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GENERALIZED HUGHES PLANES 

PETER DEMBOWSKI 

1. Introduction. The projective planes discovered in 1957 by Hughes [3] 
were originally described by means of a nearfield F satisfying the following 
conditions: 

(a) F is finite, 
(b) the centre and kernel of F coincide, 
(c) F is of rank 2 over its kernel. 

(The definitions of these terms will be given in § 2 ; the terminology used 
throughout the paper is that of [1].) 

Rosati [5] showed in 1960 that condition (a) is not necessary, thus con­
structing the first "infinite Hughes planes". Condition (b), however, plays 
an essential part also in Rosati's work. 

The aim in this paper is to show that condition (b) is superfluous as well. 
For the finite case, this has been remarked by Ostrom [4] without proof; here 
we shall show that a "generalized Hughes plane" can be constructed over any 
nearfield satisfying condition (c) only. (This includes, in particular, the seven 
irregular nearfields of Zassenhaus [7].) 

The principal new tool is a representation theorem for nearfields satisfying 
(c); this will be given in § 2. The actual construction will be carried out in 
§§ 3, 4, and we shall organize our arguments in such a way that condition (c) 
will be used only in § 4. It is surprising how much can be done without (c), 
and although (c) is clearly indispensable for the final steps of the construction, 
I feel that there may be many presently undiscovered planes for whose con­
struction the results of § 3 are essential. 

Finally, in § 5, we shall prove some properties of the collineation groups of 
the generalized Hughes planes. (These properties were known before in case 
(b) holds; cf. [6].) We show that there is a collineation group transitive on 
incident pairs of points and lines not belonging to the distinguished Baer 
subplane, so that the planes may be represented within the group GLz($(F)) ; 
cf. [1, p. 15]. This fact was used in my forthcoming paper [2]. 

2. A theorem on nearfields. A nearfield is an algebraic structure F with an 
addition and a multiplication such that all axioms for an associative (but not 
necessarily commutative) division ring are satisfied except possibly the 
distributive law 

(D) k(x + y) = kx + ky. 
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The set of all k £ F such that (D) holds for all x, y Ç F is the kernel of F, 
denoted by ®(F). Clearly, ®(F) is a division ring, and for any sub-division 
ring K of $t(F), we may regard F as a left vector space over K. The dimension 
of this vector space is the rank of F over K; in the most important case, 
K = $(F), we speak simply of the rank of F. 

The centre of the nearfield F is the set 3 (-F) of all those z £ T7 for which 

(C) xs = sx 

holds, for all x Ç K The centre need not be closed with respect to addition; 
hence it is in general not a subfield of F. This is the main reason why the 
centre will play only a minor role in the remainder of the paper. 

2.1. For any near field F, we have £(F) C 3 ( f i ( i ? ) ) C ®(F). 

This follows easily from the definitions. 

The aim in this section is to prove a theorem on the representation of near-
fields of rank ^ 2 . For this, we consider an arbitrary division ring K. A pair 
(u, v) of mappings ut v from K X K into K will be called a pair of nearfield 

functions on K if the following conditions are satisfied: 

(1) (x, y) —> (u(x, y), v(x, y)) is a permutation of K X K, 

(2) «(1, 0) = 0, v(l, 0) = 1, and M(0, 0) = 0, 

(3) u(xix2 + yiu(x2,y2),x1y2 + yiv(x2,y2)) = u(xu y^x2 + v(xlyy!) u(x2,y2), 

(4) v{xix2 + yiu(x2, y2), xiy2 + yiv(x2, y2)) = u(xi, yi)y2 + v(xu yi)v(x2t y2). 

After this preparation, we can state the following result. 

2.2. THEOREM. If (u, v) is a pair of nearfield functions on the division ring K, 
then the additive group F — K © K is a nearfield with respect to the following 
multiplication : 

(5) (xi, yi)(x2, y2) = (x!X2 + ytu(x2, y2), xYy2 + y1v{x2i y2)). 

