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Lq Norms of Fekete and Related
Polynomials

Christian Günther and Kai-Uwe Schmidt

Abstract. A Littlewood polynomial is a polynomial in C[z] having all of its coeõcients in {−1, 1}.
_ere are various old unsolved problems, mostly due to Littlewood and Erdős, that ask for Little-
wood polynomials that provide a good approximation to a function that is constant on the complex
unit circle, and in particular have small Lq norm on the complex unit circle. We consider the Fekete
polynomials

fp(z) =
p−1

∑
j=1

( j ∣ p) z j ,

where p is an odd prime and ( ⋅ ∣ p) is the Legendre symbol (so that z−1 fp(z) is a Littlewood poly-
nomial). We give explicit and recursive formulas for the limit of the ratio of Lq and L2 norm of fp
when q is an even positive integer and p → ∞. To our knowledge, these are the ûrst results that
give these limiting values for speciûc sequences of nontrivial Littlewood polynomials and inûnitely
many q. Similar results are given for polynomials obtained by cyclically permuting the coeõcients
of Fekete polynomials and for Littlewood polynomials whose coeõcients are obtained from addi-
tive characters of ûnite ûelds. _ese results vastly generalise earlier results on the L4 norm of these
polynomials.

1 Introduction

For real α ≥ 1, the Lα norm of a polynomial f in C[z] on the complex unit circle is

∥ f ∥α = (
1
2π ∫

2π

0
∣ f (e iθ)∣α dθ)

1/α

,

and its supremum norm is ∥ f ∥∞ = maxθ∈[0,2π]∣ f (e iθ)∣. _ere are various extremal
problems, originally raised by Erdős, Littlewood, and others, concerning the be-
haviour of such norms for polynomialswith all coeõcients in {−1, 1},which are today
called Littlewood polynomials (see Littlewood [29], Borwein [3], and Erdélyi [12] for
surveys on selected problems). Roughly speaking, such problems ask for Littlewood
polynomials f that provide a good approximation to a function that is constant on
the unit circle. Note that this constant is necessarily ∥ f ∥2 =

√
1 + deg f .

Several conjectures have been posed that address the question of what is the best
approximation in a certain sense. For example,Golay [17] conjectured that there exists
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a constant c such that ∥ f ∥4/∥ f ∥2 ≥ 1 + c for every nonconstant Littlewood polyno-
mial f and Littlewood [28] conjectured that there is no such constant. Golay’s conjec-
ture implies another famous conjecture due to Erdős [14, 32], which states that there
exists a constant c′ such that ∥ f ∥∞/∥ f ∥2 ≥ 1 + c′ for every nonconstant Littlewood
polynomial f . All of these conjectures are wide open.
Borwein and Lockhart [6] proved that if fn is a random polynomial of degree n−1,

then

lim
n→∞

E(
∥ fn∥α
√

n
)

α

= Γ(1 + α/2)

and (∥ fn∥α/
√

n)α is asymptotically concentrated around its expectation (see also
Choi and Erdélyi [8] for more results on Lα norms of random Littlewood polyno-
mials). Littlewood [29] (and independently Newman and Byrnes [32] and Høholdt,
Jensen, and Justesen [20]) determined the L4 norm of the Rudin–Shapiro polynomi-
als [34, 35]. More generally, a conjecture attributed in [10] to Saòari asserts that, if q
is a positive integer and fn is a Rudin–Shapiro polynomial of degree n − 1, then

lim
n→∞

(
∥ fn∥2q
√

n
)

2q

=
2q

q + 1
.

_is conjecture is true for q ≤ 27 by combining results of Doche and Habsieger [10]
and Taghavi and Azadi [37], but the general problem remains open.

In this paper we consider the following families of polynomials. For an odd
prime p, the Fekete polynomial of degree p − 1 is

fp(z) =
p−1

∑
j=1

( j ∣ p) z j ,

where ( ⋅ ∣ p) is the Legendre symbol. Note that z−1 fp(z) is a Littlewood polynomial
that has the same Lα norm as fp(z). For a Mersenne number n = 2k − 1, a Galois
polynomial of degree n − 1 is the Littlewood polynomial

gn(z) =
n−1

∑
j=0

ψ(θ j
) z j ,

where θ is a primitive element of F2k and ψ is a nontrivial additive character of F2k .
Fekete polynomials appear frequently in the context of extremal polynomial prob-
lems [4,5,9,19,21–24,30] andhave been studied extensivelynow for over a century [15].
Erdélyi [13] established the order of growth of the Lα norm of Fekete polynomials.

Høholdt and Jensen [19] proved that, for Fekete polynomials fp ,

lim
p→∞

(
∥ fp∥4
√p

)

4

=
5
3
.
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In fact, Borwein and Choi [4] established exact expressions for ∥ fp∥4 in terms of the
class number of Q(

√
−p). Jensen, Jensen, and Høholdt [23] proved that, for Galois

polynomials gn ,

lim
n→∞

(
∥gn∥4
√

n
)

4

=
4
3
.

_ese are, in fact, special cases of our main results (see_eorems 2.1 and 2.3), which
provide corresponding limiting values for the L2q norms of Fekete and Galois poly-
nomials for all positive integers q. To our knowledge, these are the ûrst results that
give these limiting values for speciûc sequences of nontrivial Littlewood polynomials
and inûnitely many q.

We also consider the shi�ed Fekete polynomials

f rp(z) =
p−1

∑
j=0

( j + r ∣ p) z j ,

where r is an integer, which can depend on p. It is known [19] that if r/p → R as
p →∞, then

(1.1) lim
p→∞

(
∥ f rp∥4
√p

)

4

=
7
6
+

1
2
(4∣R∣ − 1)2 for ∣R∣ ≤ 1

2
.

