{R}(k)$ of k-regular open subsets of S forms a k-complete subalgebra of **R**. The meet of any two elements of **R** is simply their intersection. In general, the operations of **R** (of $\mathbf{R}(k)$) are:

(7)
$$\wedge_i \operatorname{int} M_i = \operatorname{int}(\bigcap_i M_i),$$

(8)
$$\bigvee_i \operatorname{int} M_i = \operatorname{int} \operatorname{cl}(\bigcup_i \operatorname{int} M_i),$$

(9)
$$-\operatorname{int} M = \operatorname{int}(S \setminus M),$$

where M_i is a family (k-family) of closed (k-closed) sets.

Throughout the remainder of this section, *S* is a *k*-space. Let **S** denote the Stone space of **R**, the elements of **S** being ultra-filters **x** of **R**. Let $\tau: C(\mathbf{S}) \to N(S)$ and $\sigma: N(S) \to C(\mathbf{S})$ be the mutually inverse order-preserving functions given by Dilworth:

(10)
$$\tau(z)(x) = \inf (V \in \mathbf{V}_x) \sup (\mathbf{x} \ni V) z(\mathbf{x}),$$

HENRY B. COHEN

(11)
$$\sigma(f)(\mathbf{x}) = \inf (V \in \mathbf{x}) \sup (x \in V f(x))$$

Here, \mathbf{V}_x stands for any fundamental system of neighbourhoods of x. For each V in \mathbf{R} , $\rho(V)$ denotes $\{\mathbf{x} \in \mathbf{S}: \mathbf{x} \ni V\}$, the cl-open set determined by V.

Now let $\mathbf{S}(k)$ denote the Stone space of ultra-filters of $\mathbf{R}(k)$ and, for each V in $\mathbf{R}(k)$, $\rho(k, V)$ the cl-open set $\{\mathbf{y} \in \mathbf{S}(k) : \mathbf{y} \ni V\}$. Let $i: \mathbf{R}(k) \to \mathbf{R}$ denote the inclusion so that $I: \mathbf{S} \to \mathbf{S}(k)$, the map dual to i, is onto and given by

(12)
$$I(\mathbf{x}) = \mathbf{R}(k) \cap \mathbf{x}.$$

For $\mathbf{R}(k) \cap \mathbf{x}$ is an element of $\mathbf{S}(k)$, and evidently a member of

$$\cap \{\rho(k, V): V \in \mathbf{R}(k), \rho(V) \ni \mathbf{x}\} = \{I(\mathbf{x})\}.$$

The map $I^*: C(\mathbf{S}(k)) \to C(\mathbf{S})$ conjugate to I and given by $I^*(z)(\mathbf{x}) = z(I(\mathbf{x}))$ is a lattice isomorphism into. Define $t: C(\mathbf{S}(k)) \to N(S)$ by

(13)
$$t = \tau \circ I^*.$$

THEOREM 7. The map t carries $C(\mathbf{S}(k))$ onto N(k, S); hence, these lattices are isomorphic.

Proof. We first show that the k-regular open sets form a base for the open subsets of S. Let U be open in S and x an element of U. Let V be a co-zero subset of S such that $x \in V \subset \operatorname{cl} V \subset U$. Let W be a k-open set such that $V \cap W$ is void and $V \cup W$ dense in S. Then $S \setminus W$ is k-closed and $x \in \operatorname{int}(S \setminus W) \subset U$. Thus, for each x is S, the collection \mathbf{O}_x of k-regular open neighbourhoods of x forms a fundamental system. We assert that

(14)
$$t(z)(x) = \inf (V \in \mathbf{O}_x) \sup (V \in \mathbf{y} \in \mathbf{S}(k)) z(\mathbf{y}).$$

For

674

$$\begin{aligned} t(z)(x) &= (\tau \circ I^*)(z)(x) = \tau(z \circ I)(x) = \inf (V \in \mathbf{V}_x) \sup (V \in \mathbf{x} \in \mathbf{S}) z(I(\mathbf{x})) \\ &= \inf (V \in \mathbf{O}_x) \sup (V \in \mathbf{x} \in \mathbf{S}) z(I(\mathbf{x})) = \inf (V \in \mathbf{O}_x) \sup (V \in \mathbf{y} \in \mathbf{S}(k)) z(\mathbf{y}), \end{aligned}$$

using (12) in the last equality and the fact that I is onto.

Next we compute the action of t on characteristic functions. Let N be a cl-open subset of $\mathbf{S}(k)$. Then there is a k-closed subset M of S such that $N = \rho(k, \text{ int } M)$. Given x in S and W in \mathbf{O}_x , $\sup(W \in \mathbf{y} \in \mathbf{S}(k))\chi(N)(\mathbf{y})$ is either 0 or 1: 0 if W is disjoint from int M and 1 if they meet. Therefore, $t(\chi(N))(x)$ is either 0 or 1, and it is 1 if and only if x is in cl int M. Therefore,

(15)
$$t(\chi(\rho(k, \operatorname{int} M))) = \chi(\operatorname{cl} \operatorname{int} M)$$

for each k-closed subset M of S. Since every k-regular closed subset of S is of the form cl int M for some k-closed subset M, t carries the family of characteristic functions of cl-open subsets of $\mathbf{S}(k)$ onto the family of characteristic functions of k-regular closed subsets of S. Our result now follows from Theorem 5, the Corollary to Theorem 4, and the fact that t is an isomorphism.

FUNCTION LATTICES

References

- 1. W. G. Bade, The space of all continuous functions on a compact Hausdorff space, Univ. of California, Berkeley, 1957, unpublished seminar notes.
- 2. H. B. Cohen, The k-extremally disconnected spaces as projectives, Can. J. Math., 16 (1964), 253-260.
- 3. R. P. Dilworth, The normal completion of the lattice of continuous functions, Trans. Amer. Math. Soc., 68 (1950), 427-438.
- 4. L. Gillman and M. Jerison, Rings of continuous functions (New York, 1960).
- 5. M. H. Stone, Boundedness properties of function lattices, Can. J. Math., 1 (1949), 176-186.

University of Pittsburgh