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EXTERIOR POWERS OF THE ADJOINT REPRESENTATION

MARK REEDER

ABSTRACT.  Exterior powers of the adjoint representation of a complex semisim-
ple Lie algebra are decomposed into irreducible representations, to varying degrees of
satisfaction.

0. Introduction. Let G beacompact Lie group with complexified Lie algebrag. It
is known that the de Rham cohomology of the manifold G is given by the G-invariants
in the exterior algebra Ag, where the action of G is induced by the adjoint representa-
tion. The degrees in which these invariants occur are determined by the exponents of
the Weyl group W of G, as was excitingly discovered in the first half of this century.
For references and a relatively short but complete treatment of this venerable tale, see
[R1]. It is natural to wonder next about multiplicities of nontrivial representationsin Ag,
or equivalently, about the decomposition of the space of Ieft invariant differential forms
on G under the action of G induced by right multiplication. However, there seem to be
no definitive results. The dual problem of decomposing the symmetric algebraSq isin
better shape, thanks to Kostant’s theory of harmonic polynomials H ¢ ¢ Sgq and the
Hesselink-Peterson formula. Even here however, the latter formula for the multiplicities
is now known, by work of Kato, to be given by Kazhdan-L usztig polynomials, hence
is of significant combinatorial complexity. (Harmonic polynomials are briefly reviewed
in Section 2 below.) For the exterior algebra we expect similar difficulties, which are
perhaps mitigated by the finite dimensionality of Ag.

Aside from the obvious symmetry of Poincaré duality in Ag, the mitigation is as fol-
lows. Let 2p be the sum of the positive roots. The highest weight A of any irreducible
constituent V, of Ag liesin the root lattice and between 0 and 2p in the partial order on
weights. If A isin someway closeto 2p, it is often easy to write down all highest weight
vectors of weight A, and thus quickly compute the multiplicity polynomial

dimg
P(Vy,Ag,u) ;= > dimHomg(V,, A"g)u".
n=0

For example, onefindsin thisway P(Vz,, Ag, u) = u’(1+u)’, wherev isthe number of
positiveroots, and ¢ istherank. Thisisaspecial case of areduction formula (6.1) given
below for parabolic subalgebras. It gives the multiplicities for only a small fraction of
theirreducible representations appearing in Ag.
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At the other extreme, P(Vp, Ag, U) isthe Poincaré polynomial of the cohnomology of G
as mentioned above, and its computation seemsto require argumentsrooted in topology,
whose applicability to more general P(V,, Ag, u) is not clear to me.

Despite this handicap, we can still compute many more multiplicities. We begin with
the analogue of the Hesselink-Peterson formula for P(V,, Ag, u), which is easy to write
but contains many cancellations. The comparison with the symmetric algebra is more
symmetric if we consider multiplicities of the reducible modules Hom(V,, V,,), where
we find an analogue of Gupta's formula. Following Kato, the terms in our formula are
shown to be averages of inverse Kazhdan-L usztig polynomials over double cosetsin the
affine Weyl group, and therefore inherently complicated. Nevertheless, we can use this
formula to compute the following explicit multiplicity polynomials. Let | be a subset
of the simple roots, and let ¢, be the sum of the rootsin I. Let c(l) be the number of
connected components of the subgraph of the Dynkin diagram whose vertices arein |I.
We show in (6.3) that

P(V2y—s,, Ag, u) = w2+ u) 0@ + w10 (2 + u¥)0,

Turning from large weights to small degrees, the second and third exterior powers
have uniform decompositions, the latter partly coming from harmonic polynomialsin
degreetwo. Thisisrelated to the natural ring homomorphismQ: Sq — A®q, extending
the differential d: ¢ — g A g. The coordinate ring R of the minimal nonzero nilpotent
orbit in g is anatural direct summand (as G-module) of H g, and we determine Q(R).
See Sections 2 and 5.

If we ignore degrees, the Wey! integration formula leads to an efficient and useful
recursion formula for ungraded multiplicities of an irreducible modulein Ag. Therecur-
sionistrivial for “small” modules, i.e., those in which twice aroot is not a weight, and
for small V, it gives

dimHomg(Vy, Ag) = mi2’,

where ¢ is the rank of g and m? is the dimension of the zero weight space of V. For
example, the adjoint representation appearsin Ag with multiplicity £2°.

Now, Kostant has shown that Ag is isomorphic to 2° copiesof V, @ V,, so the stan-
dard tensor product formulas could be applied to V, ® V,,, but they seem impractical
compared to our recursive procedure. For example, our multiplicity for small modules
is equivalent to the multiplicity of V, in V, ® V, being m?, afact not readily seen from
the tensor product formulas. However, after receiving an earlier version of this article,
Kostant showed me how another old result of his (unpublished by him, but proved in-
dependently in [PRV], using Kostant’s ideas) implies the ungraded multiplicity formula
for small modules, aswell as a strong converse. Thisisincluded in Section 4.

What about graded multiplicities for small modules? For the symmetric algebra, their
multiplicity polynomialsare either known, with explicit nonnegative coefficients, or re-
duced to invariant theory of the Weyl group. For thetrivial representation thisis awell-
known theorem of Chevalley, for the adjoint representation it is due to Kostant, and for
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any small module V, it is arecent result of Broer [Br2] that
P(Vy, H g, u) = Pw(V), H ,u),

where V¢ isthe zero weight space of V,, H isthe space of W-harmonic polynomials on
t = complexified Liealgebraof amaximal torus T, and Py isthe multiplicity polynomial
for W modulesinH .

One hopes for a similar description of the multiplicities in the exterior algebra. If
g = 8[(n) and the highest weight is a partition of n (these are small), the multiplicitiesin
Ag have been determined combinatorially by Stembridge[St]. For certain partitions, we
show that Stembridge’s formula is related to harmonic polynomials for the symmetric
group (Section 7). Thisinterpretation makes sensefor any reductive Lie algebraand any
small module, for which we have a conjecture generalizing the ungraded multiplicity
formula

To explain this, let us reconsider the invariants. The Weyl group acts on both factors
of the manifold G/T x T, and the Weyl map G/T xw T — G induces an isomorphism
on real cohomology [R1]. In terms of invariants, this means (Ag)® ~ H(G/T x T)V, as
graded vector spaces.

We conjecture that for all small modules V,, there is a graded isomorphism

Homg(V), Ag) ~ Homy(VS, H(G/T x T)).

In other words, we propose the multiplicity formula

4
P(Vy,Ag,u) = > uIPw(VY @ A%, H ).
q=0

Thisisfalseif V, isnot small, by the converseto the ungraded multiplicity formula.

We can verify our conjecture for all small modulesfor g of type C,, Cs, G2, and those
2((n)-modul eswith highest weights corresponding to partitions of the form 2k1"2< (Sec-
tion 7). At u = 1 it reduces to the ungraded multiplicity formula. Among additional
supporting evidenceis the fact that, for smple Lie algebras g, the adjoint representation
appearsin A3q if and only if g = ¢((n), n > 3.

In Section 8 one finds the compl ete decomposition of Ag for types Az, As, C,, C3 and
G,. Thetable for C3 was provided by the referee, along with many valuable remarks and
references. | was originally reticent to extend the conjecture beyond the adjoint represen-
tation, having only the ungraded multiplicity formula as evidence for other small mod-
ules, but the referee independently suggested the broader conjecture made here, backed
it up with C3, and pointed out the analogy with [Br2]. With this encouragement, | then
found more evidencein other small modules.