Again, this is a special case of a more general result (see _eorem 2.5). Note that a
shi�ed Fekete polynomial is not necessarily a Littlewood polynomial, since one of its
ûrst p coeõcients is zero. However, changing this coeõcient to −1 or 1 does not aòect
the asymptotic behaviour of the Lα norm.

2 Results

We begin by establishing some notation that is required to state our results. For a
positive integer m, let Πm be the set of partitions of {1, 2, . . . ,m}. For π ∈ Πm , we
refer to the elements of π as blocks and say that π is even if each block of π has even
cardinality.
For a positive integer n and real x, we deûne the generalised Eulerian numbers to

be

(2.1) ⟨
n
x
⟩ =

⌊x+1⌋

∑
j=0

(−1) j
(
n + 1

j
)(x + 1 − j)n .

Note that ⟨nx⟩ is nonzero only for x ∈ (−1, n). If x is integral, then ⟨
n
x⟩ is an Eulerian

number in theusual sense. We refer to the book [33] for the combinatorial signiûcance
of Eulerian numbers and to [39] for a natural interpretation of generalised Eulerian
numbers in terms of splines.

_e signed tangent numbers T(k) are deûned by theMaclaurin series

(2.2) log cosh(z) =
∞

∑
k=1

T(k)
(2k)!

z2k .
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_ey are scaled versions of Bernoulli numbers, and ∣T(k)∣ = (−1)k+1T(k) are known
as the tangent or zag numbers, which appear in [1] as

A000182 = [1, 2, 16, 272, 7936, 353792, . . . ].

_e numbers T(k) can be recursively determined via

T(k) = 1 −
k−1

∑
j=1

(
2k − 1
2 j − 1

)T( j) for k ≥ 1,

which can be deduced from Lemma 4.3.
For Fekete polynomials we have the following result.

_eorem 2.1 Let q be a positive integer and let fp be the Fekete polynomial of degree
p − 1. _en

lim
p→∞

(
∥ fp∥2q
√p

)

2q

= ∑
π∈Π2q
π even

∑
a1 , . . . ,aℓ∈Z
a1+⋅⋅⋅+aℓ=q

ℓ

∏
i=1

T(N i)

(2N i − 1)!
⟨
2N i − 1
a i − 1

⟩,

where π = {B1 , . . . , Bℓ} and N i = ∣B i ∣/2 for all i.

_e following corollary provides an eõcientway to compute the limiting values in
_eorem 2.1.

Corollary 2.2 Set F(0, 0) = 1 and, for 1 ≤ m ≤ 2k − 1, deûne the numbers F(k,m)

recursively by

F(k,m) =
k

∑
j=1

(
2k − 1
2 j − 1

)
T( j)

(2 j − 1)!
∑
i
⟨
2 j − 1
i − 1

⟩F(k − j,m − i),

where the inner sum is over all i such that F(k − j,m − i) is deûned. Let q be a positive
integer and let fp be the Fekete polynomial of degree p − 1. _en

lim
p→∞

(
∥ fp∥2q
√p

)

2q

= F(q, q).

For k ≥ 1, the numbers (2k − 1)! F(k,m) identiûed in Corollary 2.2 deûne a trian-
gular array of integers, whose ûrst four rows are given by

1
−2 10 −2

16 −184 456 −184 16
−272 5776 −30736 55504 −30736 5776 −272.

_e ûrst and last entry in row k equals T(k), and the central entry in row k divided
by (2k− 1)! equals the limiting value inCorollary 2.2 for k = q. _e ûrst eight of these
limiting values are:

1,
5
3
,
19
5
,
3469
315

,
21565
567

,
7760593
51975

,
12478099
19305

,
643983856759

212837625
.
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We now turn to Galois polynomials. Let J0(z) be the zeroth Bessel function of the
ûrst kind and deûne the numbers C(k) via theMaclaurin series

(2.3) log( J0(2
√
z)) =

∞

∑
k=1

(−1)k C(k)
(k!)2 zk .

We call these numbers the signed Carlitz numbers. _e corresponding unsigned num-
bers ∣C(k)∣ = (−1)k+1C(k) have been extensively studied by Carlitz [7] and appear in
[1] as

A002190 = [0, 1, 1, 4, 33, 456, 9460, . . . ]

(which starts at k = 0 with C(0) = 0). _e numbers C(k) can be recursively deter-
mined via

C(k) = 1 −
k−1

∑
j=1

(
k
j
)(

k − 1
j − 1

)C( j) for k ≥ 1,

which again can be deduced from Lemma 4.3.
For Galois polynomials we have the following result.

_eorem 2.3 Let q be a positive integer and let gn be a Galois polynomial of degree
n − 1. _en

lim
n→∞

(
∥gn∥2q
√

n
)

2q

= ∑
π∈Πq

(
q

N1 , . . . ,Nℓ
) ∑
a1 , . . . ,aℓ∈Z
a1+⋅⋅⋅+aℓ=q

ℓ

∏
i=1

C(N i)

(2N i − 1)!
⟨
2N i − 1
a i − 1

⟩,

where π = {B1 , . . . , Bℓ} and N i = ∣B i ∣ for all i.

We have the following counterpart of Corollary 2.2 for Galois polynomials.

Corollary 2.4 Set G(0, 0) = 1 and, for 1 ≤ m ≤ 2k − 1, deûne the numbers G(k,m)

recursively by

G(k,m) =
k

∑
j=1

(
k
j
)(

k − 1
j − 1

)
C( j)

(2 j − 1)!
∑
i
⟨
2 j − 1
i − 1

⟩G(k − j,m − i),

where the inner sum is over all i such that G(k − j,m − i) is deûned. Let q be a positive
integer and let gn be a Galois polynomial of degree n − 1. _en

lim
n→∞

(
∥gn∥2q
√

n
)

2q

= G(q, q).

