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The strongly nonlinear Miyata–Choi–Camassa model under the rigid lid approximation
(MCC-RL model) can describe accurately the dynamics of large-amplitude internal waves
in a two-layer fluid system for shallow configurations. In this paper, we apply the MCC-RL
model to study the internal waves generated by a moving body on the bottom. For the case
of the moving body speed U = 1.1c0, where c0 is the linear long-wave speed, the accuracy
of the MCC-RL results is assessed by comparing with Euler’s solutions, and very good
agreement is observed. It is found that when the moving body speed increases from U =
0.8c0 to U = 1.241c0, the amplitudes of the generated internal solitary waves in front of
the moving body become larger. However, a critical moving body speed is found between
U = 1.241c0 and U = 1.242c0. After exceeding this critical speed, only one internal wave
right above the body is generated. When the moving body speed increases from U =
1.242c0 to U = 1.5c0, the amplitudes of the internal waves become smaller.

Key words: internal waves, stratified flows, solitary waves

1. Introduction

Internal solitary waves exist widely in various seas all over the world; see e.g. Jackson
(2007). Internal solitary waves are seen frequently in the northern part of the South China
Sea, where Huang et al. (2016) observed an internal solitary wave with an amplitude as
large as 240 m.
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Bottom types Flat bottom Space-varying bottom Time-varying bottom
(z = −h2) (z = −h2 + b(x)) (z = −h2 + b(x, t))

Choi & Camassa (1999)
Camassa et al. (2006)
Barros & Gavrilyuk (2007)
Jo & Choi (2008) Jo & Choi (2002)

Choi, Zhi & Barros (2020)
Choi (2000)Related literature Kodaira et al. (2016)

la Forgia & Sciortino (2019)
Barros, Choi & Milewski (2020)
la Forgia & Sciortino (2020, 2021)
Choi (2022)

Table 1. Available literature on the application of the MCC model for the three types of bottom boundary
conditions discussed in the text.

To describe the internal solitary waves, the two-layer fluid system with constant mass
densities is always considered. The Korteweg–de Vries (KdV) model is the earliest and
widely used approach because of its simple form; see e.g. Benjamin (1966) and Miles
(1980). However, when the KdV model describes large-amplitude internal solitary waves,
the wave profiles are narrower and the wave speed is obviously faster when compared to
the experimental data (Grue et al. 1999; Kodaira et al. 2016). Thus the KdV model is
not suitable for describing large-amplitude internal waves due to the assumption of weak
nonlinearity (Ostrovsky & Stepanyants 2005; Helfrich & Melville 2006).

Considering the large-amplitude internal waves in a two-layer shallow configuration
(i.e. h1/λ� 1 and h2/λ� 1, where h1 and h2 are the depths of the upper and lower
fluid layers, respectively, and λ is the characteristic wavelength), Miyata (1985, 1988) and
Choi & Camassa (1999) (MCC) derived a strongly nonlinear internal wave model. In their
model, the depth-averaged horizontal velocities are used to describe the horizontal velocity
variations along the fluid column for the upper and lower fluid layers. Here, we refer to
it as the MCC-RL model because the free surface is approximated as a rigid lid (RL).
Choi & Camassa (1996) also derived the MCC model that included the free surface effect
(MCC-FS model).

Because of the excellent performance in describing the large-amplitude internal waves,
the MCC model is widely used in various internal wave problems. These problems can be
divided into three types based on the condition of the bottom boundary, namely (i) the flat
bottom (z = −h2), (ii) the space-varying bottom (z = −h2 + b(x), where b is the elevation
of the bottom), and (iii) the time-varying bottom (z = −h2 + b(x, t)). Table 1 shows some
related research on the applications of the MCC model to these three types of problems.

For the flat bottom problems, the MCC model is used widely to describe the
large-amplitude internal waves in a two-layer fluid system (Choi & Camassa 1999;
Camassa et al. 2006; Barros & Gavrilyuk 2007; Jo & Choi 2008; Kodaira et al. 2016; la
Forgia & Sciortino 2019). Recently, Barros et al. (2020) extended the two-layer MCC-RL
model to the three-layer case to study the properties of large-amplitude mode-2 internal
solitary waves. Also, la Forgia & Sciortino (2020, 2021) used the MCC-RL model and
the MCC-FS model, respectively, to study the internal solitary waves in the presence of
a uniform current. Choi (2022) derived a second-order model to include the next-order
correction of the MCC model. Good agreement was found between the results provided
by the second-order model derived by Choi (2022) and the Euler’s solutions.
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Internal waves generated by bottom disturbance

For the space-varying bottom problems, Jo & Choi (2002) studied the deformation of
an elevation internal solitary wave propagating over topography by use of the MCC-RL
model, and the MCC-RL results were shown to be different from the weakly nonlinear
prediction. Choi et al. (2020) used the MCC-RL model to study the propagation of a
depression internal solitary wave over an isolated bottom topography, and a Fourier filter
was applied to eliminate the local instability.