This paper has also been improved by informative correspondencewith B. Kostant.

https://doi.org/10.4153/CJM-1997-007-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-007-1

136 MARK REEDER

1. Preliminaries. Multiplicities in the symmetric and exterior algebras of g are
both expressed in the transition between two natural bases of the representation ring
of G. Let A betheroots of t in g, and A* a choice of positive roots, with corresponding
simple roots Z. As in the introduction, we set v = |A*|, ¢ = |Z|. Let P be the weight
lattice of T, let P* be the dominant weights with respect to A*, and let p be half the sum
of the positiveroots. To A € P we associate various objects: e,: T — C* isthe character
whose differential is A, A} is the set of positive roots orthogonal to A, W, is the stabi-
lizer in Wof X, and W, (U) = Zwew, u"™), where n(w) is the number of positive roots
made negative by w. We set W(u) = Wp(u). For asubset S C A", let §s be the sum of
therootsin S. Let R = C[P]" be the Weyl group invariants in the character ring C[P]
of T. Weidentify R with the character ring of G. Let dt be the Haar measure on T with
vol(T, dt) = 1, and consider the following two hermitian inner productson R.

(.9 = 77 1080 [ 1- a0

ael
1 - 1—e)
(.0 = g O30 IT T 5 &

In thelatter, uis anindeterminate and the inner product takes valuesin the formal power
seriesring C[[u]]. Weextend ( , ), to apairing R[[u]] x R[[u]] — C[[u]] whichisR[[u]]-
bilinear. Theinner product (, ) is, according to the Wey! integration formula, the L2 inner
product of classfunctions on G with respect to Haar measure of volume one. Orthogonal
bases for these inner product spacesare given as follows. For A € P, let

 YweweW)ewpry) 1
w= Ywewe(W)ew, D w%VE(W)eM'

whereD = T[,~01 — e, andw- A = w(\ + p) — p. By Weyl’s character formula, x
ise(\) timesthe character of the irreducible G-representation V), with extreme weight A,
wheree(A) = e(w) if A+ pisregular (i.e., W+, = 1) andw- X isdominant, ande(\) = 0
if \+pissingular. Theset of irreducible characters{y, : A € P*} formsan orthonormal
basis of R(T)W with respect to ().

For the other inner product, we have the polynomials

MY = 3 e TT 5.
wew o>0 —Wor

At first glance this lives in the quotient field of R[u], but it isin fact in R[u] itself.
Macdonald [M] showed that MY is, up to a slight modification, the Satake transform of
a certain spherical function on the p-adic Chevalley group whose root system is dual to
that of G. As part of thiswork, Macdonald computed the inner product

u gy (WA i A=,
(M3 Mia = {O otherwise.
Using the relation wD = e(w)e,—w, D, it is easy to see that

MY = >° (—U)‘SX,\—as-
Sy

This can berefined in case A issingular, asfollows.
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1.1. ProPOSITION. For all A € P, we have

Mi=Wi) > (0¥ s
AT A

Proor. Thisisprovedin[M] for A = 0. By factoring productsover A* into products
over A} and A" — A} and applying this result to W), we find

MY = Wiu) 3 W[eA%],

weWw?

whereW* isthe set of shortest coset representativesfor Wy inW, Q* = Toen—ar 1—Uey,
and similarly for D*. Let D, = D/D*. Therelation wD* = (W)€,-w, 5~ leadsto

u_ Wa(u) W[Q'D;]
MA - |W)\| Vglve(w)ew)\T
~ Wy(u)

= (D)) X sg—s; -
|Wk| S;AzfA; =
TCAr
Let p, behalf the sum of therootsin A]. Suppose there exists « € A} such that (p) —
or,a) = 0. Thenwe have's, - (A —8s — &1) = A — ds,5s — O7. If 5,S = S then
Xo—sss: = 0.1f 8,S# S, then the sum over Sin MY containsthe terms (—u)/Sy, s s, +
(—w)'SSx,_s_ss = 0. Sothereisno contribution to MY for T of this form. On the other
hand if py — 67 is W, -regular, it is known that there exists a unique x € W, such that
61 = px — Xpy. Then (=)l = ¢(x) and A — 6s — 61 = x- (A — &,19). The T-thtermin
M} istherefore
) > CWNps 9= > (W
SCA -4y SCA™—A;

sincex permutesthe subsetsof A* — A. Thisisindependent of T and there are|W, | such
T. [

Therefereeinforms methat (1.1) can also be proved using a sheaf cohomol ogy result
[Brl, (3.9)] plus the Borel-Weil-Bott theorem. The polynomials MY /W, (u) are some-
times called “Hall-Littlewood polynomials”. For further connectionsbetween MY, p-adic
groups, and the geometry of flag manifolds, see[R2,3].

2. Review of thesymmetricalgebra. We here collect and explicate known results
on the symmetric algebra, for completeness, later use, and comparison with the exterior

algebra.
Kato [Ka] (see also [G1, G2]) has described the transition between our two bases of
R
<X)\1 M:j>u u
Xx = —v Mo
g [l;+ Vv.u(u) !

<A
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by the formula
M= > e(WpWw - A — g, u),
weW

wherep(), u) isthecoefficient of e, in theformal power seriesT],~q(1—ue,)~*. Theright
sideis Lusztig's g-analogue of weight multiplicity. More precisely, by Kostant’s weight
multiplicity formula, (x, M%) isthemultiplicity of the weight ;1 in the G-representation
V) of highest weight \. Kato and Lusztig also proved that (x,, M};)y may be expressed
in terms of Kazhdan-L usztig polynomials, as follows.

First, recall that the affine Weyl group W is the semidirect product of W and the root
latticeof T. Forx,y € W, wehaveKazhdan-Lusztig polynomialsPyx(u). For A belonging
to the root lattice, let t, beits corresponding element in W. Then we have

(Xs Mz>u - U<A—uvfl>pW0thOt/\ ™,

where wp isthelong word in W.

The polynomials (x, Ml‘j>u themselves have representation-theoretic meaning. Let
Sgq be the symmetric algebraon g*, and let H ¢ = ©H "g be the harmonic polynomi-
asin Sg. Thelatter spaceis the annihilator in Sq of all G-invariant constant-coefficient
differential operators on g with zero constant term. For any finite dimensional represen-
tation V of G, let P(V,H g,u) = Yn>odimHomg(V, H "g)u". Kostant [Ko1] showed
that thisis actually a polynomial, and may be computed from the internal structure of V
asfollows. Let p € t be the unique element such that («, p) = 1 for all simple roots «.
There exist regular nilpotent elements e, f € g such that {e, p,f} span aLie subalgebra
of g isomorphic to 3[,(C). Let a be the centralizer of ein g. Let Vi be the i-eigenspace
of p in V). More generally, let V,, = Hom(V,,V,), viewed as a G-module, and let
Hom{,(V,,, V) be those a-equivariant maps which send Vi, to V" for all j. Applying
Kostant's results to the reducible representations V,,,, we learn that Hom{,(V,,,V,) = 0
unless0 <i < (A +p,p), and

{(M+p,p) ) .
PV, Hg,uy= > dimHom(V,,V,\)u'.
i=0
Ginzburg [Gi] hasinterpreted the groups Hom!, (V,.,V,) asExt groupsin acertain derived
category of complexes of sheaves on the loop group associated to G.

As first observed in [G2, Corollary 2.4], the multiplicity polynomial of V,,, inH g

may be expressed asthe “wrong” inner product of characters. Namely, for A, u € P*, we

have < Mu> < Mu>
X ! 1] X Al T
PV, H g, u) = WU)(xx, xp)u = WU) > Ao My /0l X My /-
nep* W,](U)
n<\p

This formula, and its analogue for the exterior algebrain (3.2) below, are both conse-
guences of the Wey! integration formula.

In particular, P(V,,H g,u) = (x», Xo)u, aformula apparently first discovered by Pe-
terson (see aso [H]). For u = 1 it is Kostant's theorem that the multiplicity of V, in
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H g equals the dimension of the zero weight spacein V,. In caseV, = g isthe adjoint
representation, Kostant showed that P(q, H q,u) = u™ + --. + U™, where the my’s are
the exponents of W. For the computation of exponents, see [Co].