For k ≥ 1, the numbers (2k − 1)!G(k,m) identiûed in Corollary 2.4 also deûne a
triangular array of integers, whose ûrst four rows are given by

1
−1 8 −1

4 −76 264 −76 4
−33 1248 −9735 22080 −9735 1248 −33.
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_e ûrst and last entry in row k equals C(k), and the central entry in row k divided
by (2k− 1)! equals the limiting value inCorollary 2.4 for k = q. _e ûrst eight of these
limiting values are:

1,
4
3
,
11
5
,
92
21
,
15481
1512

,
411913
15120

,
2482927
30888

,
4181926481
16216200

.

In what follows we consider the shi�ed Fekete polynomials.

_eorem 2.5 Let q be a positive integer and let f rp be a shi�ed Fekete polynomial
corresponding to the Fekete polynomial of degree p − 1. If r/p → R as p →∞, then

lim
p→∞

(
∥ f rp∥2q
√p

)

2q

= ∑
π∈Π2q
π even

∑
a1 , . . . ,aℓ∈Z
a1+⋅⋅⋅+aℓ=q

ℓ

∏
i=1

T(N i)

(2N i − 1)!
⟨

2N i − 1
2R(N i − Pi) + a i − 1

⟩,

where π = {B1 , . . . , Bℓ}, N i = ∣B i ∣/2, and Pi = ∣{x ∈ B i ∶ x > q}∣ for all i.

Note that, for R = 0, _eorem 2.5 reduces to _eorem 2.1. We are not aware of a
computationally eõcient version of_eorem 2.5 in a spirit similar to Corollaries 2.2
and 2.4.

It follows from_eorem 2.5 that, for each positive integer q, there exists a function
φq ∶R→ R such that if r/p → R, then

lim
p→∞

(
∥ f rp∥2q
√p

)

2q

= φq(R).

Since the generalised Eulerian numbers ⟨
n
x⟩ are continuous piecewise polynomial

functions of x, the functions φq are also continuous piecewise polynomial functions.
It follows from _eorem 2.5 that φq(x + 1/2) = φq(x) for all x ∈ R. It can also be
shown that φq(−x) = φq(x) for all x ∈ R, so that φq(1/4 + x) = φq(1/4 − x) for all
x ∈ R. It is therefore suõcient to know φq(x) for x ∈ [0, 1/4]. We have, for example,
for x ∈ [0, 1/4],

φ2(x) =
7
6
+

1
2
(4x − 1)2 ,

in accordance with (1.1), and

φ3(x) =
31
20

+
3
4
(4x − 1)2

(16x2
− 8x + 3),

φ4(x) =
653
280

+
1
72

(4 x − 1)2
(60416 x4

− 52736 x3
+ 20208 x2

− 4216 x + 625).

In general, φq is a piecewise polynomial function on [0, 1/4]. For q ∈ {2, 3, 4}, it is
readily veriûed that the function φq attains its global minimum at a unique point in
[0, 1/4], namely at 1/4. We could not prove that this is true for all q > 1, but conjecture
that this is the case. For convenience, we provide the ûrst eight values of φq(1/4)
(starting with q = 1):

1,
7
6
,

31
20
,
653
280

,
71735
18144

,
24880549
3326400

,
72207143
4633200

,
960901090937
27243216000

.

We will prove our results for Fekete and Galois polynomials in Sections 4 and 5,
respectively.

https://doi.org/10.4153/CJM-2016-023-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-023-4


Lq Norms of Fekete and Related Polynomials 813

We note that it is also possible to deûne shi�ed Galois polynomials by cyclically
permuting the coeõcients of a Galois polynomial. However, every such polynomial
is again aGalois polynomial. It should also be noted that our methods can be used to
establish similar results for polynomials obtained by periodically appending or trun-
cating monomials in Fekete or Galois polynomials, as considered in [21,22].

3 Calculation of L2q Norms

We begin with establishing some notation that will be used throughout this paper.
For a positive integer n, we write en(x) = exp(2πix/n). Let f (z) = ∑n−1

j=0 a jz j be a
polynomial of degree n−1 inC[z] and let r be an integer. Deûne the shi�ed polynomial

f r(z) =
n−1

∑
j=0
a j+rz j ,

where we extend the deûnition of a j so that a j+n = a j for all j ∈ Z. We shall express
the L2q norm of this polynomial in a form that will be convenient for us later.

To do so, we associate with f the function L f ∶ (Z/nZ)2q → C given by

L f (t1 , . . . , t2q) =
1

nq+1 ∑
m∈Z/nZ

q

∏
k=1
f (en(m + tk)) f (en(m + tq+k))

and deûne another function hn ,r ∶ (Z/nZ)2q → C by

hn ,r(t1 , . . . , t2q) = ∑
0≤ j1 , . . . , j2q<n

j1+⋅⋅⋅+ jq= jq+1+⋅⋅⋅+ j2q

q

∏
k=1
en(tk( jk + r))en(tq+k( jq+k + r)).

_e following proposition will be the starting point to prove our main results.

Proposition 3.1 Let q be a positive integer, let f be a polynomial in C[z] of degree
n − 1, and let r be an integer. _en

∥ f r∥2q
2q =

1
nq ∑

t∈(Z/nZ)2q
L f (t) hn ,r(t).

Proof Write f (z) = ∑n−1
j=0 a jz j . From

∥ f r∥2q
2q =

1
2π ∫

2π

0
[ f r(e iθ) f r(e iθ)]

q
dθ ,

we obtain

∥ f r∥2q
2q = ∑

0≤ j1 , . . . , j2q<n
j1+⋅⋅⋅+ jq= jq+1+⋅⋅⋅+ j2q

q

∏
k=1
a jk+ra jq+k+r .