For the time-varying bottom problems, the MCC model has been extended for the case
of a time-varying bottom (and also multiple layers) by Choi (2000). It is expected that the
MCC model can be applied to provide further information about the time-varying bottom
problems. Internal waves generated by a moving disturbance have been a subject of great
interest. Internal waves may be generated by a surface disturbance, such as the dead-water
phenomenon induced by ship motion (see e.g. Mercier, Vasseur & Dauxois 2011; Duchene
2011) or by a seafloor disturbance, such as underwater landslides (see e.g. Brizuela,
Filonov & Alford 2019). In the present study, we focus on internal waves generated by a
moving body on the seafloor. Under the rigid lid assumption, Grue et al. (1997) established
a time-stepping method for solving Euler’s equations to study this problem in a two-layer
fluid system. They showed that a moving body with speed U = 1.1c0 (where c0 is the
linear long-wave speed) could generate a series of internal solitary waves. The number of
waves would increase with the moving distance. However, the effect of the moving body
speed on the generated internal waves should be investigated further.

The motivations of this study are (i) to apply the MCC-RL model to the time-varying
bottom problems, and (ii) to analyse the effect of the moving body speed on the generated
internal waves.

This paper is organized as follows. In § 2, the equations of the MCC-RL model with
time-varying bottom are derived. In § 3, the numerical algorithm is presented. Numerical
test cases are presented and discussed in § 4. Conclusions are reached in § 5.

2. The MCC-RL model with time-varying bottom

In this section, the MCC-RL model with time-varying bottom is introduced. We consider
a two-dimensional system of two fluid layers whose densities and undisturbed thicknesses
are given by ρi and hi, respectively, where i = 1 represents the upper fluid layer and i = 2
represents the lower fluid layer. The origin of the two-dimensional Cartesian coordinate
system is set at the undisturbed interface between the two fluid layers, x is the horizontal
axis, positive to the right, and z is the vertical axis, positive up. The upper surface of
the upper fluid layer, the interface between the two fluid layers and the lower surface
of the lower fluid layer are represented by z = h1, z = ζ(x, t) and z = −h2 + b(x, t),
respectively, where b(x, t) is the bottom elevation. Also, η1(x, t) and η2(x, t) are the local
layer thicknesses of the upper fluid layer and lower fluid layer, respectively. A sketch of a
two-layer fluid system where the bottom varies with time is shown in figure 1.

For incompressible, homogeneous fluids, the mass conservation equations of the two
fluid layers can be written as

u1,x + w1,z = 0, (2.1a)

u2,x + w2,z = 0, (2.1b)

where ui(x, z, t) and wi(x, z, t) are the horizontal velocity and vertical velocity respectively,
where i = 1 represents the upper fluid layer and i = 2 represents the lower fluid layer. The
subscripts x and z after a comma represent the spatial partial derivatives.
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ρ1

ρ2

h1

h2

x

U

z

O

η1 (x, t)

η2 (x, t)

z = ζ(x, t)

z = h1

z = –h2 + b(x, t)

Figure 1. Sketch of a two-layer fluid system where the bottom varies with time.

For this fluid system, and assuming that viscous effects are negligible, the momentum
conservation equations for the two fluid layers can be written as

u1,t + u1u1,x + w1u1,z = −p1,x/ρ1, (2.2a)

u2,t + u2u2,x + w2u2,z = −p2,x/ρ2, (2.2b)

w1,t + u1w1,x + w1w1,z = −p1,z/ρ1 − g, (2.2c)

w2,t + u2w2,x + w2w2,z = −p2,z/ρ2 − g, (2.2d)

where p1(x, z, t) and p2(x, z, t) are the pressures of the upper fluid layer and the lower fluid
layer, respectively, and g is the gravitational acceleration. The subscript t after a comma
indicates the partial derivative with respect to time.

The kinematic boundary conditions for the upper fluid layer are written as

w1 = 0, at z = h1, (2.3a)

w1 = ζ,t + u1ζ,x, at z = ζ(x, t). (2.3b)

The kinematic boundary conditions for the lower fluid layer are written as

w2 = ζ,t + u2ζ,x, at z = ζ(x, t), (2.4a)

w2 = b,t + u2b,x, at z = −h2 + b(x, t). (2.4b)

The dynamic boundary condition at the interface between the two fluid layers is written
as

�
p1 = �

p2 = P, at z = ζ(x, t), (2.5)

where
�
p1(x, t) is the pressure at the lower surface of the upper fluid layer,

�
p2(x, t) is the

pressure at the upper surface of the lower fluid layer and P(x, t) is the pressure at the
interface.

In the MCC-RL model, it is assumed that the characteristic wavelength is long compared
with each fluid layer thickness. When the bottom is flat, i.e. b(x, t) = 0, the equations of
the MCC-RL model given by Choi & Camassa (1999) can be written in terms of four
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Internal waves generated by bottom disturbance

unknowns (ζ, ū1, ū2, P) as

η1,t + (η1ū1),x = 0, η1 = h1 − ζ, (2.6a)

η2,t + (η2ū2),x = 0, η2 = h2 + ζ, (2.6b)

ū1,t + ū1ū1,x + gζ,x = −P,x

ρ1
+ 1

η1

(
1
3

η3
1G1

)
,x
, (2.6c)

ū2,t + ū2ū2,x + gζ,x = −P,x

ρ2
+ 1

η2

(
1
3

η3
2G2

)
,x
, (2.6d)

where ū1 and ū2 are the depth-averaged horizontal velocities, which are defined as

ū1(x, t) = 1
η1

∫ h1

ζ

u1(x, z, t) dz, (2.7a)

ū2(x, t) = 1
η2

∫ ζ

−h2

u2(x, z, t) dz, (2.7b)

and G1 and G2 are defined as

G1(x, t) = ū1,xt + ū1ū1,xx − (
ū1,x

)2
, G2(x, t) = ū2,xt + ū2ū2,xx − (

ū2,x
)2

. (2.8a,b)