The rank of F is 1 or 2 according as the permutation (1) is, or is not, an additive 
automorphism of F. If F has rank 2, then $t(F) = {(x, 0) | x 6 K} ^ K. 

Conversely, every nearfield of rank 2 over K can be represented in this fashion. 

Proof. That (5) turns F = K © K into a nearfield is only a matter of 
straightforward verification. In particular, (1) guarantees that F — {(0,0)} 
is a quasi-group with respect to the multiplication (5); the identity element 
is (1, 0) because of (2), and (3) and (4) yield associativity of multiplication. 

The equation 

(xi,yi)[(x2,y2) + (x2',y2')] = (xl9yi)(x2,y2) + (xlt yi)(x2\ y2'), 

which is equivalent to (D) above, degenerates with (5) into the equations 

(6) yi[u(x2 + x2yy2 + y2) — u(x2ty2) - u(x2,y2)] = 0 
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and 

(7) yi[v(x2 + x2, y 2 + y 2) — v(x2) y2) - v(x2, y 2)] = 0. 

Since these are certainly satisfied if yi = 0, the set {(x, 0)| x G K] is always 
in ®(F). If it is a proper subset of the kernel, then there must exist a j ' i ^ O 
such that (6) and (7) hold for all x2l x2, y2, y2. This means that the mappings 
(x, y) —> u(x, y) and (x, y) —>v(x, y) are additive homomorphisms of F into 
K, whence it follows from (1) that (x, y) —» (u(x, y), v(x, y)) is an auto­
morphism of F. On the other hand, if (1) is an automorphism, then (6) and (7) 
are always satisfied, and F is of rank 1. 

Now assume conversely that F is any nearfield of rank 2 over K. (Note that 
F may be of rank 1, i.e. a division ring, since it is not assumed that K is the 
kernel.) Then the identity element 1 together with an arbitrary element 
e G K of F are a basis of F over K, so that each element of F can be written 
in one and only one way as x + ye, with x, y G K. We define two functions 
u and v from F into K by 

(8) e(x + ye) = u(x, y) + v(x, y)e. 

Then, since x + ye —» e(x + 3>e) is a permutation of F, we obtain (1); on the 
other hand, el = e implies (2). 

Next, using the fact that the other (the right) distributive law is valid and 
that K is in the kernel, we obtain 

(xi + yxe) (x2 + yie) = Xi(x2 + y2e) + yie(x2 + y2e) 

= xix2 + xxy2e + yi[u(x2, y2) + v(x2, y2)e] 

= xix2 + yiu(x2, y2) + [X13/2 + yiv(x2t y2)]e. 

This means, of course, that multiplication in F obeys the rule (5). 
I t remains to verify (3) and (4) for the functions u and v defined by (8). 

This is done in a straightforward fashion by computing the product 
e(x\ + y±e)(x2 + y2e) in two different ways, using (5) and the associativity 
of multiplication in F. 

3. The general construction. Let F be a nearfield and K a sub-division 
ring of $(F). We make no assumptions on the rank of F over K here; in 
particular, we do not exclude F = $t(F) = K. We denote by W the direct 
sum of three copies of the additive group of F, i.e. the set of all triples 
X = (xi, x2l X3), with Xi G F {i = 1, 2, 3) which is an additive group with 
respect to componentwise addition. The subset of all those x G W f or which 
each Xi is in K (i = 1, 2, 3) will be denoted by V. 

We introduce a right scalar multiplication of the elements of W by elements 
in F by 

(9) (xi, x2, xz)f = (xif, x2f, xzf) for all xuf G F. 
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It is clear that this scalar multiplication satisfies 

(10) xl = x, x(fg) = (xf)g, (x + y ) / = xf + yf, 

for all x, y G W and 1, / , g G F. Furthermore, we have 

(11) v ( / + g) =vf+vg for v G V and f, g £ F. 