Now it is readily veriûed that

a j =
1
n ∑

s∈Z/nZ
f (en(s)) en(−s j),
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giving

∥ f r∥2q
2q =

1
n2q ∑

s1 , . . . ,s2q∈Z/nZ
hn ,r(s1 , . . . , s2q)

q

∏
k=1
f (en(sk)) f (en(sq+k)).

Re-index the summation with s i = m + t i for all i and then sum over m ∈ Z/nZ to
obtain the statement in the proposition.

We also need the following estimate.

Lemma 3.2 _ere exists a constant Cq , depending only on q, such that

∑
t∈(Z/nZ)2q

∣hn ,r(t)∣ ≤ Cq n2q
(log n)2q−1

for all r.

Proof A�er re-indexing the summation in the deûnition of hn ,r(t), the statement
of the lemma is equivalent to

(3.1) ∑
t1 , . . . ,t2q∈Z/nZ

∣ ∑
0≤ j1 , . . . , j2q<n

j1+⋅⋅⋅+ j2q=q(n−1)

en(t1 j1 + ⋅ ⋅ ⋅ + t2q j2q)∣ ≤ Cq n2q
(log n)2q−1 .

For a positive integer d, let P ⊆ [0, 1]d be a polyhedron and let

Fn(z1 , . . . , zd) = ∑
( j1 , . . . , jd)∈Zd∩(n−1)P

z j1
1 ⋅ ⋅ ⋅ z

jd
d

be a polynomial in C[z1 , . . . , zd]. Write

Sn = ∑
s1 , . . . ,sd∈Z/nZ

∣Fn(e2πi s1/n , . . . , e2πi sd/n)∣ .

We will see at the end of the proof that the le�-hand side of (3.1) equals nSn for a
particular choice of the polyhedron P.

_e L1 norm of Fn is deûned to be

∥Fn∥1 =
1

(2π)d ∫
2π

0
⋅ ⋅ ⋅∫

2π

0
∣Fn(e iθ 1 , . . . , e iθd )∣ dθ1 ⋅ ⋅ ⋅ dθd .

It is known (see [38, 9.2.1], for example) that

(3.2) ∥Fn∥1 ≤ γ(P)(log n)d ,

where γ(P) depends only on the polyhedron P. We will ûnd an upper bound for Sn
in terms of ∥Fn∥1.

Let f be a polynomial inC[z]. By themean value theorem there exist real numbers
θ0 , . . . , θn−1 with θs ∈ [2πs/n, 2π(s + 1)/n] for all s such that

(3.3) ∥ f ∥1 =
1
2π

n−1

∑
s=0
∫

2π(s+1)/n

2πs/n
∣ f (e iθ)∣ dθ =

1
n

n−1

∑
s=0

∣ f (e iθ s)∣ .
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By the triangle inequality we have

∣
n−1

∑
s=0

∣ f (e iθ s)∣ −
n−1

∑
s=0

∣ f (e2πi s/n
)∣ ∣ ≤

n−1

∑
s=0

∣ f (e iθ s) − f (e2πi s/n
)∣(3.4)

=
n−1

∑
s=0

∣∫

θ s

2πs/n
f ′(e iθ) dθ∣

≤ ∫

2π

0
∣ f ′(e iθ)∣ dθ = 2π∥ f ′∥1 .

Now suppose that f has degree atmost n−1. _en ∥ f ′∥1 ≤ (n−1) ∥ f ∥1 by a Bernstein-
type inequality (see [3, p. 143] or [40, p. 11], for example). Combining (3.3) and (3.4)
then gives

n−1

∑
s=0

∣ f (e2πi s/n
)∣ ≤ (1 + 2π)n ∥ f ∥1 .

Since Fn(z1 , . . . , zd) has degree at most n − 1 in each indeterminate, we ûnd by a
straightforward induction that

Sn ≤ (1 + 2π)dnd ∥Fn∥1 ,

and then with (3.2),

(3.5) Sn ≤ (1 + 2π)dγ(P)(n log n)d .
Now we take d = 2q − 1 and

P = {(x1 , . . . , x2q−1) ∈ R2q−1
∶

0 ≤ x1 , . . . , x2q−1 ≤ 1,
q − 1 ≤ x1 + ⋅ ⋅ ⋅ + x2q−1 ≤ q

} .

Set j2q = q(n − 1)− j1 − ⋅ ⋅ ⋅ − j2q−1 and s i = t i − t2q for all i ∈ {1, 2, . . . , 2q − 1} in (3.1)
to see that the le�-hand side of (3.1) equals

∑
t2q∈Z/nZ

Sn = nSn ,

so that the desired inequality (3.1) follows from (3.5).

4 Fekete Polynomials

In this section we prove _eorem 2.5 (and therefore also _eorem 2.1) and Corol-
lary 2.2.

We say that a tuple (t1 , t2 , . . . , t2q) is even if there exists a permutation σ of
{1, 2, . . . , 2q} such that tσ(2k−1) = tσ(2k) for all k ∈ {1, 2, . . . , q}. For example,
(2, 1, 1, 3, 2, 3) is even, whereas (2, 1, 1, 3, 1, 3) is not even. Let Eq(n) be the set of even
tuples in (Z/nZ)2q .

We begin with the following lemma.

Lemma 4.1 Let q be a positive integer and let f rp be a shi�ed Fekete polynomial cor-
responding to the Fekete polynomial of degree p − 1. _en

lim
p→∞

(
∥ f rp∥2q
√p

)

2q

= lim
p→∞

1
p2q ∑

t∈Eq(p)
hp,r(t),
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provided that one of the limits exists.