When the bottom varies with time and space, by the multi-layer MCC model proposed
by Choi (2000), we obtain the equations for the MCC-RL model for the four unknowns
(ζ, ū1, ū2, P) as

η1,t + (η1ū1),x = 0, η1 = h1 − ζ, (2.9a)

η2,t + (η2ū2),x = 0, η2 = h2 + ζ − b, (2.9b)

ū1,t + ū1ū1,x + gζ,x = −P,x

ρ1
+ 1

η1

(
1
3

η3
1G1

)
,x
, (2.9c)

ū2,t + ū2ū2,x + gζ,x = −P,x

ρ2
+ 1

η2

(
1
3

η3
2G2 − 1

2
η2

2D2
2b
)

,x

+
(

1
2

η2G2 − D2
2b
)

b,x, (2.9d)

where D2 ≡ ∂t + ū2 ∂x. For a given bottom elevation b, (2.9) are closed and are solvable.
Considering that the bottom varies with time and space, there are some differences

between (2.9) and (2.6). In (2.9b), compared with (2.6b), the local layer thickness η2 is
changed. In (2.9d), compared with (2.6d), some terms related to time-varying bottom are
added, including −(1/2η2)(η

2
2D2

2b),x and (1
2η2G2 − D2

2b)b,x.
In addition, considering the bottom elevation, compared with (2.7b), ū2 is defined as

ū2(x, t) = 1
η2

∫ ζ

−h2+b
u2(x, z, t) dz. (2.10)

By eliminating ζ,t from (2.9a) and (2.9b), ū1 can be expressed in terms of ū2, ζ and b as

ū1 = 1
η1

(∫ +∞

−∞
b,t dx − ū2η2

)
. (2.11)
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3. Numerical algorithm

In the time domain algorithm for solving the MCC-RL model, Jo & Choi (2008) used the
second-order central difference scheme both in space and in time. In this section, we will
give a numerical algorithm with higher accuracy for solving the MCC-RL equations.

For the equations of the MCC-RL model with time-varying bottom, combining (2.9c)
and (2.9d) to eliminate P,x, we can obtain

ρ1

η1

(
1
3

η3
1G1

)
,x

− ρ1
(
ū1,t + ū1ū1,x + gζ,x

) = ρ2

η2

(
1
3

η3
2G2 − 1

2
η2

2D2
2b
)

,x

+ ρ2

(
1
2

η2G2 − D2
2b
)

b,x − ρ2
(
ū2,t + ū2ū2,x + gζ,x

)
, (3.1)

where ū1 can be eliminated by using (2.11).
Then (3.1) can be arranged in the form

Aū2,xxt + Bū2,xt + Cū2,t = F, (3.2)

where A, B, C and F are functions of ζ(x, t), b(x, t), ū2(x, t) and their spatial derivatives.
Here, A, B, C and F are defined as

A = −1
3

η2 (ρ1η1 + ρ2η2) , (3.3a)

B = −1
3

[
ρ1η2η1,x + (2ρ1η1 + 3ρ2η2) η2,x

]
, (3.3b)

C = ρ1

3

(
η1,xxη2 − η1,xη2,x − η1η2,xx + η2

3 + η2
1,x

η1

)

+ ρ2

(
1 + b2

,x + b,xη2,x + b,xxη2

2

)
, (3.3c)

F = Aū2,xxt + Bū2,xt + Cū2,t − ρ1

η1

(
1
3

η3
1G1

)
,x

+ ρ1
(
ū1,t + ū1ū1,x + gζ,x

)+ ρ2

η2

(
1
3

η3
2G2 − 1

2
η2

2D2
2b
)

,x

+ ρ2

(
1
2

η2G2 − D2
2b
)

b,x − ρ2
(
ū2,t + ū2ū2,x + gζ,x

)
. (3.3d)

The spatial difference discretization is utilized to solve (3.2). The calculation domain of
x is discretized into having a uniform grid of x values, spaced �x apart. The ith point on
the grid is denoted by xi = i �x for i = 1, 2, . . . , n. Time is discretized with intervals �t,
with tj = j �t. For example, the value ū2(xi, tj) will be denoted by ū(i)

2 , where j is omitted
since we refer to the same j time. Similar subscripts are also used for other variables.

963 A32-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

35
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.355


Internal waves generated by bottom disturbance

The five-point central difference scheme is used to calculate spatial derivations of ū(i)
2,xt

and ū(i)
2,xxt as follows:

ū(i)
2,xt = ū(i−2)

2,t − 8ū(i−1)
2,t + 8ū(i+1)

2,t − ū(i+2)
2,t

12�x
, (3.4a)

ū(i)
2,xxt = −ū(i−2)

2,t + 16ū(i−1)
2,t − 30ū(i)

2,t + 16ū(i+1)
2,t − ū(i+2)

2,t

12(�x)2 . (3.4b)

Substituting (3.4) into (3.2) will result in

Ã(i)ū(i−2)
2,t + B̃(i)ū(i−1)

2,t + C̃(i)ū(i)
2,t + D̃(i)ū(i+1)

2,t + Ẽ(i)ū(i+2)
2,t = F(i), (3.5)

where

Ã(i) = −A(i) 1

12(�x)2 + B(i) 1
12�x

, (3.6a)

B̃(i) = A(i) 4

3(�x)2 − B(i) 2
3�x

, (3.6b)

C̃(i) = −A(i) 5

2(�x)2 + C(i), (3.6c)

D̃(i) = A(i) 4

3(�x)2 + B(i) 2
3�x

, (3.6d)

Ẽ(i) = −A(i) 1

12(�x)2 − B(i) 1
12�x

. (3.6e)

Details about the algorithm used to solve (3.5) to obtain ū2,t can be found in Zhao, Duan
& Ertekin (2014). Meanwhile, ζ,t can be calculated by (2.9b). We use the fourth-order
Adams predictor–corrector scheme for time marching. For each case, we have tested the
convergence of �x and �t. Here, the results shown are the converged results.