If g issimple, there is one obvious submodule of each H "gq, namely the irreducible
submodule Vy,,,, generated by the n-th power of aroot vector e,, for the highest root .
These powers are harmonic since the weight nog does not appear in S™g for m < n.
(More generally, yet another result in [Kol] asserts that H g contains and is spanned
by all powers of nilpotent elements.) There is a canonical complement to Vp,, in H "g,
namely the collection of harmonic polynomials vanishing on the minimal nonzero nilpo-
tent G(C)-orbit in g. Thismay beseenintwo ways. Let A, betheannihilatorin H "g of the
minimal nilpotent orbit. The Killing form induces a G(C)-invariant nondegeneratebilin-
ear form (, ) on S"g which remains nondegenerateon H "g. For X € g, and apolynomial
function P of degree n (identified with an element of S"g), we have (X", P) = n! P(X).
This shows that A, contains the orthogonal complement of Vp,,, and that the form is
nonzero on the latter. It follows that H "g = Vp,, @ An. Alternatively, the closure of
the minimal orbit is desingularized by the line bundleL = G(C) xp Ce,,, where P is
the stabilizer of the line Ce,,. A general result of Kempf [K] on collapsing of bundles
shows that the desingularization map induces an isomorphism on rings of globally de-
fined regular functions, and Vy,, isrealized by the functions on L which are polynomials
of degreen on each fiber.

One cannot but marvel at therich theory of the harmonic polynomials. Unfortunately,
it cannot yet predict the structure of H 2g, and the following decompositions, which shall
be needed later, must betreated case by case. Let \j bethe fundamental dominant weights
for the following numberings of the Dynkin diagrams:

An:l2---n, Bpl2---=n, Cyul2---<=n Grle?2 F412< 34,

Dy: 12---n—2n-1 E.: 123---n—-1
n n
2.1. PROPOSITION.  The decompositionsof H 2g into irreducible representationsare
given as follows.

() If g = s((n) with n > 4, then
H Zg ~ VZDC(] @ g @ V)\2+)\n,2'

(2) If ¢ = 30(V), where V is an nondegenerate orthogonal space of dimension at
least five, then
H 2g ~ Voo, @ A*V @ S2V,

where S2V is the unique nontrivial constituent of S2V.
(3) If g = 3p(V), whereV is anondegenerate symplectic space of dimension at least
six, then
H 2g ~ Vo, @ Vo, © A3V,
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where A3V is the unique nontrivial constituent of A?V.
(4) If g isof exceptional type, we have

H 2g2 = Voo (77) @ V2, (27)
H ?f4 = V20, (1053) & V2, (324)
H 2¢6 = V24,(2430) & V3,41, (650)
H 2¢7 = Va,,(7371) @ V,,(1539)
H 2eg = V,,,(27000) & V,,,(3875),

where V, (d) is the irreducible module with highest weight A and d is its dimen-
sion.

PROOF. The exceptional cases are treated with numerology. After more dimension
counting in the classical cases, we need only exhibit the alleged constituents. We have
already accounted for Va,,, but the remaining two reguire progressively more computa-
tion.

For g = 3[(n), the adjoint representation appears because one exponent of the Weyl|
group is two. The other highest weight vector is €y,— o, €xg—a,_; T €xpCoo—c—an ;- AS @
polynomial function, in terms of the usual choice of root vectors, thisis the determinant
of the lower left 2 x 2 block.

For orthogonal cases, we have g ~ A2V as g-modules. Theidentity map A2V — A2V
extendsto asurjection S?(A%2V) — A*V.If dimV = 2n+1,letey,..., e, €0,€ p,...,81
be abasisfor which (e, e_i) = 1, with all other (e,¢) = 0. Sete := e A g. Then

n
&ot2) ajej € SANV)
=2

is a highest weight vector with weight that of S3V. For even dimensional V, omit e in
the above.

For symplectic cases, we have g ~ S?V. Letey,..., €, €n,...,e_1 beasymplectic
basis for which only opposite signs are paired, and let e j = e € S2V. Then

Vo, = €1,1€0 — eiz,

n
Vi, = Z;(el,jez,—j —e1_j&;)
J:

are highest weight vectors with the indicated weights. ]

In certain cases, the structure of H g is related to the invariant theory of the Weyl
group, as follows. Let H be the space of W-harmonic polynomials on t, that is, those
polynomialskilled by all constant coefficient W-invariant differential operators of posi-
tive degreeon t. AsaW-module, H isthe regular representation of W. The W-structure
of each graded pieceis more subtle, but known (see[BL] and [Ki]). In particular, H * ~
t, H " affords the sign character ¢, and H "™ ~ ¢ @ H " for al n. More generally, for
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any finite dimensional W-module E, possibly reducible, we shall consider the multiplic-
ity polynomial
Pw(E,H ,u) = >~ dimHomw(E, H "u".
n=0
One family of irreducible W-modules common to all Weyl groupsis that of the exterior
powers A% of the representation of W on t. Solomon [So] proved that

Pw(A9t,H ,u) = s(u™, ..., u™),

where sq(X1, ..., X¢) is the elementary symmetric polynomial of degree g and asin §2,
1+my,...,1+ m, are the degrees of the homogeneous generators of the W-invariant
polynomialson t.

Now let VY be the zero weight spacein the irreducible g-module V, . Unlike the case
of the adjoint representation, it is not generally true that P(Vy, H g,u) coincides with
Pw(V9, H , u). However, arecent result of Broer [Br2] asserts this for “small” modules
V,. We shall require several equivalent definitions of asmall module:

2.2. DEFINITION.  Assumethat A belongsto theroot lattice. We say that V), is*“small”
if one of the following equivalent conditions holds;

(1) No nonzeroweight in V, belongsto twice the root lattice

(2) Twicearoot isnot aweight of V,

(3) A # 2« for any dominant root o

The implication (1) = (2) is obvious, (2) = (3) is “saturation of weights’ cf. [B,
p. 125 Corollary 2], and (3) = (1) follows from the fact that any nonzero dominant
weight i in the root lattice must satisfy p > o, for some shortest dominant root as.

The trivial and adjoint representations are small, asis V,,. For 3[(n), one can show
that V, issmall if and only if the highest weight of either V, or its dual V; comes from
apartition of n. For Ey, theirreducible module H ¢y, / Vo, (see (2.1)) is small. We shall
see other small modules occurring in the exterior algebra. The result of Broer is

2.3. THEOREM (BROER, [BR2]). If V, issmall, then

P(Vy, H g,u) = Pw(V%, H ,u).

For g = 3[(n), this was proved by Matsuzawa [Ma]. For other groups, one still has
to compute VO, which can be difficult, but here an example. Take G = E,, and consider
the small module V = H 2¢p, /Va,,. By (2.1), we know P(V,H ¢p,u) = u? + - - -, hence
V0 has a constituent in H 2, by (2.3). But for exceptional groups, H 2 is an irreducible
W-module, and by consulting a weight multiplicity table such as [BMP], we see that
dimV° = dimH 2 in all three cases. Hence VO ~ H 2. Since Pw(H 2,H ,u) isgivenin
[BL], we know P(V, H ¢, u) completely, by (2.3).
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3. General multiplicity formulasfor the exterior algebra. Let Aqg = ®AYg de-
note the exterior algebra of g, for which the multiplicity polynomial of afinite dimen-
siona G-module V is P(V,Ag, U) := >0 dimHomg(V, A%g)u’. Since g is a self-dual
representation, so is each A%. Combining this with Poincaré duality givesthe relations

P(V,Ag,u) = P(V*,Ag, U) = uMSP(V, Ag, u™).

The de Rham complex on g with polynomial coefficients is exact, and taking its G-
invariants yields the additional relation

> P(Vy, Ag, —u)P(V,,Sg,u) = 1.
A<2p
We shall giveaformulafor P(V,, /Ag, u) in amanner analogousto the symmetric mul-
tiplicity polynomial. We begin with corresponding facts about the other inner product.
Note first of al the explicit formula, following from (1.1):

(M) =Wa) > e —d9)(—u)'S.
SCAT-AF
A—b6seW-pu
Thefirst and last assertions in the following were proved in [G1]. Here we use the fac-
torization (1.1).

3.1. PROPOSITION. Let i, A € P*. We have
(D) (xu,MY) = Ounlessp < A

2 (x0,MY) =0unless\ < 2p.