Proof Let fp be the Fekete polynomial of degree p − 1. For t ∈ (Z/pZ)2q , let Jp(t)
be the indicator function that equals one if t is even and is zero otherwise. From
Proposition 3.1 we ûnd that

(
∥ f rp∥2q
√p

)

2q

=
1

p2q ∑
t∈(Z/pZ)2q

Jp(t)hp,r(t) +
1

p2q ∑
t∈(Z/pZ)2q

(L fp(t) − Jp(t))hp,r(t).

We show that the second sum on the right-hand side tends to zero. _is will prove
the lemma, since

∑
t∈(Z/pZ)2q

Jp(t)hp,r(t) = ∑
t∈Eq(p)

hp,r(t).

Notice that fp(ep(k)) is a quadratic Gauss sum, whose explicit evaluation is ([2])

fp( ep(k)) = i(p−1)2/4p1/2
(k ∣ p).

_erefore,

L fp(t1 , . . . , t2q) =
1
p

p−1

∑
m=0

(m + t1 ∣ p) ⋅ ⋅ ⋅ (m + t2q ∣ p).

If (t1 , . . . , t2q) is even, then it is readily veriûed that

1 − q/p ≤ L fp(t1 , . . . , t2q) ≤ 1 − 1/p.
On the other hand, if (t1 , . . . , t2q) is not even, then the Weil bound for sums over
multiplicative characters ([31, Lemma 9.25], [27,_eorem 5.41]) gives

∣L fp(t1 , . . . , t2q)∣ ≤ (2q − 1)p−1/2 .

_erefore,

∣L fp(t) − Jp(t)∣ ≤ (2q − 1)p−1/2 for all t ∈ (Z/pZ)
2q .

By the triangle inequality we then ûnd that

1
p2q

RRRRRRRRRRRR

∑
t∈(Z/pZ)2q

(L fp(t) − Jp(t))hp,r(t)
RRRRRRRRRRRR

≤
2q − 1
p2q+1/2 ∑

t∈(Z/pZ)2q
∣hp,r(t)∣,

which tends to zero as p →∞ by Lemma 3.2, as required.

Next, we will evaluate the right-hand side of the expression in Lemma 4.1.
Let t = (t1 , t2 , . . . , tm) be a tuple in (Z/nZ)m and let π ∈ Πm . We deûne t ≺ π

to be true if and only if t j = tk whenever j and k belong to the same block of π. For
example, if t = (1, 2, 1) and π = {{1, 3}, {2}}, then t ≺ π holds.

Lemma 4.2 Let h ∶ Eq(n) → C be an arbitrary function and let T(k) be the k-th
signed tangent number. _en
(4.1) ∑

t∈Eq(n)
h(t) = ∑

π∈Π2q
π even

∑
t∈Eq(n)

t≺π

h(t) ∏
B∈π

T( 1
2 ∣B∣).

To prove the lemma, we need the following combinatorial principle (see [36, p. 5],
for example), in which N = {1, 2, 3, . . .}.
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Lemma 4.3 Let K be a ûeld of characteristic 0, let f ∶ N→ K be arbitrary, and deûne
a new function g∶N ∪ {0}→ K by g(0) = 1 and

g(k) = ∑
π∈Πk

∏
B∈π

f (∣B∣) for k ≥ 1.

Let G(z) = ∑k≥0 g(k)zk/k! and F(z) = ∑k≥1 f (k)zk/k! be the corresponding expo-
nential generating functions. _en G(z) = exp(F(z)). Moreover,

g(k) =
k

∑
j=1

(
k − 1
j − 1

) f ( j)g(k − j) for k ≥ 1.

Proof _e ûrst part of the lemma is a consequence of Faá di Bruno’s generalisation
of the chain rule (see [26,_eorem 1.3.2], for example),which states that, for a formal
power series E(z) and k ≥ 1, we have

(E ○ F)(k)(z) = ∑
π∈Πk

(E(∣π∣)
○ F)(z)∏

B∈π
F(∣B∣)

(z).

Take E(z) = exp(z) and set z = 0 to see that the right-hand side equals g(k), which
proves the ûrst part. _e second part follows from G′(z) = G(z)F′(z) by equating
coeõcients.

For a tuple t ∈ (Z/nZ)m , let π ∈ Πm be the coarsest partition of {1, 2, . . . ,m} with
the property t ≺ π and deûne mk(t) to be the number of blocks B in π such that
∣B∣ = k. For example, if t = (1, 3, 2, 1, 2), then the coarsest partition π with t ≺ π is
{{1, 4}, {3, 5}, {2}}, and we have m1(t) = 1, m2(t) = 2, and mk(t) = 0 for k > 2.

We now give a proof of Lemma 4.2.

Proof of Lemma 4.2 Taking F(z) = log cosh(z) in Lemma 4.3 (so that G(z) =

cosh(z)), we ûnd that with (2.2) and cosh(z) = ∑k≥0 z2k/(2k)!, we have

(4.2) ∑
π∈Π2k
π even

∏
B∈π

T( 1
2 ∣B∣) = 1 for each k ≥ 1.

Let s ∈ Eq(n) be an even tuple. By linearity, it suõces to prove the lemma for the case
where h(x) = 1 for x = s and h(x) = 0 otherwise. Clearly, the le�-hand side of (4.1)
equals 1. On the other hand, the sum

∑
t∈Eq(n)

t≺π

h(t)

is just the indicator function of the event s ≺ π, so we can restrict the outer summa-
tion on the right-hand side of (4.1) to the even partitions that are reûnements of the
coarsest partition π ∈ Π2q with the property s ≺ π. _erefore, the right-hand side
of (4.1) equals

q

∏
k=1

( ∑
π∈Π2k
π even

∏
B∈π

T( 1
2 ∣B∣))

mk(s)

,

which again equals 1 by (4.2).