In the time domain simulation of internal waves in a two-layer system, the
time-dependent inviscid model suffers from the Kelvin–Helmholtz instability due to the
velocity discontinuity across the interface, as mentioned by Jo & Choi (2002). In order to
reduce the effect of local instability, a numerical filter is found to be effective to suppress
the short-wave instability without affecting the long-wavelength behaviour; see e.g. Jo &
Choi (2008) and Choi et al. (2020). On the other hand, the internal wave model can be
regularized to eliminate shear instability; see e.g. Choi, Barros & Jo (2009), Lannes &
Ming (2015) and Duchêne, Israwi & Talhouk (2016).

In our simulation, a five-point smoothing filter is applied intermittently in the numerical
solutions for the time-stepping variables ζ and ū2 to dampen the high wavenumber
disturbances, and this filter is written as

ḟ (i) = 17f (i) + 12
(
f (i−1) + f (i+1)

)− 3
(
f (i−2) + f (i+2)

)
35

, (3.7a)

f̈ (i) = ḟ (i) ∗ γ + f (i) ∗ (1 − γ ) , (3.7b)

where ḟ (i) is the variable after the first step of smoothing, f̈ (i) is the final variable after
smoothing and γ is the smoothing parameter used for weighting process, typically taken
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(b)

(a)

Figure 2. The propagation of a large-amplitude internal solitary wave over an extended time in a frame
moving with the internal solitary wave speed, with ρ1/ρ2 = 1/1.01, h1/h2 = 1/2 and a/h1 = −0.4885.
(a) The propagation of the internal solitary wave in the space–time domain. (b) Internal solitary wave profiles.

as 0.01. The smoothing formula has a minor effect on numerical results (Longuet-Higgins
& Cokelet 1976; Fuhrman, Madsen & Bingham 2006; Zhao et al. 2014).

In order to test the effect of the smoothing filter, we simulate the internal solitary
wave that suffers from Kelvin–Helmholtz instability, shown in Jo & Choi (2002). The
parameters are ρ1/ρ2 = 1/1.01, h1/h2 = 1/2 and a/h1 = −0.4885. As shown in figure 2,
the smoothing filter in our simulations can effectively reduce the influence of the short
waves and ensure stable propagation of large-amplitude internal waves over a long time. By
comparing the wave profiles at t(g/h1) = 0 with t(g/h1) = 4000, we find that the results
are almost identical and there is no numerical dissipation.

4. Numerical test cases

In this section, we will use the MCC-RL model to conduct a number of numerical tests. In
the first case, we consider a large-amplitude internal solitary wave propagating on the flat
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Internal waves generated by bottom disturbance

bottom and compare the wave profile and velocity field obtained by the model discussed
here with the experimental data and Euler’s solutions given by Grue et al. (1999). In
the second case, we study the internal waves generated by the moving body with speed
U = 1.1c0 on the bottom, and compare the MCC-RL results with Euler’s solutions given
by Grue et al. (1997). Next, we study the effect of moving body speed on the generated
internal waves, with the speed ranging from U = 0.8c0 to U = 1.5c0. Finally, we apply the
MCC-RL model to simulate the internal waves generated by an unsteady moving bottom.

4.1. Internal solitary wave propagating on the flat bottom
In this subsection, we consider a large-amplitude internal solitary wave propagating on
the flat bottom. Following the physical experiments conducted by Grue et al. (1999),
we select the parameters as follows: h1 = 0.15 m, h2 = 0.62 m, ρ1 = 999 kg m−3 and
ρ2 = 1022 kg m−3. The amplitude of the internal solitary wave that we selected is
−1.23h1. The initial values are provided by the steady solutions of the MCC-RL model.
More details on the steady solution of MCC-RL model can be found in Choi & Camassa
(1999).

A snapshot of the internal solitary wave propagating over the flat bottom at different
moments is shown in figure 3(a). We translate the internal wave profiles at different
moments to the place where the crest is at x/h1 = 0 in figure 3(b). From t = 0 s to
t = 600 s, we find that the profiles of the propagating internal wave show very good
agreement, which indicates that this large-amplitude internal solitary wave can propagate
on the flat bottom steadily based on the numerical algorithm discussed in § 3.

In figure 4, we present directly the time domain results on the internal wave profile and
velocity field at t = 600 s. Euler’s solutions and experimental data obtained by Grue et al.
(1999) are also shown for comparison purposes. For the horizontal velocity along the fluid
column at the internal wave crest in figure 4(b), the MCC-RL result can be obtained based
on the depth-averaged horizontal velocities ū1 and ū2 (Camassa et al. 2006). In figure 4(b),
c0 is the linear long-wave speed, which is defined as

c0 =
√

gh1h2 (ρ2 − ρ1)/(ρ1h2 + ρ2h1). (4.1)

From figure 4, we find that the numerical results show good agreement with each other,
and they both match the experimental data very well. Thus it is demonstrated that the time
domain solution of the MCC-RL model in this case is accurate.