(3 (xx,M§) = Wy (u).

PrROOF. Foranyw € WandSC A" — A}, wehavew- (A —ds) = WA —Wds+wWp — p.
Clearly wh < \. Thenegativerootsin wSare of theform —«, wherew o < 0. Suchan
o also appearsin p —wp and hence cancels. Thisproves (1). WritingwA = A —7, we see
thatw- (A —ds) = X impliesy = wds—wp + p = 0, since both are > 0. Hencew\ = A.
Since SC A" — A7, there are no negative roots in wSso wés = p — wp = 0. Thisforces
w = 1,S= ), whence(3). Finaly, if \ = w-0+6s,then2p—\ = (2p—bs)+(p—Wp) > O.m

Now we give a general multiplicity polynomial, which should be compared with its
symmetric counterpart in Section 2.

3.2. PROPOSITION. Let A, € P*. Then

O M) (s M)
PV, Ag, —U) = (1 —u)’ WA WA Vig)
l /\,ugeP* Wn(u)

(Only finitely many terms in the sum are nonzero.) In particular, we have

P(Vi,Ag,—u) = (1—u)’ 3 e(n —89)(—u)S (x,, M),
A<n<2p, neP*
SCA* A
n—6s€W-0
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and (1 + u)’ dividesP(V,,Ag, u) for all A € P*.

PROOF.  Since x, [Taea 1 —ue, belongsto R{[u]], there exist ¢, (u) € C[[u]], n € P*,
suchthat x, [Teen 1 — U8y = 32, C,(U)M,). Then

(Xﬂ' Mt;) = <XN H 1-— Ue,, Mt;)u

ael
= ¢, (UM}, M)y
= CI](U)VVI] (U)

It follows that

P(Vll)\’/\g’ —U) = (1_ U)[(X)\, Xu H 1- ue(,)

acl

= (1—u)" Y cy(u)(x M)
n

MUY, MY
:(1_u)pZ(X)\ W)((ﬁ; )

Ul

|

Though it will not be of further use to us, it seems worth remarking that one can

invert Kato's expression of (x,, M})u as a Kazhdan-L usztig polynomial, and show that

the other inner product (x,, M) is an average of inverse Kazhdan-L usztig polynomials.

Indeed, elementary properties of the Pxy’s show that there exist unique polynomials Qyx
such that Eyei QyxPwwy = 1if X = w, zero otherwise, and we have

3.3. PrRoOPOSITION. If A and ¢ are two dominant weights in the root lattice, then

(o MY) = UMW (1) ST Qux(uh).
xeW, W

Proor. It sufficesto show that

1 b . .
TR S Ul (g, M) Pt U = 1 if w e WL W, zero otherwise.
A 0

The Hecke algebra H of W hasthe C(u)-basis {T,, : w € W} with the usual multiplica-
tion rules. The inverse Satake transform f +— f maps R(u) into a subalgebra of H. For
example,

Wi (U)
MY)Y = Ay Tu,
M= Wy ™

where A = —wp)\. Followi ng Kato, we consider the Kazhdan-L usztig basis element

CV\Iot,\ (u) = u_]/_<)\Yb> Z Py,Wot)\ (U)Ty

y<Wot,
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Using Kato's result, one can write this as

Cwot/\ (u_l) = uv+<)\'b> Z Pwotp Woty (u_l)( Z TW)

<A weW, W
v —1 V+<)\ p) —1 uyVv
=u W(U ) Z}\ W ( ) PWOt;: Woly (U )(M
n<
= W(U)x ;.
We can therefore express (M%)v in two ways, namely
W, (u) v
Tw= (M)
we B M

= Z(Xu ) M;%)S(,u

W(U) Z(X}u )\)Cwot (u_l)
1 +{j1,p —
= W %: (Xuv M%)ul/ L ’ﬂ>Py,Wot;(u l)Ty-

y<wot;

Now compare the coefficients of T, on both sides, recalling that (x,.,, M5) = (x;i, M}). =

4, Ungraded multiplicities. Long before one knew the Betti numbers of a com-
pact Lie group, E. Cartan was able to show, using the Weyl integration formula, that
dimH(G) = 2. The same idea gives a recursive formula for dimHomg(V,,Ag) that
can easily beimplemented by hand if one has atable of weight multiplicities for V, (cf.
[BMPY).

Let m be the multiplicity of the weight 1 in V,. For A € P*, we put

D(\) = ﬁ/T e [[(1—e,)dt.

acl
WehaveD()\) = Ounless\ belongsto theroot lattice, and it iswell known that D(0) = 1.
4.1. PROPOSITION. For 0 # \ € P*, we have

D A
> mMD(u) =
159N
pepP*
@ )
dimHome(V, Ag) = 2 5> miD(%).
p<A 2
nepP*

(Here Iﬁ(%) isread aszeroif 5 isnot in the root lattice.)

ProoF. Formula (1) isobtained by evaluating
W(u) 1-— ea
|W| ocEA

P(Vy,H g,u) = dt
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at u = 0. For (2), we have

2! (W
P(Vy,Ag, 1) = T EA m) W, /T e, oEA(l e20) dit.
nep*

The integral is zero unless 1, belongs to twice the root lattice, in which case it has the
samevalueas fr €, > Iloea(1 — &) dt, since the squaring map on T is surjective. ]

Take G = Eg asan example, with Dynkindiagramlabelled asin §2. Let A = A3 bethe
fundamental weight of the branch node. Using only weight multiplicity table and pencil,
one can readily compute the multiplicity of V, in Ag, for though there be 24 dominant
weights u < A, only u = 0, 2)\7, 2)1, 26 belong to twice the root lattice. Applying
(4.1)(1), wefind D(\7) = —8, D(\1) = —21, D(\g) = —287, (In general, D(cg) = —¢,
where « isthe highest root.) Then by (4.1)(2),

dimHomg(Vy,Ag) = 22{mp — 8my,  — 21my, — 287my, } = 2°. 5.7 18671.

For small representations, the recursion in (4.1) istrivial by (2.2)(1), and we get
4.2. COROLLARY. Any small module V, has multiplicity m22‘ in Ag.

After receiving an earlier version of this paper, K ostant pointed out that Corollary (4.2)
isaconsequenceof an old result, originally proved by him but unpublished, then proved
independently several years later in [PRV, Theorem 2.1]. See also [V, Chapter 4, Exer-
cises 18-20]. It isthe following

4.3. THEOREM (KOSTANT, [PRV]). Let A, 1,77 be dominant weights, let V] ™" be the
1 — p-weight spacein V,, and put

Zmt = {ve Vit xSy =0 foral o€ 3},
where X, isa root vector for . Then thereis a linear isomorphism

Zy7" ~ Homg(Vy, Hom(V,,, V,)).

For u = n = p, we have
Z={veV):Xv=0 fordlacz}.

Thus, Z0 isall of VY if and only if V, issmall, by (2.2)(2).
The connection with Ag is provided by another old result of Kostant [Ko2, p. 357],
asserting that the character of V, is

(4.4 e [[(1+eyp),
>0
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from which it follows that Ag is isomorphic, as an ungraded G-module, to 2! copies of
End(V,) ~ V, ® V,. With (4.3), this shows that

dimHomg(Vy, Ag) < md2’,

with equality if and only if V, is small. Thus (4.3) and (4.4) not only imply Corol-
lary (4.2), but also its converse.

It would be interesting to have a similar explanation of the recursive formula (4.1)
for non-small modules. In the other direction, note that (4.1) gives an efficient way to
decomposeV, @ V,, or, equivaently, to find the dimension of Z0.

For ungraded multiplicities, it is perhaps more natural to replace Ag with itsungraded
version, namely the Clifford algebra C(g) of g with respect to a G-invariant quadratic
form. In this setting Kostant has shown more [N]: As agebras, C(g) ~ End(V,) ® C(p),
where C(p) is a certain Clifford algebra on the ¢-dimensional space p of primitive G-
invariantsin C(g).