Next we evaluate the inner sums in the right-hand side of (4.1) for h = hn ,r .
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Lemma 4.4 Let π = {B1 , . . . , Bℓ} ∈ Π2q be an even partition with ℓ blocks. Write
N i = ∣B i ∣/2 and Pi = ∣{x ∈ B i ∶ x > q}∣. If r/n → R as n →∞, then

lim
n→∞

1
n2q ∑

t∈Eq(n)
t≺π

hn ,r(t) = ∑
a1 , . . . ,aℓ∈Z
a1+⋅⋅⋅+aℓ=q

ℓ

∏
i=1

1
(2N i − 1)!

⟨
2N i − 1

2R(N i − Pi) + a i − 1
⟩.

To prove the lemma, we use the following asymptotic counting result, which fol-
lows from known results on the number of restricted integer compositions ([11, 16])
or, alternatively, from integration results over a simplex [18]. By I[E] we denote the
indicator function of an event E.

Lemma 4.5 Let N be a positive integer and let M be real. Let (mn) be a sequence of
integers such that mn/n → M as n →∞. _en

lim
n→∞

1
nN−1 ∑

0≤ j1 , . . . , jN<n
I[ j1 + ⋅ ⋅ ⋅ + jN = mn] =

1
(N − 1)!

⟨
N − 1
M − 1

⟩.

Proof It is well known (see [16, (11)] or [11, Example 33], for example) that

∑
0≤ j1 , . . . , jN<n

I[ j1 + ⋅ ⋅ ⋅ + jN = mn] =
N

∑
j=0

(−1) j
(
N
j
)(

N +mn − n j − 1
N − 1

).

Since

lim
n→∞

1
nN−1 (

N +mn − n j − 1
N − 1

) =
1

(N − 1)!
(max(0,M − j)) N−1

,

the lemma follows from the deûnition (2.1) of the generalised Eulerian numbers.

We now prove Lemma 4.4.

Proof of Lemma 4.4 Put
Hn = ∑

t∈Eq(n)
t≺π

hn ,r(t).

Let єk = −1 for k ≤ q and єk = 1 for k > q. Since

hn ,r(t1 , . . . , t2q) = ∑
0≤ j1 , . . . , j2q<n

j1+⋅⋅⋅+ jq= jq+1+⋅⋅⋅+ j2q

ℓ

∏
i=1
∏
k∈B i

en(єk tk( jk + r)) ,

we can rewrite Hn as

Hn = ∑
0≤ j1 , . . . , j2q<n

j1+⋅⋅⋅+ jq= jq+1+⋅⋅⋅+ j2q

ℓ

∏
i=1
∑

t∈Z/nZ
en( t ∑

k∈B i

єk( jk + r)) .

_e product is either zero or equals nℓ and is nonzero exactly when there exist
a1 , . . . , aℓ ∈ Z such that

(4.3) ∑
k∈B i

єk( jk + r) = a in
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for all i ∈ {1, . . . , ℓ}. Hence,

Hn = nℓ
∑

0≤ j1 , . . . , j2q<n
j1+⋅⋅⋅+ jq= jq+1+⋅⋅⋅+ j2q

∑
a1 , . . . ,aℓ∈Z

ℓ

∏
i=1

I[ ∑
k∈B i

єk( jk + r) = a in] .

Summing both sides of (4.3) over i ∈ {1, . . . , ℓ} gives
q

∑
k=1

( jq+k − jk) = n
ℓ

∑
i=1
a i ,

so that

Hn = nℓ
∑

a1 , . . . ,aℓ∈Z
a1+⋅⋅⋅+aℓ=0

∑
0≤ j1 , . . . , j2q<n

ℓ

∏
i=1

I[ ∑
k∈B i

єk( jk + r) = a in] .

_e i-th factor within the inner sum depends only on ∣B i ∣ = 2N i of the summation
variables in the inner sum, so that we can factor the inner sum as follows:

ℓ

∏
i=1

∑
0≤ j1 , . . . , j2Ni <n

I[
Pi

∑
k=1

( jk + r) −
2N i

∑
k=Pi+1

( jk + r) = a in] .

Replace jk by n − 1 − jk for k ∈ {Pi + 1, . . . , 2N i} to see that this expression equals

ℓ

∏
i=1

∑
0≤ j1 , . . . , j2Ni <n

I
⎡
⎢
⎢
⎢
⎢
⎣

2N i

∑
k=1

jk = (2N i − Pi)(n − 1) + 2r(N i − Pi) + a in
⎤
⎥
⎥
⎥
⎥
⎦

.

Since∑ℓ
i=1(2N i − 1) = 2q − ℓ, we ûnd from Lemma 4.5 that

lim
n→∞

Hn

n2q = ∑
a1 , . . . ,aℓ∈Z
a1+⋅⋅⋅+aℓ=0

ℓ

∏
i=1

1
(2N i − 1)!

⟨
2N i − 1

2N i − Pi + 2R(N i − Pi) + a i − 1
⟩,

since the outer sum is locally ûnite. _e lemma follows a�er re-indexing and using
∑

ℓ
i=1(2N i − Pi) = q.

_eorem 2.5 and therefore_eorem 2.1 now follows fromLemmas 4.1, 4.2, and 4.4.
It remains to show how to deduce Corollary 2.2 from _eorem 2.1. To do so, write

(4.4) AN(x) =
2N−1

∑
a=1

⟨
2N − 1
a − 1

⟩ xa ,

which is known (a�er dividing by x) as an Eulerian polynomial. Letting N1 , . . . ,Nℓ
be positive integers such that N1 + ⋅ ⋅ ⋅ + Nℓ = k, we have

ℓ

∏
i=1
AN i (x) =

2k−ℓ

∑
m=ℓ

xm
∑

a1 , . . . ,aℓ∈Z
a1+⋅⋅⋅+aℓ=m

ℓ

∏
i=1

⟨
2N i − 1
a i − 1

⟩.