4.2. Internal waves generated by a moving bottom disturbance
In this subsection, we consider the internal waves generated by a moving body on the
bottom. The continuous and uniform motion of a body on the bottom, in a moving
coordinate system, could also be regarded as a tidal flow over topography due to the relative
motions (Wang 2019). Various approaches are used in the literature to investigate this
problem, including by use of the forced KdV model in a single-layer fluid (Grimshaw 2010;
Grimshaw & Maleewong 2016) and in a continuously density-stratified fluid (Grimshaw &
Smyth 1986; Grimshaw, Chan & Chow 2002; Grimshaw & Helfrich 2018). As the forced
KdV model is a weakly nonlinear model with limitations, it is desirable to use a strongly
nonlinear model to further study the internal waves generated by a moving body on the
bottom (Helfrich & Melville 2006).

In the simulation, we use the same parameters given by Grue et al. (1997),
as follows: h1 = 0.12 m, h2 = 0.03 m, ρ1 = 787.3 kg m−3 and ρ2 = 1000 kg m−3.
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Figure 3. A large-amplitude internal solitary wave propagating on the flat bottom in a frame moving with the
internal solitary wave speed, with ρ1/ρ2 = 0.977, h1/h2 = 1/4.13 and a/h1 = −1.23. (a) The propagation
of the internal solitary wave. (b) Translated internal solitary wave profiles at different moments (the lines are
almost exactly on top of each other).

The moving bottom disturbance is a semi-ellipse (shown in figure 5), whose shape is fixed
at all times, and it is confined to only horizontal motion on the seafloor. The semi-major
axis and the semi-minor axis of the moving ellipse body are L1/2 = 10h2 = 0.3 m and
B1/2 = 0.1h2 = 0.003 m, respectively. The constant speed of the body is U = 1.1c0 =
0.252 m s−1, where the value of c0 is obtained by (4.1) as 0.229 m s−1. It should be noted
that in this study, the semi-ellipse on the bottom is moving with the constant speed starting
from the initial moment, i.e. there is no acceleration of the bottom disturbance. This,
however, is not required in general. A sketch of the physical problem is shown in figure 5.

The internal surface elevations at different moments obtained by the MCC-RL model
are shown in figure 6, where Euler’s solutions obtained by Grue et al. (1997) are also
presented for comparison.

As shown in figure 6, several internal waves can be generated in front of the
moving body, and with the moving time increasing, the number of generated internal
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Figure 4. Comparison between the time domain solution of the MCC-RL model and Euler’s solution
and experimental data, with ρ1/ρ2 = 0.977, h1/h2 = 1/4.13 and a/h1 = −1.23. (a) Internal wave profile.
(b) Horizontal velocity along the fluid column at the internal wave crest.
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Figure 5. Sketch of semi-ellipse moving on the bottom in a two-layer fluid system.
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Figure 6. Internal elevations generated by a moving body on the bottom at different moments, with
ρ1/ρ2 = 0.7873, h1/h2 = 4/1 and U = 1.1c0, for (a) t = 59.7 s, (b) t = 106.2 s, (c) t = 152.7 s.

waves increases. By comparing the MCC-RL results with the Euler’s solutions obtained
by Grue et al. (1997), we observe that the two results show good agreement in general
since this case belongs to the shallow configuration case. We also observe in figure 6(c)
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Figure 7. Comparison of the internal wave profiles between the time domain solution and the steady solution
by the MCC-RL model, with ρ1/ρ2 = 0.7873, h1/h2 = 4/1 and a/h2 = 0.84.

Moment 1st wave 2nd wave 3rd wave

t = 150 s 1391h2 1364h2 1337h2
t = 180 s 1672h2 1645h2 1619h2

Table 2. Positions of the wave crests.

that the amplitudes of the generated internal waves obtained by the MCC-RL model are
approximately 0.84h2.

In figure 7, we compare the time domain solution at 152.7 s with the steady solution of
the MCC-RL model on internal wave profiles. The steady solution of the MCC-RL model
can be obtained by (3.50) and (3.57) of Choi & Camassa (1999), as are also shown below:

(
ζ,X
)2 = 3ζ 2 [ρ1c2

wη2 + ρ2c2
wη1 − g (ρ2 − ρ1) η1η2

]
ρ1c2

wh2
1η2 + ρ2c2

wh2
2η1

, (4.2a)

c2
w

c2
0

= (h1 − a) (h2 + a)

h1h2 − (
c2

0/g
)

a
, (4.2b)

where X = x − cwt, cw is the speed of the internal solitary wave and a is the amplitude
of the internal solitary wave. Good agreements are observed, and this indicates that the
generated waves are indeed internal solitary waves. Furthermore, it is found that the
distances between the crests of adjacent internal solitary waves are approximately 27h2.
This indicates that there is a weak interaction between the internal solitary waves. Similar
conclusions are also made by Grue et al. (1997).

In table 2, the positions of the first three wave crests at t = 150 s and 180 s are given.
According to table 2, the speeds of these waves is approximately 1.23c0, which is the
same as the speed provided by the steady solution. Thus the generated internal waves can
be regarded as a series of internal solitary waves.
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Figure 8. Generation of internal waves with the moving body speed U = 0.8c0, with ρ1/ρ2 = 0.7873 and
h1/h2 = 4/1. (a) Comparison of the internal wave profiles at different moments. (b) Comparison between the
time domain solution and the steady solution.