5. Low degrees. Thelowest exterior power whose structure is not obviousis A?g,
which decomposes as follows. Assume g is simple and not isomorphic to $[(2). Let o
bethe highest root, and let J be the set of simple roots which are not orthogonal to og. For
each o € J, oneknowsthat op — v isaroot, and it is evident that e,, A €,,— isahighest
weight vector in A?g, and therefore generates an irreducible suomodule U, C A%q. Let
U, bethe direct sum of the U,, for o € J.

Note that U, isirreducible, except for 3[(n), n > 3, when we have

U; ~ VZ)\1+>\n—2 D V)\2+2)\n—1

respectively. Both of theserepresentationsare small, inthe senseof (2.2). Moregenerally,
from (2.2)(4), we observe that the irreducible constituents of U, are small if and only if
g issimply-laced.

Of course, the Lie bracket causes g to appear in A2g, with multiplicity one by Schur's
lemma. Now proceeding case by case, and using the Wey!| dimension formula, we find

5.1. PROPOSITION. For g # 3[(2) we have A\?g = g & U».

This decomposition implies many nice properties of U, which shall be recounted
elsewhere (but see §7 below).

The third exterior power also admits a uniform description, although naturaly it is
more complicated. We first discuss higher degree analogues of Us.

Call asubset Sof the positive roots “saturated” if 3 € S o € Z, a + 3 € A* imply
o+ 3 € S Then the wedge product es of root vectors for roots in a saturated subset Sis
ahighest weight vector in AlS g, of weight 6s := ¥ 3.5 3, and es generatesan irreducible
g-module U(S) ¢ AISq. For example, we could take Sto be all positive roots outside a
given subset | C %, and see that u"~I'l appearsin P(Vy,s, Ag, u). In the next section,
we shall compute this multiplicity polynomia completely, and find that we have here
detected its lowest degree term.
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Let U, bethe direct sum of the U(S) for saturated Swith |§ = n. Let9: A™1q — Ag
be the Koszul boundary map, given by
AXo A - AXn) = S(=D)MHX, X ] A X A~-~5(i-~-5(j~--AXn.

i<j

Observethat if S C A* issaturated and h € t, then
a(h A es) = os(h)es.

It follows that U(S) belongsto the image of 9, and therefore U(S) also embedsin AlS*1q.
Since U, is multiplicity-free we have, in particular, U, — A3g.

5.4. PROPOSITION. Assume g # 3((2), 3((3), 30(5). Then there is an isomorphism
of g-modules
Ng~CadH?ga U, P Us.

(The decomposition of H 2g was given in (2.1), and the exceptions are covered by the
tablesin Section 8.)

PROOF.  Once again, one can compute the dimensions of each of the three terms on
the right, and with the stated exceptions, it is the same on the left. Moreover, the highest
weightsin Us do not appear in the other two terms. The highest weights of U, appear in
S2g only in the vectors e,,€,,—« for o € J, and these are not highest weight vectors. (In
fact, they belong to the submodule Vs, of H 2g.) Since S2g = € @ H 2q, it sufficesto
show that S?%g injectsinto A3q.

Given asymmetric bilinear form g on g, consider the alternating 3-form

wy(X, Y, Z) = d([X, Y], 2) +q([Y. 2], X) + a([Z, X]. Y).

Let {hy, e, f, : @ € 2,7 € A"} bea Chevalley basis of g, corresponding to the choice
of t and Z. Defineh, = [e,,f,] for dl v € A*. Let {H,, E,, Fy} be the corresponding
dual basiswith respect to the Killing form (, ). Let K bethe kernel of q+— wq. Thisisa
g-submodule of S2g, and since every nonzero submodule of Sq has nonzero zero weight
space, it sufficesto show that the zero weight space Ky is zero.

A typical q € Ko may be written

a= 3 AH2+ 3 BygH.Hs +2 3" CE,Fy,
aEex a3 >0

where g(hy, he) = Aq, d(ha, hg) = By, A(ey, y) = C,. Since wq = 0, we have, for all
hetandy € A,

0 = wq(®y,fy,h) = a(hy, h) + 2y(h)a(e,. F),

(5.5) a(hy, h) = =2v(h)C,.
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Thisimpliesthat the restriction map Ko — S?t isinjective. Moreover, takingy = o €
and h = h, givestherelation A, = —4C,, for every simpleroot «.

Extend the Killing form (,) to a G-invariant inner product on S2g as follows: For
X € g, let Dy be the derivation of S2g extending the functional (X, -). Thenfor X,Y € g
and P € S2g we have (XY, P) = DxDyP. Let K+ be the subspace of S2g orthogonal to
K.

Letq; = Fio,whereasaboveoco isthehighestroot, andlet « € X besuchthat ap—aris
aroot. Then [y, fo,—a] = cf,, for some nonzero scalar ¢, and we, (fu, fag—as fay) = € # 0.
It follows that V2, € K. Now the Weyl group acts transitively on long roots, so there
is along simple root o such that € belongs to K. Applying ad(f,)? to €, we have
2e,f, —h2 € K. Hencefor our q € Ko we have

0= <2 AH2 + 5" BusHoHy +2 3 C,EFy, 26,60 — h§> = 4C, — 2A,.
aEx a#B v>0
Sinceaso A, = —4C,, we have A, = C, = 0 for thislong simple «. It follows from
(5.5) that q(h,, h) = Ofor all g € Kpandal h € t. Let g; betherestrictionof q € Ko to t,
andlet g} bethetransform of g; underw € W. Notethat g also belongsto therestriction
image of Ko, because restriction Ko — S2t is W-equivariant. Since Ad(w)h, = hy,, we
have
0 (P, 1) = 6 (o, AdW) "*h) =0

foral h € t andw € W. Hence g;(hg,-) = 0 for al long roots 3. Since the long roots
span t*, we have g; = 0, and sincerestriction isinjective, we have q = 0. ]

(5.6) Themap q — wyq is a special case of the relation between symmetric and
alternating forms as outlined in [Ch]. The differential d: ¢ — g A g extendsto an algebra
homomorphism Q:Sg — A®®g whose image is contained in d(A%g). In fact thereis
acanonical “integral” of Q (see [Ch]). For example, dwq = 3Q(q) for q € S?g.

Since invariant alternating forms are never coboundaries (cf. [CE]), the kernel of Q
containstheideal in Sg generated by invariant polynomials, and therefore the image of
QisQ(H g). By (5.1), A®®q is generated by dg and U,, and Q(H g) is the subalgebra
of A®®g generated by dg. We shall determine the image under Q of the submodules
Vo, € H "g described in Section 2. This amounts to finding the subalgebra of A*®g
generated by wo = d(&y,). Now

wo = €y NN+ 3" Chpen N ey,

for some 0 # h € t, where the sum is over pairs of positive roots o and 3 such that
o+ (3 = ag, and each C,; is a nonzero scalar. Say there are p such pairs of positive
roots. The form u = ¥ C,s€, A €5 May be viewed as a nondegenerate form on the
2p-dimensional span of the root vectorsit contains. Taking powers, we have

Wl = kegy AN A L+ K

and § = 0if and only if %=1 = 0, if and only if k — 1 > p. Thus the highest nonzero
power of wp iswh™.
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6. Some explicit graded multiplicity formulas. The multiplicity formulas given
in §3 involve large cancellations, and while they can be useful, one would prefer formu-
las with explicit nonnegative coefficients. These can be obtained for certain irreducible
representations as follows.

We begin with a reduction formula. Let p be a parabolic subalgebra of g with Levi
decompositionp = [ @ n. Assumethat t C [, and that theroots A, of t in n are positive,
so that A* = A7 U A,. Correspondingly, put p = p( + py. If u belongs to the integral
span of A7 and is dominant with respect to that choice of positive roots for [, let V;, be
the [-module with highest weight 1.

6.1. PROPOSITION. SupposeVL appearsin Al. Then pu+2p, isdominant with respect
to A*, and we have

P(V,is25,, Ag, 1) = UAIP(V/, AL ).