Deûne polynomials Fk(x) by Fk(x) = 0 for odd k, F0(x) = 1, and

(4.5) F2k(x) = ∑
π∈Π2k
π even

ℓ

∏
i=1

T(N i)AN i (x)
(2N i − 1)!

for k ≥ 1,
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where π = {B1 , . . . , Bℓ} and N i = ∣B i ∣/2. _en F2k(x) is a polynomial of degree 2k− 1
with F2k(0) = 0 for k ≥ 1, so we can write

F2k(x) =
2k−1

∑
m=1

F(k,m) xm for k ≥ 1.

It is readily veriûed that _eorem 2.1 is equivalent to

lim
p→∞

(
∥ fp∥2q
√p

)

2q

= F(q, q).

It remains to show that the numbers F(k,m) are the same as those given in Corol-
lary 2.2. Use F0(x) = 1 and apply Lemma 4.3 to (4.5) to ûnd that

F2k(x) =
k

∑
j=1

(
2k − 1
2 j − 1

)
T( j)A j(x)
(2 j − 1)!

F2k−2 j(x) for k ≥ 1.

With F(0, 0) = 1 (which equals F0(x)), this is equivalent to the recursive deûnition
of the numbers F(k,m) given in Corollary 2.2.

5 Galois Polynomials

In this sectionwe prove_eorem 2.3 andCorollary 2.4. We use the following notation
throughout this section. A tuple (t1 , t2 , . . . , t2q) is an abelian square if there exists a
permutation σ of {1, 2, . . . , q} such that tσ(k) = tq+k for all k ∈ {1, 2, . . . , q}, so that
the second half of the tuple is a permutation of the ûrst half. Let Aq(n) be the set of
abelian squares in (Z/nZ)2q .

Lemma 5.1 Let q be a positive integer and let gn be a Galois polynomial of degree
n − 1. _en

lim
n→∞

(
∥gn∥2q
√

n
)

2q

= lim
n→∞

1
n2q ∑

t∈Aq(n)
hn ,0(t),

provided that one of the limits exists.

Proof For t ∈ (Z/nZ)2q , let Jn(t) be the indicator function that equals one if t is an
abelian square and is zero otherwise. From Proposition 3.1 we ûnd that

(
∥gn∥2q
√

n
)

2q

=
1

n2q ∑
t∈(Z/nZ)2q

Jn(t)hn ,0(t) +
1

n2q ∑
t∈(Z/nZ)2q

(Lgn(t) − Jn(t))hn ,0(t).

We show that the second expression on the right-hand side tends to zero, which will
prove the lemma. Write s = n + 1, so that s is a power of two. By deûnition, a Galois
polynomial of degree n − 1 can be written as

gn(z) =
n−1

∑
j=0

ψ(θ j
)z j ,

https://doi.org/10.4153/CJM-2016-023-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-023-4


Lq Norms of Fekete and Related Polynomials 821

where ψ is an additive character of Fs and θ is a primitive element of Fs . For amulti-
plicative character ξ of Fs , we deûne the Gauss sum

G(ξ) = ∑
x∈F∗s

ψ(x)ξ(x).

Letting χ be the multiplicative character of Fs given by χ(θ) = en(1), we see that
gn(en(k)) = G(χk) for all k ∈ Z/nZ. _erefore,

Lgn(t1 , . . . , t2q) =
1

nq+1 ∑
m∈Z/nZ

q

∏
k=1

G(χm+tk)G(χm+tq+k).

Since ∣G(ξ)∣2 equals 1 if ξ is trivial and equals n + 1 otherwise, we ûnd that if
(t1 , . . . , t2q) is an abelian square, then ∣Lgn(t1 , . . . , t2q) − 1∣ = O(n−1). On the other
hand, if (t1 , . . . , t2q) is not an abelian square, then a result due toKatz [25, pp. 161–162]
shows that

∣Lgn(t1 , . . . , t2q)∣ ≤
q

nq+1 (n + 1)q+1/2 .

_erefore, by the triangle inequality,

1
n2q

RRRRRRRRRRRR

∑
t∈(Z/nZ)2q

(Lgn(t) − Jn(t))hn ,0(t)
RRRRRRRRRRRR

= O(n−2q−1/2
) ∑

t∈(Z/nZ)2q
∣hn ,0(t)∣,

which tends to zero as n →∞ by Lemma 3.2, as required.

We proceed similarly as for Fekete polynomials and seek an asymptotic evaluation
of the right-hand side of the expression in Lemma 5.1.

_e following lemma is an analogue of Lemma 4.2.

Lemma 5.2 Let h∶Aq(n) → C be a function that depends only on the ûrst q entries
of its input and let C(k) be the k-th signed Carlitz number. _en

(5.1) ∑
t∈Aq(n)

h(t) = q! ∑
π∈Πq

∑
u∈(Z/nZ)q

u≺π

h(u∣u)∏
B∈π

C(∣B∣)
∣B∣!

,

where u∣u is the (2q)-tuple with the ûrst and the second half equal to u.

Proof Take F(z) = log J0(2
√
z) in Lemma 4.3, so that G(z) equals

J0(2
√
z) =

∞

∑
k=0

(−1)k

(k!)2 z
k .

Use (2.3) to ûnd from Lemma 4.3 that

∑
π∈Πk

∏
B∈π

(−1)∣B∣C(∣B∣)
∣B∣!

=
(−1)k

k!
for each k ≥ 1,

or equivalently

(5.2) ∑
π∈Πk

∏
B∈π

C(∣B∣)
∣B∣!