4.3. Effect of the moving body speed on the generated internal waves
In this subsection, we focus on the effect of the moving body speed on the generated
internal waves. By conducting a series of numerical simulations, we find that when the
moving body speed is U < 0.8c0, the amplitudes of generated internal waves are quite
small. Thus the constant moving body speeds that we select are from U = 0.8c0 to
U = 1.5c0, namely U = 0.8c0, 1.0c0, 1.241c0, 1.242c0, 1.4c0 and 1.5c0. The initial centre
position of the moving body is located at x0 = 5 m. Other parameters are the same as those
given in § 4.2. For convenience of display, we translate the moving body centre to x = 0
in the following figures.

4.3.1. U = 0.8c0
For the case of the moving body speed U = 0.8c0, we compare the generated internal
waves at t = 60 s, 120 s and 180 s, shown in figure 8(a). Comparing with the case of
the moving body speed U = 1.1c0 shown in figure 6, we find that the amplitude of the
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Moment a1 a2 (a1 − a2)/a1 l1−2

t = 60 s 0.22h2 0.17h2 22.73 % 25.33h2
t = 120 s 0.22h2 0.19h2 13.64 % 30.67h2
t = 180 s 0.22h2 0.20h2 9.09 % 34.33h2

Table 3. The amplitudes and positions of the first two generated internal waves at different moments for the
case U = 0.8c0, where a1 is the amplitude of the leading wave, a2 is the amplitude of the second wave and
l1−2 is the crest distance between the leading wave and the second wave.

generated internal waves is smaller in this case. The amplitude of the leading internal
wave is only 0.22h2. In figure 8(b), we compare the time domain solution at t = 180 s
with the steady solution on the first two internal wave profiles, and good agreements are
observed. Moreover, the amplitude of the generated second internal wave is smaller than
that of the leading internal wave due to their interaction.

The amplitudes of the first two internal waves and the crest distance at different moments
are shown in table 3. From t = 60 s to t = 180 s, the amplitude of the leading wave a1 is
basically unchanged, while the amplitude of the second wave a2 increases. Meanwhile,
the distance between the wave crests, l1−2, also becomes larger when the time increases,
which indicates that their interaction becomes weaker.

4.3.2. U = 1.0c0
For the case of the moving body speed U = 1.0c0, the generated internal waves at t = 60 s,
120 s and 180 s are shown in figure 9(a), where we observe that the amplitudes of the
generated internal wave become larger than those of the case of the moving body speed
U = 0.8c0. The amplitude of the leading generated wave reaches 0.58h2. Good agreements
are found between the time domain solution at t = 180 s and the steady solution for the first
two generated internal wave profiles in general.

The amplitudes of the first two generated internal waves and the crest distance at
different moments are shown in table 4. From t = 60 s to t = 180 s, the amplitudes of
the generated leading internal wave are basically unchanged, and the amplitudes of the
second wave become slightly larger. Also, the distance between the wave crests l1−2 does
not show obvious differences when the time increases, which indicates that there is weak
interaction between the two internal waves.

4.3.3. U = 1.241c0
For the case of the moving body speed U = 1.241c0, the amplitudes of the generated
internal waves increases further, and the time required to generate the internal wave needs
longer. Thus we compare the generated internal waves at t = 140 s, 280 s and 420 s in
figure 10(a). At t = 420 s, the amplitude of the leading internal wave reaches 1.23h2. In
figure 10(b), good agreement can be found between the time domain results and the steady
solution.

Next, we focus on the relationship between the amplitude of the generated leading
internal solitary wave and the moving body speed. We recall that the moving body speed
varies between U = 0.8c0 and U = 1.241c0. As shown in figure 11, the amplitude of the
leading internal wave increases monotonically with an increase in the moving body speed.
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Figure 9. Generation of internal waves with the moving body speed U = 1.0c0, with ρ1/ρ2 = 0.7873 and
h1/h2 = 4/1. (a) Comparison of the internal wave profiles at different moments. (b) Comparison between time
domain solution and steady solution.

Moment a1 a2 (a1 − a2)/a1 l1−2

t = 60 s 0.57h2 0.54h2 5.26 % 22.00h2
t = 120 s 0.58h2 0.56h2 3.45 % 24.00h2
t = 180 s 0.58h2 0.57h2 1.72 % 25.67h2

Table 4. The amplitudes and positions of the first two generated internal waves at different moments for the
case U = 1.0c0, where a1 is the amplitude of the leading wave, a2 is the amplitude of the second wave and
l1−2 is the crest distance between the leading wave and the second wave.

A similar phenomenon was also observed in the experiments conducted by Melville &
Helfrich (1987), although the moving body was on the free surface in their experiments.

Furthermore, the relationship between the leading internal wave speed and the moving
body speed is shown in figure 12. We find that the wave speed relative to the moving
body speed, cw − U, becomes smaller with the increasing moving body speed. When the
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Figure 10. Generation of internal waves with the moving body speed U = 1.241c0, with ρ1/ρ2 = 0.7873 and
h1/h2 = 4/1. (a) Comparison of the internal wave profiles at different moments. (b) Comparison between time
domain solution and steady solution.
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Figure 11. Relationship between leading internal wave amplitude a1 and the moving body speed U, the
moving speed changing from U = 0.8c0 to U = 1.241c0, with ρ1/ρ2 = 0.7873 and h1/h2 = 4/1.
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Figure 12. Relationship between the generated internal wave relative speed cw − U and the moving body
speed U, the moving speed changing from U = 0.8c0 to U = 1.241c0, with ρ1/ρ2 = 0.7873 and h1/h2 = 4/1.

moving body speed is U = 1.241c0, cw − U is only 0.037c0. This also explains that when
the moving body speed is U = 1.241c0, it takes a longer time to generate internal waves.