ProOOF.  For the dominance assertion, note that © = 2p; — 6, where 6 is a sum of
simple roots in [ with non-negative coefficients, so u + 2p, = 2p — 6. Now, if aisa
simple root outside [, then (5, &) < 0, S0 (u + 2py, &) = (2p, &) — (6,&) > 0. If «wis
asimple root in [, then (2p,,, &) = 0, since 2p, is the weight of the one-dimensional
[-module A9™" 1. Hence (p + 2py, &) = {u, &) > 0since y is dominant for A;.

For the multiplicity, we compare coefficients of simple roots outside [, and find that
every weight vector in Ag of weight 11 +2p, isof theforme, Av, where0 # e, € AlPIn
and v € Al hasweight ;. Let o be asimple root, with e, the corresponding Chevalley
basisvector. If o € A, then ad(ey)(e,) = 0 since n is unimodular, and ad(e,)(l) C n,
so ad(e,)(e, AV) = 0. 1f a € ZN A/, then e, belongs to the derived algebra of [ which
actstrivially on A2+l so againad(e,)(e,) = 0. Sincead(e,)v € Al, it followsthat e, Av
is a g-highest weight vector if and only if v isan [-highest weight vector, implying the
proposition. ]

Let W; be the Weyl group of [, viewed as a reflection group actingon t. Let 1 +
Ny, ..., 1+ n, bethe degrees of the homogeneous generators of the W, -invariant poly-
nomials on t. Note that some n;’s will be zero. Taking p = 0in (6.1), the Betti number
formulafor compact Lie groupsyields

6.2. COROLLARY.
¢
P(sz’n ’ /\gl U) = U‘A"I H(l + u2ﬂi+1).
i=1

For example, P(Vz,, A, u) = w’(1+u)’ (here [ = t), andif o isasimpleroot, we have
P(V2p—a, A, U) = U711 + U) =21 + u®) (here [ has semisimple rank one).

We next use the reduction formula (6.1) and the general formula (3.2) to compute
another family of multiplicity polynomials.

https://doi.org/10.4153/CJM-1997-007-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-007-1

150 MARK REEDER

6.3. PROPOSITION. Assumegq issimple. For | C Z, we have
P(V2ps, Ag, ) = UL+ 1) 7O @+ 1) O L+ )0,

wherec(l) isthe number of connected componentsof the subgraph of the Dynkin diagram
of ¢ whose verticesarein |.

PrROOF. Applying the reduction formula (6.1) to the Levi subalgebra generated by
therootsin I, we may assumel| = X, and must show that

P(V2y—o, A, U) = 0 (1 +U) 1L+ D) 1L+ W),

wherewe have written o = 5. Theweightsy suchthat 2p — o < 5 < 2p are of theform
nk = 2p—ék for someK C Z, and these are all dominant. We first compute (x2,—+, M, )
using the formula given at the beginning of Section 3.

Write K = Ko U Ky (digoint union), where Ky is the set of roots in K which are
orthogonal to every member of K other than themselves. Then A = Kg, and W, (u) =

UL

(1 + u)lKal, Now let SC A* — Kg, and supposethere existsw € W such that

@ Nk —bs=W-(2p — o).
Define subsets
A={pelA":w3eA"—S}, B={3cA":—wj3eK},
C={BelA":—wpelA"—S}, D={BelA" w3 eK}
Notethat ANB = CND = ). Write p— W 1p = 345 Myr, M, NONNEgativeintegers.
Then after applyingw 1, (a) may be written

ba—bc =W op—s=2p+ Y (My — Do +w Y,

ey
SO

(b) 2p+2(ma—l)a=5A+5B—5c—5D.

Itfollowsthat m, < 1foral o € Z, sowisaproduct of mutually commuting reflections
about roots in some subset J € X consisting of pairwise orthogonal roots. Moreover, (b)
also showsthat if o € J, then o cannot appear in any root in C or D. HenceJ C B, so
J C K. We may now rewrite (a) as

(C) bs=bs_k + 2(3 — <O‘, 6!>)Ol

aed

(Asusual, & = 2o/ (o, x).) | claim (c) can only hold if J = (). Supposethereisan o € J.
LetVy,...,7r,B1,...,0s betherootsin £ — {o} which are not orthogonal to «, where
v €K, By €z —Kforali,j. Alsolet S— {a} = {41, ...,6:}. By (c) we can write

S
O =N+ ) GG + i,
=
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whereng > 0, (uk, &) = 0, and T} _; ¢y = 1 for each j. Moreover, since s,dx € A, we
must have n, + ¥ ¢4 (G;, &) < 0. Summing these inequalities over k, we get

S t
(d) 2By + 3 < 0.
j=1 k=1
Letng = 1if o € S ng = 0 otherwise. Comparing the coefficient of « in both sides of
(c), wefind

No+m+---+n=3—(0,&) =1-3(8,& — > (V&)
i

Using (d) weget1 > ng > 1— Y (7i, &). Since (Vi, &) < Ofor al i, therecanbeno”;'s,
s0 a € Kg, and moreover np = 1. On the other hand, SmissesKy, soa ¢ S song = 0.
Thisis the contradiction, s0 J = (), w = 1 and §s = 5_«.

LEMMA A. For anysubsetL C %, we have

PU) = 3 ul¥ = u O +u)t-0,
SCA
ds=06L

Proor. If we partition L = L1 U - - - U L¢qy according to the connected components
of its subgraph, we have P = P, --- P, SO we may assume the subgraph of L is
connected. If L = {c, ..., o}, every Sin the sum is formed by making breaks in the
chainay, ..., ap. Hencethe coefficient of u™ in P, (u) isthe number of sizem— 1 subsets
of the p — 1 possible breaking pointsin the chain. It follows that P (u) = u(1+ u)’ 1. m

Taking L = K’ := Z — K, we have shown that

(x2p—0+ Mf;K) = (—u)C(K,)(l + u)|Kd\(1 _ U)IK’|—c(K’)_

With (3.2) in mind, we again take S C A* — Ky, and now supposew € W is such that
nk —bs = W- 0. Hence p —wp = éx — da+—s < Ok,. Asbefore, thismeansw is a product
of commuting reflections about a set J of mutually orthogonal rootsin Ko, and therefore
dpr—s = bk—y. Setting T = A" — (SUKy), (3.2) becomes

P(V2y—0, Ag, U) = (1 + 1) S (= 1)Plur I (g — Kl (1 4+ )K=,

where the sum runs over K C %, J an orthogonal subset of Ko, T C A* such that 61 =
dky—a- For fixed K and J, we can use LemmaA again, thistimewithL = J' := Ko — J,
note that |Kq4| + |J'| = |K| — |J|, and get

P(VZp—ay/\ga U)

= @+u)’ 3 wreIIKI — )Rl (q + y)lK e [Z(—u)”'(l +u)ld =,
KCx J

AsinLemmaA, the inner sum is a product of similar sums for each component of Ko,
so can be evaluated using
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LEMMA B.
S+ ) = 1y,
J

where the sum runs over those subsetsJ C X consisting of pairwise orthogonal roots,
J' = X—J, and c(J’) isthe number of componentsof the Dynkin subdiagramwith vertices
inJ.

PrROOF. List thesimpleroots = {«y, ..., a,} in such away that the subdiagram
withverticesZy := {og, ..., ax} isconnected, for eachk < (. Sincethe assertioniseasy
to verify in small rank, we can assume the subdiagram with vertices {a,—, ay—1, ¢ } is
of type As. Let R, be the polynomia on the left side of Lemma B, and write R, =
RO+R}, where R} isthe sum over those J containing «,. Also let R, Rt be the analogous
polynomials for Z. We will show by inductionon ¢ that R = 1and R! = —u.