Next, consider the group GL%(K) of all non-singular (3, 3)-matrices with 
entries in K. For each A = (a if) G GL3(i£), we define a permutation 7 (-4) 
of IF by 

/ 3 3 3 

(12) x7 U ) = Ax = [^T, aijXj} ]T) aïjXj, ] £ azfCj 
\ j=i 3=1 3=1 

Although we write the elements of W as row vectors (for typographical 
convenience), it becomes apparent here that they should be considered as 
column vectors. We could have indicated this by the usual transposition 
superscript, but that would have caused much more cumbersome notation 
while adding practically nothing to the clarity. 

3.1. Let T denote the set of all y(A), with A G GLZ(K). Then 
(i) each 7 G T satisfies 

(13) (x + y)y = xy + yy and (xf)y = x>f for all x, y G W, f G F, 

which we express by saying that 7 is an " F-automorphism" of W, and 
(ii) T is a group isomorphic to GL3(i£). 

The proof of this is straightforward and can be left to the reader. 

Now we define the points of W as the subsets 

*F = {x/| / G F}, with o ^ x G W. 

Here and later, o denotes the zero element of W. Clearly x G xF} and if 
o 7̂  y G xF, then y F = xF. This shows the following. 

3.2. The intersection of two distinct points consists of o alone. 

Also, the second equation of (13) yields the following. 

3.3. Each 7 G T maps points onto points. 

Next, we define the lines. For this we associate with each / G F a mapping 
/* from W into F by 

(14) f*(xu x2f xz) = Xi + fx2 + xz 

and consider the subsets 

£,(/) = {x G W\f*(x) = 0} for all / G F. 

The lines of W are then defined as the images of these sets under the ^-auto­
morphisms in the group T of 3.1, i.e. as the subsets 

L(f)yw « {,4x| x G L(f)} with A G GU(K),f G F. 

• 
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Since (14) implies that /*(xg) =/*(x)g for ail x G W and g G F, we have 
/* (xF) = 0 if and only if /* (x) = 0. Therefore we have the following. 

3.4. Each line is a union of points. 

This suggests a natural definition of incidence between points and lines, 
namely that by set-theoretical inclusion. We denote the incidence structure 
obtained in this way by H(77, K). We show in this section that H(7?, K) is 
always a partial plane (cf. [1, p. 9] for definition) in which any two lines 
intersect in a point. In the next section it will then be proved that if condition 
(c) of the Introduction is satisfied, H(F, K) is even a projective plane. 

The following is clear from the definition of lines. 

3.5. Each y G Y maps lines onto lines. 

Thus r acts (not necessarily faithfully, see 5.1 below) as a collineation 
group on H(F, K). 

We call a point interior if it can be written in the form \F, with o ^ v G V. 
Clearly, V is essentially the three-dimensional right vector space over the 
division ring K> and the interior points are in a natural one-to-one corre­
spondence with the one-dimensional subspaces of this vector space. A line is 
called interior if it is of the form L(k)yiA) with k G K, i.e. if it corresponds to 
a two-dimensional subspace of the vector space V. From these definitions 
we have, by standard arguments, the following. 

3.6. The substructure H0 = H0(F, K) of the interior points and interior lines 
of H(77, K) is the Desarguesian projective plane over K. The group V leaves this 
substructure invariant and acts as the projective group PGL3(i£) on it. 

Points and lines which are not interior will be called exterior. 
So far, things were easy; from now on we have to work a little harder. An 

arbitrary line can be characterized as the set of all elements x £ W whose 
coordinates Xi satisfy an equation of the form 

(15) aiXi + a2x2 + a3x3 + f(biXi + b2x2 + bzxz) = 0, 

with f (z F and au bt G K (i = 1,2, 3). These equations are in general too 
complicated to be of much help, and so we shall use another way to represent 
lines; see 3.7 below. In special cases, however, (15) reduces to a very simple, 
and hence useful, relationship; we give two such examples for later reference: 

(16) L(0)yiR) = {(*i, x2l xz) € W\ x2 = 0}, where R = 

and 

A) - 1 (^ 
(17) L(f)y(s) = {(xi, x2, xz) e W\ xz = fXl), where 5 = 11 1 0 

\ l 0 l) 
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For the general case, we have the following. 