=
1
k!

for each k ≥ 1.

Now let v ∈ (Z/nZ)q and let V be the set of abelian squares in (Z/nZ)2q whose
ûrst q entries equal those of v. By linearity, it suõces to prove the lemma for the case
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where h(x) = 1 for x ∈ V and h(x) = 0 otherwise. _en the le�-hand side of (5.1)
equals

(5.3) ∣V ∣ =
q!

∏
q
k=1(k!)mk(v)

(where mk(v) was deûned before the proof of Lemma 4.2). On the other hand, the
right-hand side of (5.1) equals

q!
q

∏
k=1

( ∑
π∈Πk

∏
B∈π

C(∣B∣)
∣B∣!

)

mk(v)

,

which by (5.2) equals (5.3) again.

Next we evaluate the inner sums in the right-hand side of (5.1) for h = hn ,0.

Lemma 5.3 Let π = {B1 , . . . , Bℓ} ∈ Πq be a partition with ℓ blocks and write N i =

∣B i ∣. _en

lim
n→∞

1
n2q ∑

u∈(Z/nZ)q

u≺π

hn ,0(u∣u) = ∑
a1 , . . . ,aℓ∈Z
a1+⋅⋅⋅+aℓ=q

ℓ

∏
i=1

1
(2N i − 1)!

⟨
2N i − 1
a i − 1

⟩,

where u∣u is the (2q)-tuple with the ûrst and the second half equal to u.

Proof _e proof is similar to that of Lemma 4.4, and so is presented in slightly less
detail. Put

Hn = ∑
u∈(Z/nZ)q

u≺π

hn ,0(u∣u),

which we can rewrite as

Hn = ∑
0≤ j1 , . . . , j2q<n

j1+⋅⋅⋅+ jq= jq+1+⋅⋅⋅+ j2q

ℓ

∏
i=1
∑

u∈Z/nZ
en(u ∑

k∈B i

( jq+k − jk)) .

_e product is either zero or equals nℓ and is nonzero exactly when there exist
a1 , . . . , aℓ ∈ Z such that

(5.4) ∑
k∈B i

( jq+k − jk) = a in

for all i ∈ {1, . . . , ℓ}. Hence

Hn = nℓ
∑

0≤ j1 , . . . , j2q<n
j1+⋅⋅⋅+ jq= jq+1+⋅⋅⋅+ j2q

∑
a1 , . . . ,aℓ∈Z

ℓ

∏
i=1

I[ ∑
k∈B i

( jq+k − jk) = a in] .

Summing both sides of (5.4) over i ∈ {1, . . . , ℓ} gives
q

∑
k=1

( jq+k − jk) = n
ℓ

∑
i=1
a i ,
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so that

Hn = nℓ
∑

a1 , . . . ,aℓ∈Z
a1+⋅⋅⋅+aℓ=0

∑
0≤ j1 , . . . , j2q<n

ℓ

∏
i=1

I[ ∑
k∈B i

( jq+k − jk) = a in]

or equivalently

Hn = nℓ
∑

a1 , . . . ,aℓ∈Z
a1+⋅⋅⋅+aℓ=0

∑
0≤ j1 , . . . , j2q<n

ℓ

∏
i=1

I[ ∑
k∈B i

( jq+k + jk) = a in + N i(n − 1)] .

We can factor the inner sum as follows:
ℓ

∏
i=1

∑
0≤ j1 , . . . , j2Ni <n

I[
2N i

∑
k=1

jk = a in + N i(n − 1)] .

Since∑ℓ
i=1(2N i − 1) = 2q − ℓ, we ûnd from Lemma 4.5 that

lim
n→∞

Hn

n2q = ∑
a1 , . . . ,aℓ∈Z
a1+⋅⋅⋅+aℓ=0

ℓ

∏
i=1

1
(2N i − 1)!

⟨
2N i − 1

N i + a i − 1
⟩,

since the outer sum is locally ûnite. _e lemma follows a�er re-indexing the summa-
tion.

_eorem 2.3 now follows from Lemmas 5.1, 5.2, and 5.3, upon noting that hn ,0 has
the required property in Lemma 5.2.

Next we deduce Corollary 2.4 from _eorem 2.3. _is is again broadly similar to
the proof of Corollary 2.2. Recall the deûnition of the Eulerian polynomials AN(x)
from (4.4) and deûne polynomials Gk(x) by G0(x) = 1, and

(5.5)
Gk(x)

k!
= ∑

π∈Πk

ℓ

∏
i=1

C(N i)AN i (x)
(2N i − 1)!N i !

for k ≥ 1,

where π = {B1 , . . . , Bℓ} and N i = ∣B i ∣. _en Gk(x) is a polynomial of degree 2k − 1
with Gk(0) = 0 for k ≥ 1, so we can write

Gk(x) =
2k−1

∑
m=1

G(k,m) xm for k ≥ 1.

It is readily veriûed that _eorem 2.3 is equivalent to

lim
n→∞

(
∥gn∥2q
√

n
)

2q

= G(q, q).

It remains to show that the numbers G(k,m) are the same as those given in Corol-
lary 2.4. Use G0(x) = 1 and apply Lemma 4.3 to (5.5) to ûnd that

Gk(x)
k!

=
k

∑
j=1

(
k − 1
j − 1

)
C( j)A j(x)
(2 j − 1)! j!

Gk− j(x)
(k − j)!

for k ≥ 1,

or equivalently

Gk(x) =
k

∑
j=1

(
k
j
)(

k − 1
j − 1

)
C( j)A j(x)
(2 j − 1)!

Gk− j(x) for k ≥ 1.
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With G(0, 0) = 1 (which equals G0(x)), this is equivalent to the recursive deûnition
of the numbers G(k,m) given in Corollary 2.4.
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