Fix k < £, and consider those J for which o € J, but o ¢ J for any i > k. We
have c(Zx — J) = c(Z — J) — 1, so the sum of (—u)Pl(1 + u)P'1=<) over such J is
(@+u)~IRL Itfollowsthat R = (1 +u) "1+ (1+u)2Rt+.-- +R._; = 1 bythe
inductive hypothesis applied to RL. It remainsto consider R}. Let J = {oj,, ..., o, o }
be a typical subset occuring in the sum for R}, withj; < .- <j < (-2 1f <
(—2letdo = {ej,,..., 05,1}, andif j, = ( —2,let Iy = {e,,..., ¢ }. Then
c(Zy_1—Jo) =c(Z,—Jandc(Z,_» — J1) = ¢(Z, —J) — 1. It follows that the sum over
the Jwith j, < ¢ — 2is(1+u)R}_; = —u(1 + u), and the sum over Jwithj, = £ — 2is

—uR!_,=u? soR} = —u. n
We now have
P(Vay_o, Ag,U) = (1+0) 57w oKI=IKI (g — yKab+elko)(q 4 ) K'I=e(k)
KCZ
_ ul/—/(1+ u)/’ Z U\K’|+0(K’)(1_ U)C(K)(1+ u)|K’\—C(K’).
KCZ

It remains only to show that the last sum, call it Qs, is (1 + u?)!~1(1 — u + u?). Again,
thisis easy to check in small rank. Label X asin the proof of Lemma B, and for K =
{ai,,..., 0}, letK = K—{a }ifip = ¢, K = K otherwise. Wenow expressc(z,_1—K)
in terms of ¢c(Z — 1), and likewise for ¢(K) (there are four cases, for each possibility of
{ip—1,ip} N {¢ — 1, (}), and find that Qs = (1 + u?)Qs,_,. This completes the Proof of
6.3. n

7. Graded multiplicities for small modules. From now on we assume g to be
simple, and consider g-modules V, which are small, in the sense of (2.2). We have seen
in (4.2) that the total multiplicity of V, in Ag is m?2¢, and we now seek the multiplicity
of V, in A"g for each n. We shall state a conjecture for this, followed by a collection of
evidencein favor of it.

To introduce our conjectural formula for the small multiplicity polynomials, recall
that H is the space of W-harmonic polynomials on t, the multiplicity polynomial of a
W-module E is

Pw(E,H ,u) = 3 dimHomw(E, H ",
n=0
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and for E = AYt, we have Solomon’s formula
Pw(A%,H ,u) = squ™,...,u™),
wheremy < --- < m;, arethe exponentsof W.

7.1. CONJECTURE. If V, issmall, asin (2.2), then

4
P(Vy,Ag,u) = > uIPw(VY @ A%, H ).
g=0
When )\ = 0, both sidesof (7.1) reduceto the known Poincaré polynomial of the man-
ifold G, by Cartan’s theory of invariant differential forms on the left and by Solomon’s
formula on the right [R1].
Let us abbreviate ( , }w := dimHomy(, ). The polynomial on the right side of (7.1)
beginsas
4
S uIPW(VY @ A%, H 1) = (V, Chw + u(VS, t)w + UA(VY, £ B A?t)w
g=0
7.2
(7.2) +BV,CantoNtoH?)y
+U (VL to Nt oAt e HH)w+ -

Even in degree zero, (7.1) is not obvious. However, it follows from Broer’s result (2.3),
or a direct proof using (4.3), that (7.1) is true in degrees zero and one. Both sides of
(7.1) have the same palindromy by Poincaré duality on the left hand and because
u'Pw(E,H ,u™) = Pw(e ® E,H ,u) ontheright. At u = 1, both sides of (7.1) become
m)2¢ by (4.2) on the left, and on the right because H affords the regular representation
of W.

Take V, to be the adjoint representation, which is small, and supposeg # 3((n). (The
case g = 3[(n) will be considered in more detail shortly.) Let us check (7.1) in low
degrees. By (7.2), theright hand polynomial in (7.1) begins as

4
ST UIPW(t @ A%, H %) = u+u? + u* + cu® + (higher powers),
=0

where ¢ = dim Endw(H 2). This follows from the fact that no exponent equals two for
g # 3l(n). Wenotethat c = 1if and only if g isexceptiona (3((3) isexcluded!). On the
other hand, we can show

7.3. LEMMA. If g isnot 3[(n), then
P(g, g, U) = u+ U? + cau* + csu® + (higher powers),
with 1 < c4 <cs.

PROOF. By (5.2) the adjoint representation appears in A3g as it appears in H 2q,
where its multiplicity is the number of exponents equal to two. But no exponent is two

for g # 3((n).
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Now, givenany p. € Ag whichisnot inthetop degree, wehaveuAg # 0, fromwhich
it follows that dimHomg(g, A"g) > dim(A"1q)® for every n < dimg. In particular,
for g # 3((2), wehaveg ~ w A g C A%, where w € (A3q)C is the invariant form
([X,Y],Z) on g. Sincethe invariant forms represent all the cohomology of g [CE, 19.1],
the differential d is exact on nontrivial isotypic components. Since g does not appear in
N3q, it follows that d does not kill any copy of g in A%g. .

From (7.3), (4.2) and Poincaré duality, we find

P(3p(4), A30(5),u) = u(L+u)(1+ %) (1 +uf),
P(a2, Aga, U) = U(L + U)(1+ u) (1 + %),

which agreewith (7.1). All multiplicity polynomialsfor Sp(4), G,, along with Sp(6) are
givenin Section 8, from which one can also verify (7.1) for the remaining small modules
afforded by these groups.

For additional examples, take G of type Dy, or Ep, and V = U, = A%g /g (see (5.1)).
These are exactly the groups for which U, isirreducible and small. Here the left side of
(7.1) beginsas u? + u® + - - -, by (5.1) and (5.4). Using (5.1), it is not hard to determine
the W-action on the zero weight space U9, and see that the right side of (7.1) beginsthe
sameway. Given what we already know, the validity of (7.1) in degreetwo is equivalent
to U, being the only small module containing A?t in its zero weight space.

For the remainder of this section, we consider (7.1) for ¢ = 3[(n). Actually, it is
more convenient to consider g((n), whose multiplicity polynomials are those for 3((n)
multiplied by (1 + u). However, “zero weight space” till refersto the invariants under a
maximal torus of SL(n).

We identify highest weights with partitions, for which unexplained notation follows
[M2]. Let A = [A\1 > A2 > --- > \] beapartition of n. Some of the \j's may be zero.
The irreducible g{(n)-module V, is small, and Stembridge has found the following ex-
plicit formulafor P(Vy, g((n), u). The boxesin the Young diagram of X are left-justified,
with \j boxesin thei-th row from the top, in which the j-th box from the left is |abelled
(i,J). The hook length of box (i,]) is the number h(i,j) of boxes directly to the right or
directly below (i, ), including (i, j) itself.

7.4. THEOREM (STEMBRIDGE, [ST]). For g = g((n), and A a partition of n, we have

ud—2 4 y2-1

P(Vi Ag,U) = (1= W)@~ ) (=) [ o

((B)ISN

We turn now to the right side of (7.1). Let x, be the irreducible representation of
S, corresponding to the partition A. For example, x,_y i« is the k-th exterior power of
the reflection representation x,—1,1. In general, x, appearswith multiplicity one in the
induced representation v, = Indg C,whereS, = S,, x --- x S,,. Itis known that
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V9 ~ X,,» where \" isthe partition dual to A. Wefirst compute the right side of (7.1) with
V9 replaced by 1. For any S,-module E, we abbreviate
Pn(E,u) := Ps (E,H ,u),

n
R(E,u) := > UIP,(E @ A%, UP).
G=0

Here Al := A9, where t is a Cartan subalgebra of llg(n).