3.7. If f e F and A = (atj) 6 GL3(X), define 

hi = an — aa and ct = ct(f) = ai2 — aaf (i = 1, 2, 3). 

Then the line L (f)yiA) consists precisely of those elements of W which are of the 
form 

PA,/(*> y) = (hx + Ciy, b2x + c2y, bdx + czy), x, y G F. 

The proof is a straightforward application of (12) and will be omitted. 

For the following, we consider the interior point 

(18) Q = qF, with q = (1, 0, - 1 ) 6 V. 

We determine the lines containing Q. One such line is clearly that given by 
(16); this particular line will henceforth be denoted by L(co). We first show 
the following. 

3.8. Iff * g, then L{f) C\ L(g) = Q = L(f) H L(oo). 

Proof. We have just remarked that Q is on L(oo); that Q is on each L(f) 
follows from/*(q) = 0; cf. (14) and (18). Suppose, conversely, that o j* x = 
(xi, x2, xz) £ L(f) C\ L(g). Then (14) yields 

xi + fx2 + Xz = xi + gx2 + xz = 0, 

whence x2 = 0 (since/ ^ g) and x3 = — Xi, i.e. x = (1,0, — l)#i G Q. Hence 
X.P = Q, and similarly, if o ^ x G L( / ) C\ L(co ), then xF = Q. 

The converse is more difficult. 

3.9. Any line containing Q = qF is either L(oo) or L(f) for some f £ F. 

Proof. Suppose that Q C £( / ) 7 ( A ) - Then, by 3.7, there exist u, v £ F such 
that q = PA,/(W, «0 or, more explicitly, 

(19) biu + Civ = 1, b2u + c2z> = 0, bzu + ^ = — 1, 

with bt G K and £* = £*(/) as defined in 3.7. 
Case 1. z> = 0. Then u ^ 0 by (19), and it follows that b2 = 0 and &3 = 

— &i = — u~l •=£ 0. We can assume that c2 5̂  0 since otherwise L(f)y{A) = L(oo); 
then g = — (ci + Cz)c2~

1 is well-defined. A simple calculation shows that 

g*(PA.f(x,y)) = 0, 

so that, by 3.7, L(f)y™ Q L(g). 
Case 2. v 9* 0. Here (19) yields 

Ci = (1 — b\u)v~x, c2 = — b2uv~1, Cz = — (1 + bzu)v~l. 

If &2 = 0, we also obtain c2 = 0, and again L(f)y(-A) = L(oo). Hence we may 
assume that b2 9^ 0, so that g — — (bi + bz)b2~

1 is well-defined. Since the bt 
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are, by definition, in K, so is g, and therefore g and the bt are in the kernel 
of F. Using this, we obtain for all x, y £ F: 

g*(pA,f(x, y)) = hx + v~ly - bxuv~ly + g(b2x - b2uv~ly) 

+ bzx — v~ly — bzuv~ly 

= (pi + bs)x — (&i + bz)mrly — (&i + bz)b2~
1b2(x — mrly) 

= (61 + bz)(x — uv~ly — x + uv~ly) 

= 0, 

whence, again by 3.7, L(/)* ( i l ) C L ( g ) . 
It remains to show that L(/)>(il) Ç L(g) implies L(f)^A) = L(g). We prove 

a little more. 

3.10. iVo Ziwe is properly contained in another line. 

For if L(f)y Ç L(g)*, then L(J)QL(g)^'1 and therefore <2 = qi7 C £(g)57_1. 
This implies, by what we have already proved of 3.9, that L(g)by~l is con­
tained either in L(oo) or in some L(h). The first alternative is impossible 
since L (f) is not contained in L (00 ) ; hence we are left with 

i ( / ) Ç I f e r ç i ( A ) , 

which clearly implies t h a t / = h, and therefore £ ( / ) 7 = L(g)8. This completes 
the proofs of 3.9 and 3.10. 