4.3.4. U = 1.242c0
For the case of the moving body speed U = 1.242c0 (and larger speeds), we find that the
results are quite different from the results of the previous cases. For this case, we find
that a single internal wave, right above the moving body, is generated. Apart from the
time domain simulation, we also obtain the steady solution with time-varying bottom for
comparison purposes.

Here, we introduce briefly the algorithm for obtaining the steady solution for the internal
wave with a time-varying bottom. The speed of the moving reference frame is the same as
the moving body speed U. We use the moving coordinates, which are located at the still
interface of the two fluid layers, XOZ, to solve this problem. In the moving coordinates, ζ ,
b, ū1 and ū2 can be written as

ζ(x, t) = ζ(X), (4.3a)

b(x, t) = b(X), (4.3b)

ū1(x, t) = ū1(X), (4.3c)

ū2(x, t) = ū2(X), (4.3d)

where X = x − Ut.
After substituting (4.3) into (2.9) and using the relation

f,t = −Uf,X, (4.4)

where f = (ζ, b, ū1, ū2), the moving coordinates form of the MCC-RL equations that are
used to obtain the steady solution with time-varying bottom can be obtained. For a given
bottom b(X) and speed U, the system of equations is closed and solvable. The central
difference scheme is used to calculate the spatial derivatives, and the Newton–Raphson
method is used to determine the travelling solution. More details of the numerical scheme
to solve the steady problem are given in Zhao et al. (2016) and Duan et al. (2018). For a
given speed U, we can obtain the steady solution of the internal wave. It should be noted
that it is only when the speed U is large, such as 1.242c0, that the steady solution with
time-varying bottom can be obtained. When the speed U is less than the critical speed,
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Figure 13. Generation of internal waves with the moving body speed U = 1.242c0, with ρ1/ρ2 = 0.7873 and
h1/h2 = 4/1. (a) Comparison of the internal wave profiles at different moments. (b) Comparison between time
domain solution and steady solution.

a series of internal solitary waves will be generated continuously in front of the moving
body, therefore steady state cannot be realized.

In figure 13, there is only one internal wave above the moving body, and the wave speed
is the same as the moving body speed. In figure 13(a), the amplitude of the internal wave
at t = 100 s is slightly smaller than those at t = 200 s and 300 s. At t = 300 s, we find
that the amplitude of the generated internal wave is 0.41h2, which is obviously smaller
than the 1.23h2 obtained in the case of the moving body speed U = 1.241c0. As shown in
figure 13(b), good agreement can be found between the time domain solution at t = 300 s
and the steady solution with a time-varying bottom.

4.3.5. U = 1.4c0
In figure 14, for the moving body speed U = 1.4c0, the amplitudes of the internal waves at
t = 100 s, 200 s and 300 s are basically the same. Comparing with the case of the moving
body speed U = 1.242c0, the internal wave amplitude decreases to 0.17h2. As shown in
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Figure 14. Generation of internal waves with the moving body speed U = 1.4c0, with ρ1/ρ2 = 0.7873 and
h1/h2 = 4/1. (a) Comparison of the internal wave profiles at different moments. (b) Comparison between time
domain solution and steady solution.

figure 14(b), the time domain solution and the steady solution of the time-varying bottom
are also in good agreement.

4.3.6. U = 1.5c0
As shown in figure 15, for the moving body speed U = 1.5c0, the amplitude of the internal
wave decreases further to 0.15h2. The time domain solution and the steady solution are
also in good agreement in figure 15(b).

Then we study the relationship between the moving body speed and the amplitude of
the generated internal wave when the moving body speed increases from U = 1.242c0 to
U = 1.5c0. As shown in figure 16, we observe that the generated internal wave amplitude
decreases as the moving body speed increases. The relation, however, is nonlinear, unlike
what was observed for U ≤ 1.24c0 (in figure 11).

In figure 17, we combine figures 11 and 16. It is obvious that there is a critical speed
between U = 1.241c0 and U = 1.242c0. The amplitude of the internal wave decreases
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Figure 15. Generation of internal waves with the moving body speed U = 1.5c0, with ρ1/ρ2 = 0.7873 and
h1/h2 = 4/1. (a) Comparison of the internal wave profiles at different moments. (b) Comparison between time
domain solution and steady solution.

1.51.41.31.2
0
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a 1
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Figure 16. Relationship between the generated internal wave amplitude a1 and the moving body speed U, the
moving speed changing from U = 1.242c0 to U = 1.5c0, with ρ1/ρ2 = 0.7873 and h1/h2 = 4/1.
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Figure 17. Relationship between the generated internal wave amplitude a1 and the moving body speed U, the
moving speed changing from U = 0.8c0 to U = 1.5c0, with ρ1/ρ2 = 0.7873 and h1/h2 = 4/1.