7.5. PROPOSITION.  For any partition X of n, we have

n 1+ u2i—1 ,\i/
RO ) = (=) =) =) T ()
where )\’ is the partition dual to \.
PROOF. Therestriction of A7 to S, is given by
Ns, = ? AR @---an,
[Pl=a

where each p = (p1, - - -, Pn) is an ordered n-tuple of non-negative integers and |p| :=
Py +-- - +pn. It follows that

VoA = P |nd§;(/\§’1l ®---@NAN).
Iﬂp=q
Let )
PU=01-u@d—uw) - @A-u)JJa—u)y™
i=1

denote the Poincaré polynomial of S, divided by that of S,. By Frobeniusreciprocity, we
have

Pa(¥y @ A%, u) = P*u) 3 ﬁ Py, (AR, ).
lpl=qi=1

The exponentsof S, acting on C* are0,1,2,..., A\ — 1, so Solomon’s formula gives
Py (AR, U) = sp(L,u,..., UM ),
Thus

RO W) = PR S UP [T (L7, 0P )
p i=1

= P\WP) ﬁ S WS (L., uP )

i=1p>0

=P @ T I+ Y

i=1j=1

— P)\(UZ) ﬁ(l + u2i71)>\i’_ =
i=1
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We can write

X\ = Z kawua

H=A

where the matrix [L, ] isinverse to the Kostka matrix [K,,] (see [M2, 1.6]). Thus, con-
jecture (7.1) is equivalent to a combinatorial identity involving Kostka numbers.

For example, it is now easy to verify conjecture (7.1) for highest weights correspond-
ing to partitions of the form A = 21" Indeed, we then have V? ~ yq_kx, and the
decomposition formulas for +,,’simply that

XIn—kK = Vin—kK — Yn—k+Lk-1],

s0 R(V?, u) can be computed from (7.5), and it agrees with Stembridge’s formula (7.4)
for P(V,, Ag, u).

8. Tables. The above results and remarks, plus a bit more (see below), suffice to
determine the complete decomposition of Ag for some small groups. With Dynkin dia-
gramslabelled (asin §2)

12, 123, 1«2, 123 1«2,

we abbreviate P(Vg, ,+a,5,+-, AG, U) by P(aq, &, - - -)q, where d is the dimension of the
irreducible module Va, , +a)p+--

Ao
P(2,2),7 = u3(1 + u)?
P(0,3)10 = P(3,0)10 = U*(1 + u)(1 + u®)
P(1,1)s = u(l+ u)(1+ u?)(L+ 1)
P(0,0); = (1+ W¥)(1+ud)

As
P(2,2,2)720 = u®(1 + u)®
P(3,0,3)300 = P(0,3,2)280 = P(2,3,0)280 = U(L + U)*(1 + )
P(0,4,0)105 = U*(1+ u)(1 + u3)?

P(L,1,3)256 = P(3, 1, 1)ass = u*(1 + u)*(1 + u?)(1 + u®)
P(1,2,1)175 = W(1+u)?(1+ 1?1 + 1)
P(2,0,2)s = U3(1+u)’(1+u)(1 +u? + u?)
P(4,0,0)35 = P(0,0,4)35 = U3(1 + u)(1+ u3)(1 + u°)
P(0,2,0)20 = U3(1+u)(1+ )@+ u?)
P(2,1,0)s5 = P(0, 1, 2)ss = U?(1+ u)(1 + u®)?(1 + u® + u?)
P(1,0,1)15 = u(1+U)(1 + W) (1 + W)L+ + u?)
P(0,0,0); = (1 +u®)(1 +u®)(1+u’)
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C
P(2,2)81 = U*(1+u)?
P(0,1)s = P(0,2)14 = P(0,3)30 = P(4,0)35 = U*(1 + u)(1 + u°)
P(2, 1)35 = U?(1 + u)(1 + u?)(1 + u®)
P(2,0)10 = u(1 + u)(1 + u®)(L + u?)
P(0,0); = (1 +ud)(1+u")

Cs
P(2,2,2)10683 = U(1 +U)°
P(5,0, 1)2079 = P(0,3,2)7700 = P(4,0, 2)4914 = P(3,0, 3)g100
= P(2,4,0)as50 = (1 + U)?(L + U°)
P(3,2, V11319 = P(1,1, 3)7168 = U’ (1 + u)*(1 + u?)(1 + )
P(0,5,0)3508 = U’ (1 + u)(1 + U°)?
P(4,2,0)3000 = W(L+U)?(1 +u*)(1 + )
P2, 1,250 = 1+ u)?(L+ )L +u+u?+ud+u?)
P(2,0,2)1078 = W1+ u)?(1 + u3)(2 + u? + 2u™)

P(1,3, Dres = UP(L+U*(L+ U (1 + 1)
P(1,0,3)133 = U1 + U)(1+u+u?)(1+u3)?
P(0,4,0)1274 = WB(1 + u)(1 + u®)(1 + 2u + 2u* + W)
P(0,0,4)1001 = W(1 + u)(1 + ¥)(1 + °)

P(6,0,0)462 = WP(1+ u)(1 + u3)(L+u’)

P(3,1, Doz = WL+ U)(L+ UL +u+ )L+ U
P(2,3,0)57 = WA+ u)(1+wW)?L+u+u?+u®+u?)

P(0, 2, 2)2a57 = P(0, 1, 2594 = WP(1 + u)(1+ ud)(L + u? + 2u® + 2u* + U° + U)
P(0,0,2)g = WP(1+u)(1+ ud)?(1 +u?

P(4,1,0)g04 = U*(1 +U)(1 + UP)(1 + W) (1 + uf)
P(2,2,0)g24 = UYL+ U)3(1 + u3)2(1+u?

P(L, 2, D)ao0s = UH(L + u+u?)?(1 + ud)®
P(1,1, 1512 = u*(L + u)2(1 + u?)2 (1 + u¥)(1 + u?)
P(1,0,1)70 = U@+ u)@A+ W)L +u+ v +ut + B +u’ + B +u°)
P(4,0,0)126 = U3(1 + U)(1 + u®)?(L + u* + )

P(3,0, 1)s25 = W31+ u+ u?)(1 + )31+ u?)

P(0, 3,0)385 = UW3(L+ u)(L + u3)(L +u® + 2u* + u® + U8 + 2u” + L8 + ulh)
P(0,2,0)90 = u3(1+ u)(1+ ud)?(1 + u*)?

P(0,1,0)14 = U3+ u)(L+ ud)(1 + u*)(1 +u")
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P(2,1,0)180 = (1 +u)(1+ )L+ +ud+ut +u° +2u8 +2u” + W8 +u® + Ul + Ul +u'®)
P(2,0,0)21 = u(1+ U)(1+ W)L+ u')(L+u +°)
P(0,0,0); = (1 + W)L +u)(1+u")

G,
P(2,2)729 = U8(1 + u)?
P(1,0)7 = P(1,2)286 = P(0,3)273 = P(5,0)378 = (1 + u)(1 + U°)
P(1,Des = P(3, Dasg = UL+ u)(1 + u?)(1 + )
P2, 1)1ge = UYL+ u) (L + )L +u+1?)
P(4,0)152 = P(0,2)77 = P(2,0)p7 = U¥(1 + u)(1 + U¥)(L + u*)
P(3,0)77 = WX(1+U)(1+ W3)(1+ U’ +u°)
P(0,1)14 = u(L + u)(1 + u®)(1 + u)
P(0,0); = (1+u¥)(1 +u't)

Remarks on these computations will summarize the resultsin this article. For Ag, the
highest weights below 20 = 202 are covered by Stembridge's first layer formulas.
Those above 2a are handled by (6.2) and (6.3), so what remain are the multiplicities of
Va4,, Which are obtained by default. For G, we have the low degree calculations of (5.1)
and (5.2), the ungraded multiplicity formula (4.1) to get upper bounds on multiplicities
in each degree, and lower bounds come from multiplicities of dominant weightsin A"g
which are maximal among those whose multiplicities are not yet determined. As already
mentioned, (7.3) gives the adjoint multiplicities. Finally, more occurrences follow from
the exactness of the Koszul complex - - - A"g — A™1q - - - on nontrivial isotypic compo-
nents. Thetablefor C; waskindly produced by the referee, using the computer program
LIiE (from CWI, Amsterdam). There was an obvious small error in the adjoint polyno-
mial, which | believe is corrected here. Of the 35 polynomials in the C3 Table, 13 are
explained by (6.2) and (6.3), another four are as predicted by conjecture (7.1), and we
have checked that the rest give the correct dimensions and ungraded multiplicities, using
4.2).
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