The following is the main result of this section. 

3.11. The intersection of any two distinct lines is a unique point. 

Proof. Without loss of generality, one of the two lines in question may be 
taken of the form L(g), g G F. Let the other be L(f)t, with y = y (A) 6 T. 
If L(f)y = LQi) or L(oo ), the unique intersection is Q = q F by 3.8. Thus we 
may assume that L(f)v is not of this form or, by 3.9, that q g L(f)y. This 
means, because of 3.7, that 

(20) PA,Ax, y) 9* qz = (s, 0, - z ) for all x,y,z e F. 

NowpA>/(x, y) e L(f)y is in L(g) if and only if g*(pA , /0, 3O) = 0; cf. (14). 
Letting b = b\ + bz and £ = C\ + C3 for brevity (cf. 3.7), this becomes 

(21) bx + cy + g(b2x + c2y) = 0. 

We have to determine the solutions x, y of (21). 
Case 1. 62 = 0. Then b 9e 0, for otherwise fr3 = —61 and p^, /( l , 0) = q&i, 

contradicting (20). Hence (21) is equivalent to 

x = -b~l{c + gc2)y, 

and it follows that L( / ) 7 H L(g) is the unique point p A t / ( — 6_1(c + gc2), l)F. 
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Case 2. b2 9e 0. Then we can rearrange (21) as follows: 

0 = b{b2~
lb2x + b2~

lc2y — b2~
lc2y) + cy + g(b2x + c2y) 

= bb2~
l(b2x + c2y) — bb<rlc2y + cy + g(b2x + c2y) 

= ipb'T1 + g)(b2x + c2y) — (bb2~
lc2 — c)y. 

Here we have used the fact that b and b2 are in K and therefore in the kernel 
of F. We write this briefly as 

(22) u(b2x + c2y) = vy, with u = bb2~
l + g and v = bb2~

lc2 — c. 

Assume that u = v = 0. Then g = —bb2~
l £ X and bb2~

lc2 — c. Now 
c2 ^ 0, since otherwise c = d + c3 = 0, i.e. c3 = — ci and p^,/(0, 1) = qci, 
contradicting (20). Therefore 

g = - ( 6 i + ôs )^- 1 = - (*i + cz)c2~
l e K Ç « ( F ) . 

This, however, implies, for any PA,;(x,y) C £(/)7> that 

g*(pA./(#, 30) = M + <*y + gQ>2x + c2y) + bzx + cdy 
= (bi - (&i + bz)b2~

lb2 + bz)x + (a — (cj + Cz)c2~
1c2 + cz)y 

= 0, 

whence L(f)y = L(g) by 3.7 and 3.10, contrary to hypothesis. 
Therefore, if u = 0 in (22), we must have v ^ 0. Hence all solutions have 

y = 0 in this case, and it follows that L(f)t H L(g) = p A f / ( l , 0)F. 
Finally, il u ?* 0, (22) becomes &2x + c2;y = w~"Vy, or 

x = b2~
l(urlv — c2)y. 

In this case, L(f)t C\ L(g) = pA,/(^2_1(^~ly ~ £2), 1)<F. This completes the 
proof of 3.11. 

The dual of 3.11, that any two distinct points are joined by a unique line, 
is not true without additional hypotheses, as may be seen from the example 
K — GF(g), F = GF(g3). We can, however, prove the following weaker 
statement. 

3.12. / / one of two distinct points is interior, then there is a unique line joining 
these points. 

Proof. By 3.6, the collineation group T is transitive on the interior points; 
hence there is no loss of generality in assuming that the interior point in 
question is the point Q of (18). Let xF, with x = (xi, x2, x3) G W, be any 
point 7*Q. If x2 = 0, then L(00) is a line joining Q and xF. If x2 9^ 0, then 
p u t / = — (xi + x3)x2~1; it follows that 

/*(x) = xi + fx2 + Xz = Xi — (xi + Xz)x2~
1x2 + x-i = 0, 

i.e. xF C L(f). Since L(f) also contains Q by 3.8, we have again found a 
line joining Q and xF. Finally, 3.11 ensures the uniqueness of the line joining 
Q and xF, and our proof is complete. 
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We sum up the results of this section as follows. 