L1/2 B1/2 a1 ccritical

Case A 10h2 0.1h2 0.58h2 1.241c0–1.242c0
Case B 20h2 0.1h2 0.55h2 1.259c0–1.260c0
Case C 10h2 0.2h2 0.83h2 1.295c0–1.296c0

Table 5. The effect of different dimensions of the bottom disturbance on the wave amplitude a1 and the critical
speed ccritical, where a1 is the amplitude of the leading wave when the moving speed is U = 1.0c0. Here, L1/2
is the semi-major axis of the semi-ellipse and B1/2 is its semi-minor axis.

significantly after exceeding the critical speed. For example, the amplitude of the internal
wave under the moving body speed U = 1.241c0 reaches 1.23h2, but when the moving
speed exceeds the speed U = 1.242c0, the amplitude of the generated internal wave
decreases to 0.41h2 rapidly. This phenomenon was also observed by Grue et al. (1997)
in the simulation of internal waves generated by a moving body on the free surface. It
is interesting to note that similar observations were reported by Ertekin (1984), Ertekin,
Webster & Wehausen (1986) and Ertekin, Qian & Wehausen (1990) for a surface ship and
surface disturbance, and by Ertekin (1984) for a submerged bottom bump, although they
were for a single layer of fluid.

To assess how the dimensions of the bottom disturbance affect the amplitude of the
internal wave generated and the critical speed, we consider three bottom disturbances with
different major and minor axes. Since the amplitudes of the internal waves generated at
different moving speeds are different, here we compare the amplitude of the leading wave
generated when the moving speed is U = 1.0c0. By comparing the results of cases A and
B in table 5, when the semi-major axis of the semi-ellipse is doubled, we find that the
amplitude of the leading wave is slightly smaller, and the critical speed slightly increases.
By comparing the results of cases A and C, when the semi-minor axis of the semi-ellipse
is doubled, it is observed that the amplitude of the leading wave is significantly larger, and
the critical speed increases.

4.4. Internal waves generated by an unsteady moving bottom disturbance
The MCC-RL model can be applied to simulate the internal waves generated by an
unsteady bottom disturbance. Here, we perform a numerical study on the internal waves
generated by a moving body with a variable speed. The parameters are the same as those
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Figure 18. The unsteady moving speed of the body at different moments.

given in § 4.2 except for the moving speed of the bottom disturbance. The moving speed
at different moments is shown in figure 18.

As shown in figure 18, at the first stage, the body is accelerated at a constant rate from 0
to U = 1.1c0 in the first 50 s. At the second stage, it moves at a constant speed U = 1.1c0
for the next 200 s. At the last stage, it is decelerated at a constant rate from U = 1.1c0 to 0
in the last 50 s. The internal wave profiles generated due to this unsteady motion, obtained
by the MCC-RL model, are shown in figure 19 for different moments.

As shown in figure 19, at the end of the first stage (t = 50 s), the internal solitary wave is
not fully generated yet. At the second stage, several internal solitary waves are generated.
At t = 200 s, it can be seen that the amplitudes of the third and fourth internal waves are
relatively small, while at t = 250 s, the amplitude of the third wave increases. Meanwhile,
the fourth and fifth internal solitary waves with smaller amplitudes are formed. At the
last stage (t = 300 s), an obvious disturbance is observed right above the body, and the
amplitude of the sixth wave is relatively small. After t = 300 s, the body is quiescent and
the generated internal waves can propagate steadily as shown in t = 400 s.

5. Conclusions

In this paper, we apply the MCC-RL model to solve the time-varying bottom problems.
The equations of the MCC-RL model with time-varying bottom are introduced, and the
numerical algorithm for the time domain simulations is given. By testing the steady
propagation of a large-amplitude internal solitary wave on the flat bottom, the accuracy
of the time domain results and the numerical algorithm are verified.

We focus on the numerical simulations on the internal waves generated by a moving
semi-ellipse (semi-major axis 10h2, semi-minor axis 0.1h2) on the bottom in a two-layer
system (ρ1/ρ2 = 0.7873 and h1/h2 = 4/1); the conclusions are outlined below.

(i) The results of the MCC-RL model and Euler’s solutions by Grue et al. (1997) match
well in general for the case U = 1.1c0. Good agreements are also found between
the time domain solution and the steady solution, which indicates that the generated
internal waves are internal solitary waves indeed.

(ii) By changing the moving speed from U = 0.8c0 to U = 1.5c0, we find that there
exists a critical speed between U = 1.241c0 and U = 1.242c0. There are significant
differences on the generated internal waves when the speed is smaller than the
critical speed and when the speed is greater than the critical speed.

(iii) When the moving speed is smaller than the critical speed, the internal solitary waves
can be generated continuously, and they are in good agreement with the steady
solutions of the internal solitary wave with flat bottom. With the moving body speed
increasing from U = 0.8c0 to U = 1.241c0, the amplitudes of the generated internal
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Figure 19. The internal wave profiles generated by an unsteady moving bottom, with ρ1/ρ2 = 0.7873 and
h1/h2 = 4/1, for (a) t = 50 s, (b) t = 100 s, (c) t = 200 s, (d) t = 250 s, (e) t = 300 s and ( f ) t = 400 s.

solitary waves increase monotonically, and the wave speed is closer to the moving
body speed.

(iv) When the moving speed is greater than the critical speed, only one internal wave
right above the body is generated, whose speed is the same as the moving speed.
Good agreement is found between the time domain solution and the steady solution
of the internal wave with time-varying bottom. After exceeding the critical speed,
the amplitude of the internal wave decreases significantly. When the moving body
speed increases from U = 1.242c0 to U = 1.5c0, the amplitude of the generated
internal waves decreases further, but nonlinearly.
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