3.13. THEOREM. For any near field F and any sub-division ring K of its kernel 
$(F), the incidence structure U(F, K) is a partial plane in which any two lines 
have a common point. Moreover, each interior point is connected by a line with 
any other point. 

4. The generalized Hughes planes. Let F, K, V, W, and r be as in the 
preceding section, but from now on with the following additional hypothesis: 

(H) Fis of rank 2 over K. 

Note that (H) is a little weaker than condition (c) of the Introduction, 
because we assume only that K Q $(F), not K = $l(F). 

We choose an element e $ K of F which will be kept fixed throughout. 
Then 1 and e form a (left K-) basis of F over K, i.e. each / Ç F can be written 
in one and only one way as 

(23) / = x + ye with x, y G K. 

From this we conclude the following. 

4.1. Each element w Ç W can be written in one and only one way as 

(24) w = x + ye with x, y £ V. 

For if w = C/1,/2,/3), write ft = xt + yte (i = 1, 2, 3); then (24) holds 
with x = (xi, x2, Xz) and y = (yly y2, yz), and the uniqueness of x, y in (24) 
follows from that of x, y in (23). 

4.2. If w = x + ye represents an exterior point, then xF and y F are distinct 
interior points. 

Proof. If x = o or y = o, then wF = y F or wF = xF, respectively, and 
the point represented by w would be interior. Therefore, x ^ o and y ^ 0 , 
so that x and y each represents an interior point. If these points were equal, 
then x = yf for some/ £ F, and we could infer from (11) that 

wF = (x + ye) F = (yf + ye)F = y ( / + e)F = yF, 

which is an interior point, contradicting our hypothesis. 

4.3. r acts transitively on the exterior points. 

Proof. Let w = x + ye and wr = x' + y'e represent two exterior points. 
Then 4.2 implies that the vectors x and y as well as the vectors x' and y' of V 
are linearly independent. But T, which induces the general linear group 
Ghz(K) on V, is transitive on ordered pairs of linearly independent vectors 
of V. Hence there exists 7 € T such that x^ = x' and yy = y', and then 3.1 
yields 

(WF)y = (x + ye)yF = (xr + y'e) F = w r^. 
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After these preparations, we can show the following. 

4.4. If one of two distinct points is exterior, then there is a unique line joining 
these points. 

Proof. We need only prove the existence of such a line; its uniqueness will 
then follow from 3.11. Because of 4.3, there is no loss of generality in assuming 
that the exterior point in question is the point 

(25) E = eF, with e = (1, 0, e) G W - V. 

Clearly, E is incident with the line L(oo) = L(0)^E)) cf. (16). Hence, for the 
second point we need consider only those xF for which x2 ^ 0. But any such 
point may be written in the form (g, 1, h)F, with g, h G F. Therefore, it will 
be sufficient to prove the existence of a matrix A G GL3(i£) such that L(e)y(A) 

contains (1, 0, e) as well as (g, 1, A). 
In order to construct such a matrix we have to use a pair of nearfield 

functions u, v describing F over K, i.e. a pair of mappings from K X K into 
K satisfying conditions ( l ) - (4) . (The existence of such u, v is ensured by 2.2.) 
The multiplication in F will then satisfy 

(26) e(x + ye) = u(x, y) + v(x, y)e, where x,y G K; 

cf. (8). 
We decompose the given g, h G F as in (23): 

(27) g = gi + g2e and h = hi + h2e, with gu ht G K. 

By condition (1), there exists k G K such that 

(28) v(k9g2) = h 2 . 

With this k, put an = gi — k and <73i = hi — u(k, g2) — 1; then consider 
the matrix 

/an 1 0 \ 
A=[I o OIGGL3(K). 

W o - 1 / 
The hi and ct = ct(e) of 3.7 (i = 1, 2, 3) become 

&1 = «11, &2 = 1, &3 = 031 + 1, Ci = 1, C2 = 0, C3 = > , 

and therefore we have 

PAAO, 1) = (1,0,*) = e 

and, because of (26)-(28), 

pA,e(l, * + gie) = (an + k + g2ey 1, azx + 1 + > ( * + g2*)) 

= (gi + g2*, 1, Ai + h2e) 

= (g, l ,A). 
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In view of 3.7, this proves our contention that (1, 0, e) and (g, 1, h) are 

onI (eP . 
We can now prove the main result of this paper. 

4.5. THEOREM. If the near field F is of rank 2 over the sub-division ring K of 
its kernel $(F), then the incidence structure H(F, K) is a projective plane. 
Moreover, the Desarguesian subplane VL^F.K) of 3.6 is in this case a Baer 
sub-plane. 

That H(F, K) is a projective plane follows immediately from 3.11, 3.12, 
and 4.4. It remains to show that (i) each exterior line carries an interior 
point and, dually, that (ii) each exterior point is on an interior line. 

(i) By 3.8, each line of the special form L(f),f £ F, contains the interior 
point Q. It follows that L(/)'y(i l ) contains Ç7(4) which, by 3.6, is also 
interior, 

(ii) Here it suffices, because of 4.3, to find one exterior point which is on an 
interior line. But the point E of (25) is exterior and on the interior 
line L(co). 

5. Collineations. The group T of 3.1 always acts as a collineation group 
on the partial plane H(F, K), but this action need not be faithful. We call T* 
the collineation group induced by T, and we shall now determine the structure 
of T*. For this, we do not need condition (H). 

For any multiplicative subgroup G of Ky we denote by S(G) the group of 
all scalar matrices gl, g £ G. (I denotes the identity matrix in GL3(i£).) 
Also, K* denotes, as usual, the set of all elements F^O in K, i.e. the full 
multiplicative group of K. Finally, 3(F) is> a s in § 2, the centre of F. 

5.1. T* is isomorphic to GU(K)/S(K* H 3(F)). 

Proof. If 0 ?* z £ K* r\ £(F), then, for any x = (xu x2, xz) G W, 

xy(zl) _ (zI)(x1,X2,xi) = (zXi, ZX2, ZXz) = XZ, 

and therefore (xF)7(2/) = xsF = xF. Hence S(K* Pi 3(F)) is certainly con­
tained in the kernel of the canonical epimorphism r —» T*. 

Conversely, if (xF)y{A) = xF for all points xF, then this is true in particular 
for interior points, whence A = tl with t G 3(K), by 3.6. We have to show 
that t is even in 3(F), i-e. // = ft for a n y / £ F. For this, let a = ( 1 , / , 0); 
then (2LF)^II) = aF implies that W{tI) = tag for some g G F. But then 

(/, tf, 0) = (*J)a = a*"> = a£ = (g,fg, 0), 

whence t = g and tf = fg — ft. This proves 5.1. 

The following is an obvious corollary of 3.6 and 5.1. 

5.2. The following statements about T* are equivalent: 
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(i) T* S PGU(K), 
(ii) r* is faithful on the interior points, 

(iii) KC\S(F) =S(K). 

For the remainder, we again assume condition (H) and therefore, by 4.5, 
that H(F, K) is a projective plane. We know how Y operates on the sub­
structure of the interior points and lines, by 3.6; here we investigate how Y 
acts on the exterior elements. We shall improve 4.3 by showing that Y is 
transitive on exterior flags, i.e. on incident pairs of exterior points and 
exterior lines. 

As in (25), we denote by E the exterior point (1, 0, e)F, with e 6 F — K. 
Also, we use again a pair of nearfield functions u, v as in § 4, so that in par­
ticular we again have (26). We first show the following. 

5.3. The stabilizer YE in Y of the point E consists of all y (A) G Y with 
A G GLz(K) of the form 

( x au y \ 
0 a22 0 J . 

u(x,y) a32 v(pc9y)/ 

Proof. Ey^ = E means that Ae = ef for some f € F. (Here e = (1, 0, e) 
as in § 4.) Written more explicitly, as in (12), this is 

«I I + due = / , a21 + a2Ze = 0, an + adZe = ef, 

whence immediately a2i = a2z = 0. On the other hand, if we wr i te / = x + ye 
with x, y 6 K as in (23), it is clear that an = x, an — y and, by (26), that 
a3i = u(x, y) and a33 = v(x, y). Thus A is of the form (29), and one verifies 
easily that, conversely, every matrix of that form satisfies the condition 
£7(4) = E. 

5.4. T# is transitive on the interior points not on L(co ). 

Proof. Any such point can be represented by an element x = (xi, x2l x3) G F, 
i.e. with xt Ç K {i = 1, 2, 3), and x2 ^ 0. In particular, the point 

(30) P = pF, with p = (0, 1, 0) G F, 

is of this sort. Our claim is now proved by the fact that the matrix A of the 
form (29) with ai2 = xt {i = 1, 2, 3) satisfies ^4p = x. 

5.5. THEOREM. If F has rank 2 over the sub-division ring K of $(JF)> then Y 
acts transitively on the flags of exterior points and lines of H(F, K). 

Proof. In view of 4.3, it suffices to show that r# is transitive on the exterior 
lines through E. This, however, follows immediately from 5.4 because, by 4.5, 
each exterior line through E carries a unique interior point not on L(oo ). 

This theorem gives the possibility of representing the incidence structure 
U(F,K) -H0(F,K) within the group GU(K); cf. [1, p. 15, result 17]. 
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Such a representation is of particular interest because the structure of 
H (is K) is uniquely determined by that of the exterior elements. (For the 
finite case, this follows from [1, p. 317]; the general proof follows from similar 
ideas and will not be given here.) 

In order to give this representation, we have to determine the stabilizer in Y 
of some exterior line through an exterior point, say E. Now the line L(e)7^S) 

defined by (17) is exterior because e $ K, and it consists of all elements x 
with %z = exi of W. Hence it contains in particular the point E (incidentally, 
also P) and is, therefore, an exterior line of the required kind. We denote 
this line by L. 

5.6. The stabilizer TL in V of the line L consists of all y(B) £ T with 
B e GLZ(K) of the form 

/ x 0 y \ 
(31) ( 621 622 b2Z j . 

\u(x,y) 0 v(x,y)/ 

Proof. The line L is characterized by the relation x3 = ex\ for all its 
elements; cf. (17). Hence we have to find all matrices B preserving this relation. 
But B = (btj) has this property if and only if 

bziXi + bZ2x2 + bzzexi = e(bnxi + b12x2 + bnexi) 

for all Xi, x2 6 F. For xi = 0 and x2 = 1, this yields bZ2 = ebï2 and therefore 
oZ2 = b\2 = 0, since e Q K. On the other hand, for Xi = 1 and x2 = 0, we 
obtain 

631 + bzze = e(bu + bue), 

and this shows, because of (26), that B is of the form (31). Conversely, one 
easily verifies that all matrices (31) preserve the line L. 

As in [1, p. 15], let P and B be two subgroups of the group G and define the 
incidence structure K(G, P , B) as follows: points are the cosets Px, blocks 
the cosets By (x, y G G), and incidence of Px and By is defined by 
Px r\ By 9e 0. In view of 5.3, 5.5, 5.6 as well as of [1, p. 15, result 17], we 
can now state our final result. 

5.7. THEOREM. The incidence structure of the exterior points and lines of the 
generalized Hughes plane H(7?, K), where F is of rank 2 over K, is isomorphic 
to K(G, Py B), where G = GLz(K), and P and B consist of the matrices (29) 
and (31), respectively. 
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